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ABSTRACT 
A visual odometer was developed for an autonomous greenhouse sprayer to estimate vehicle 
translation and rotation relative to the world coordinate system during navigation. Digital images 
were taken from a CCD camera mounted on the robot. 7 x 7 pixel features were selected in the 
image using the KLT algorithm (Csetverikov, 2004). Features were tracked from image to image 
by finding the best 7 x 7 pixel match of the feature within a 25 x 25 pixel search box. By 
analyzing the movement of these features, vehicle rotation and translation were estimated. Five 
features were tracked with the odometer. Tests were run to verify the visual odometer’s accuracy 
during translation, rotation, and on various surfaces. The visual odometer ran at an average of 10 
Hz during experimentation. Translation tests of the odometer in a lab environment gave an 
average error of 4.85 cm for a 30.5 cm forward translation and 12.4 cm average error for a 305 
cm translation. Rotation tests of the odometer in a lab environment gave an average error of 1° 
for a 45° rotation and an 8° error for a 180° rotation about the vehicle z-axis. Tests completed on 
concrete, sand, and gravel demonstrated adaptability of the odometer on different ground 
surfaces that are common in greenhouses. The visual odometer was successfully integrated into a 
visual navigation system for intersection navigation of an autonomous greenhouse sprayer. 

Keywords: Feature tracking, KLT algorithm, machine vision, vehicle navigation, visual 
odometry 

1. INTRODUCTION 
Vehicle automation is a growing interest among the agricultural community. Many feasibility 
studies were made on autonomous agricultural vehicles. Have et al. (2002) investigated the 
development of autonomous weeders for Christmas tree plantations. Design requirements for 
such a vehicle were explored, specific behaviors for navigation and operation defined, and a 
system architecture proposed. Hellström (2002) performed a similar study for autonomous forest 
machines as part of a project to develop unmanned vehicles that transport timber. Another 
application of autonomous agricultural vehicles is autonomous greenhouse spraying. Benefits of 
an autonomous greenhouse sprayer include increased accuracy and precision with spraying, 
which would contribute to more efficient use of resources, capability to operate 24-hours a day, 
and decreased health risks associated with human exposure to dangerous chemicals. 

Singh (2004) designed an 81 x 41 cm autonomous greenhouse sprayer. The vehicle was designed 
to navigate through 46, 51, and 61 cm aisles. Two 560 W DC motors with 20:1 gear reducers 
powered two separate three-wheel drive trains. Turning was accomplished with differential 
steering. Vehicle control down the center of test paths was carried out independently using 
ultrasonic range sensors, ladar, and machine vision with a fuzzy PD controller (Singh, 2004; 
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Singh and Subramanian, 2004). The navigation system developed in Younse (2005) performed 
intersection detection and navigation using machine vision. Visual odometry was utilized in this 
navigation system during the intersection navigation algorithm. 

Visual odometry allows estimation of vehicle translation and rotation relative to the world 
coordinate system during navigation solely based on images from a camera. The advantage of 
visual odometry over conventional odometry techniques is that it bases vehicle movement on the 
movement of the path relative to the vehicle and is not affected by wheel slippage or turning. 
Also, if the vehicle is already equipped with a camera for navigation, no additional instruments 
are required, reducing vehicle cost and complexity. Visual odometry has been accomplished by 
tracking feature points from one image to the next and then computing the vehicle translation 
and rotation from these points. Nistér et al. (2004) detected Harris corners, tracked these features 
between image frames, and used a combination of the 5-point algorithm, 3-point algorithm, and 
triangulation to estimate 3D camera pose, and in turn, vehicle movement. Pollefeys (2004) also 
discussed and compared techniques to calculate 3D information and camera motion by tracking 
sets of feature points through image sequences using structure and motion. 

The visual odometry technique discussed in this paper differs from traditional visual odometry 
and structure and motion approaches in that it takes advantage of a flat ground plane assumption 
made for a vehicle with a fixed camera traveling on relatively flat ground. From this assumption, 
the visual odometry described only requires tracking a minimum two feature points (though five 
points were used for testing to make the system more robust and help eliminate error). Also, 
algorithms used to calculate vehicle rotation and translation between frames in a 3D-
environment, such as the 8-point algorithm (Chojnacki et al., 2003), are not required, which 
allows faster processing and the ability to more easily run navigation software with the visual 
odometry on a single camera system in real-time. 

2. SYSTEM COMPONENTS 
A Sony FCB-EX7805 CCD camera was mounted onto the robotic sprayer developed by Singh 
(2004), as shown in figure 1. 

 
Camera 

Computer

 
Figure 1. Camera-mounted robotic sprayer. 
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A single camera was chosen as opposed to a multiple camera setup or stereovision to reduce 
costs that come with additional equipment and reduce complexity associated with calibrating 
multiple cameras. An Integral Technologies Flashbus MV Pro frame grabber was used to capture 
640 x 480 pixel color images from the camera. A PC with a 2.4 GHz processor acquired images 
from the camera and performed the visual odometry routine for each frame. All programming 
was implemented in C++. 

3. CAMERA MODEL 
Sets of intrinsic and extrinsic camera parameters were found to describe the camera. Intrinsic 
parameters account for the focal length, principal point, skew, and lens distortion. Extrinsic 
parameters account for the rotation and translation of the camera coordinate system relative to 
the vehicle coordinate system. Using the intrinsic and extrinsic camera parameters, ground points 
in the vehicle coordinate system could be transformed into pixel coordinates and vice versa, as 
shown in figure 2. 

VP = [xv;yv;zv]

Yv

PPFB = [xPFB;yPFB]

XPFB 

YPFB 

 
Figure 2. Relationship between a ground point in the vehicle system and image plane. 

Intrinsic parameters were calculated using the Camera Calibration Toolbox for Matlab developed 
by Bouguet (2004). Extrinsic parameters were calculated by measuring the rotation and 
translation of the camera coordinate system relative to the vehicle coordinate system shown in 
figure 3. 
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Figure 3. Camera (C) and vehicle (V) coordinate systems. 
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To transform pixel coordinates to points in the vehicle system, the intrinsic and extrinsic 
parameters were used with the assumption that points in the image exist on a fixed ground plane. 

4. VISUAL ODOMETER 
The visual odometer was developed to estimate vehicle position and orientation relative to the 
world coordinate system over time. The odometer determines vehicle movement by tracking 
features on the ground. A total of four steps are carried out in this process: odometer 
initialization, initial search for features, tracking of features, and the determination of position 
and orientation change. 

4.1 Initialize Odometer 
When the odometer is initialized, the world coordinate system is defined relative to the vehicle 
coordinate system. All translations and rotations in subsequent images will be relative to this 
world system. 

4.2 Initial Search for Features 
The odometer relies on tracking features through a set of image frames. When starting the 
odometer, an initial set of features must be found for tracking. The large, rectangular box in the 
upper-center area of the image in figure 4A shows where initial features are found. The KLT 
search box is 151 pixels wide, 31 pixels high, and located at pixel row 380 and column 320. 
These specifications were chosen to allow pixels to be tracked a large distance when the vehicle 
is moving forward. The KLT search box size was specified because searching the entire image 
for features would take too much computation time. 

 
Figure 4. Initial search for features. A) Good features found in search box. B) Five strongest 

KLT features selected for tracking. 

Within the search box, good features are defined as corners found using the KLT algorithm 
(Csetverikov, 2004). 7x7 pixel sizes were chosen as feature sizes, because they are small enough 
for fast searching and large enough to uniquely define the feature. The strongest corner features 
found by the KLT algorithm are shown as smaller boxes within the search box in figure 4A. 
Because tracking features takes significant computation time, the number used in the tracking 

 

KLT Search Box

KLT Features 

 

A) B) 



5 

P. J. Younse and T. F. Burks. “Greenhouse Robot Navigation Using KLT Feature Tracking for 
Visual Odometry”. Agricultural Engineering International: the CIGR Ejournal. Manuscript ATOE 
07 015. Vol. IX. July, 2007. 

process is limited to a minimum. A minimum of two features is needed to define the vehicle 
motion relative to the ground. The five strongest features found with the KLT algorithm, 
represented by the smaller boxes in figure 4B, are used for tracking. 

4.3 Tracking of Features 
Figure 5 demonstrates feature tracking in two subsequent images. The small boxes mark the five 
7x7 pixel features being tracked. Features are tracked by saving the 7x7 pixel feature in the first 
image and looking for a 7x7 pixel area that best matches it in the second image. Only the area 
within the larger 25x25 pixel box is searched. The size of the search box was based on the 
velocity of the vehicle and selected to cover the possible movement of features in the image 
plane from frame to frame. The location of the feature search box is based on the movement of 
that feature found in the last frame. 

 
Figure 5. Tracking features. A) First frame. B) Second frame. 

To locate the features defined in image I1 (fig. 5A) in image I2 (fig. 5B), the sum-of-squared 
difference (SSD) is calculated for each possible 7x7 pixel area in the search box using the 
following equation (Barron et al., 1993): 
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where W is a discrete 2-d window function, x is the center pixel coordinates of the feature 
defined in frame 1, n = floor(feature pixel width/2), and d is the pixel row and column shift used 
to move the 7x7 pixel area within the search box in image I2. The best match gives the least sum-
of-squared difference. Figure 6 shows a larger view of the five features tracked from the first and 
second frame in figure 5. The outer feature pixels are not visible due to the box drawn around the 
feature. 

The restraint made on the features for the visual odometer is that they must be fixed on the 
ground plane. This restraint can be made because most greenhouse floors are relatively flat, and 
any small variations in the surface will be averaged out by the odometer over the course of the 
drive. However, certain conditions that must be avoided when tracking features are: 
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1. The feature tracked is significantly above or below the ground plane (due to features 
found in a gulley, in holes, or on mounds). 

2. The feature moves independent of the ground plane (due to features from moving objects 
or changing shadows on the ground). 

3. The feature is lost or not correctly tracked (due to a change in scenery over the feature 
area or errors from the feature matching process). 

To prevent these conditions from occurring during feature tracking, a geometric relationship 
amongst the features is defined from frame to frame. The distance from each feature to all other 
features is measured and recorded. 

     

     

Figure 6. Large view of features matched in figure 5. A) Features 1 through 5 in figure 5A. 
B) Features 1 through 5 in figure 5B. 

Figure 7 shows the distance calculated between features 1 and 5. 1F1 and 1F5 represent the 
coordinates of features 1 and 5 in the vehicle coordinate system in image frame 1. Note that these 
coordinates assume the features exist on the ground plane as defined in the camera model. 1d1,5 
represents the distance between features 1 and 5 in image frame 1. 
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1F1 = (-14.45,166.95,0.00) cm 

1F5 = (2.26,106.27,0.00) cm

1d1,5 = 62.92 cm

 
Figure 7. Distance between features 1 and 5 in image frame 1. 
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Table 1 shows the complete distance measurements between features from frame 1 in figure 5A. 
When the features from the first frame are found in the second frame, the distance relationship 
calculations are repeated. Table 2 shows the complete distance measurements between features 
from frame 2 in figure 5B. Next, the difference between the distance measurements from frame 1 
to frame 2 are calculated and shown in table 3. Note that this difference in distances between 
points is not dependent on how far the features are from one another, but based on how accurate 
the feature matching algorithm can estimate the position of each feature at the particular distance 
it is from the camera (closer features have higher pixel resolution and therefore their position can 
be calculated more accurately). 

Table 1. Distances between features in frame 1 shown in figure 5A in cm. 

Feature 1 2 3 4 5 
1 1d1,1 = 0.00 1d1,2 = 16.36 1d1,3 = 21.82 1d1,4 = 23.44 1d1,5 = 62.92 
2 1d2,1 = 16.36 1d2,2 = 0.00 1d2,3 = 14.91 1d2,4 = 16.13 1d2,5 = 47.04 
3 1d3,1 = 21.82 1d3,2 = 14.91 1d3,3 = 0.00 1d3,4 = 1.63 1d3,5 = 45.62 
4 1d4,1 = 23.44 1d4,2 = 16.13 1d4,3 = 1.63 1d4,4 = 0.00 1d4,5 = 44.58 
5 1d5,1 = 62.92 1d5,2 = 47.04 1d5,3 = 45.62 1d5,4 = 44.58 1d5,5 = 0.00 

Table 2. Distances between features in frame 2 shown in figure 5B in cm. 

Feature 1 2 3 4 5 
1 2d1,1 = 0.00 2d1,2 = 16.59 2d1,3 = 21.69 2d1,4 = 23.55 2d1,5 = 62.92 
2 2d2,1 = 16.59 2d2,2 = 0.00 2d2,3 = 14.86 2d2,4 = 16.03 2d2,5 = 46.84 
3 2d3,1 = 21.69 2d3,2 = 14.86 2d3,3 = 0.00 2d3,4 = 1.85 2d3,5 = 45.75 
4 2d4,1 = 23.55 2d4,2 = 16.03 2d4,3 = 1.85 2d4,4 = 0.00 2d4,5 = 44.37 
5 2d5,1 = 62.92 2d5,2 = 46.84 2d5,3 = 45.75 2d5,4 = 44.37 2d5,5 = 0.00 

Table 3. Difference in feature distance in frame 1 (tab. 1) and frame 2 (tab. 2) in cm. 

Feature 1 2 3 4 5 
1 0.00 0.23 0.13 0.10 0.00 
2 0.23 0.00 0.05 0.10 0.20 
3 0.13 0.05 0.00 0.23 0.13 
4 0.10 0.10 0.23 0.00 0.20 
5 0.00 0.20 0.13 0.20 0.00 

If all features were fixed to the ground and tracked accurately, the distance relationships between 
each of the features should remain the same. Analyzing the change in distances between the two 
frames compared in table 3 show little change, proving all five of the tracked features are valid. 

If any of the features being tracked falls into the three conditions described above (they existed 
above or below the ground plane, were on a moving object, or not correctly matched), they can 
be identified by looking at the difference in feature distances between frames as described above. 



8 

P. J. Younse and T. F. Burks. “Greenhouse Robot Navigation Using KLT Feature Tracking for 
Visual Odometry”. Agricultural Engineering International: the CIGR Ejournal. Manuscript ATOE 
07 015. Vol. IX. July, 2007. 

Figure 8 demonstrates a case when a feature was not tracked correctly between two consecutive 
frames. A close-up of the five features being tracked is shown in figure 8C and figure 8D. In 
figure 8B, all features were successfully tracked in frame 2 except for feature 1. Feature 1 was 
determined to be non-valid by performing the distance relationship analysis between features in 
each of the two frames. 
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Figure 8. Mistracked feature. A) First frame. B) Second frame. C) Close-up of features from first 
frame. D) Close-up of features from second frame. 

Table 4 and table 5 show the complete distance measurements between features from frame 1 in 
figure 8A and frame 2 in figure 8B. The difference between the distance measurements from 
frame 1 to frame 2 are calculated and shown in table 6. 

Table 4. Distances between features in frame 1 shown in figure 8A in cm. 

Feature 1 2 3 4 5 
1 1d1,1 = 0.00 1d1,2 = 2.34 1d1,3 = 9.32 1d1,4 = 19.71 1d1,5 = 20.42 
2 1d2,1 = 2.34 1d2,2 = 0.00 1d2,3 = 7.21 1d2,4 = 17.48 1d2,5 = 18.14 
3 1d3,1 = 9.32 1d3,2 = 7.21 1d3,3 = 0.00 1d3,4 = 10.54 1d3,5 = 11.35 
4 1d4,1 = 19.71 1d4,2 = 17.48 1d4,3 = 10.54 1d4,4 = 0.00 1d4,5 = 1.24 
5 1d5,1 = 20.42 1d5,2 = 18.14 1d5,3 = 11.35 1d5,4 = 1.24 1d5,5 = 0.00 
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Table 5. Distances between features in frame 2 shown in figure 8B in cm. 

Table 6. Difference in feature distance in frame 1 (tab. 4) and frame 2 (tab. 5) in cm. 

Feature 1 2 3 4 5 
1 0.00 0.25 0.15 0.28 0.33 
2 0.25 0.00 0.08 0.15 0.15 
3 0.15 0.08 0.00 0.08 0.08 
4 0.28 0.15 0.08 0.00 0.03 
5 0.33 0.15 0.08 0.03 0.00 

As seen in table 6, many of the changes of distances measured from feature 1 (the highlighted 
row) changed significantly more than those for the other four features. A threshold value of 0.25 
cm was set to pick out change in feature distances that indicated significant change. Any change 
of distance ≥  0.25 cm is labeled as a significant change. These are marked in bold in table 6. If 
the number of high changes is ≥  (n/2), where n is the number of features, then the feature is 
labeled as invalid. For the case in table 6, n/2 = 5/2 = 2.5. The number of significant changes for 
feature 1 is 3. Since 3 > 2.5, the feature is classified as invalid. When a feature is classified as 
invalid, it is removed from the tracking list and not used in the visual odometer calculations, and 
a new search is run on the current image to find a new feature to replace it (seen by the new 
rectangular KLT search box in figure 8B). 

All features whose search area has moved outside the image are also removed from the tracking 
list. A new feature search is calculated to find new features to replace them. Figure 9 
demonstrates a three-frame sequence in which a feature is lost, replaced, and tracked. 

4.4 Determination of Position and Orientation Change 
Based on the movement of the tracked features, the change in vehicle position and orientation is 
calculated between frames. Given two features tracked successfully from frame 1 to frame 2, the 
translation of the vehicle and the rotation of the vehicle about the world z-axis are found. The 
first calculation performed is the rotation of the features in frame 2 relative to the features in 
frame 1. Since the features are fixed in the world coordinate system, this is equivalent to finding 
the rotation for the world system in frame 2 relative to the world system in frame 1. Figure 10 
shows the calculations of two consecutive frames using the coordinates of two features. 1F1 and 
1F2 represents the coordinates of features 1 and 2 from frame 1 in the vehicle coordinate system. 
2F1 and 2F2 represents the coordinates of features 1 and 2 from frame 2 in the vehicle coordinate 
system. 

Feature 1 2 3 4 5 
1 2d1,1 = 0.00 2d1,2 = 2.08 2d1,3 = 9.17 2d1,4 = 19.43 2d1,5 = 20.09 
2 2d2,1 = 2.08 2d2,2 = 0.00 2d2,3 = 7.14 2d2,4 = 17.32 2d2,5 = 17.98 
3 2d3,1 = 9.17 2d3,2 = 7.14 2d3,3 = 0.00 2d3,4 = 10.46 2d3,5 = 11.28 
4 2d4,1 = 19.43 2d4,2 = 17.32 2d4,3 = 10.46 2d4,4 = 0.00 2d4,5 = 1.22 
5 2d5,1 = 20.09 2d5,2 = 17.98 2d5,3 = 11.28 2d5,4 = 1.22 2d5,5 = 0.00 
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Figure 9. Feature leaving image and replaced. A) Frame 1: Five features tracked. B) Frame 2: 
feature 5 moved off image and replacement feature search. C) Fame 3: New feature 5 tracked. 
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Figure 10. Calculation of rotation between two consecutive frames. A) Frame 1. B) Frame 2. 

VY' represents a line drawn through feature 1 parallel to the y-axis of the vehicle coordinate 
system. γ1 and γ2 represent the angles between VY' and a ray drawn from feature 1 to feature 2 in 
the two frames. The rotation of the world system in frame 2 relative to the world system in frame 
1, γ, is calculated: 

12 γγγ −=  
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Given the vehicle system coordinates of feature 1 in frame 1, 1F1 = (1F1,x, 1F1,y, 1F1,z), and feature 
1 in frame 2, 2F1 = (2F1,x, 2F1,y, 2F1,z), the translation of the world system in frame 2 relative to the 
world system frame 1 is calculated next. Let 2

1T  represent the transformation matrix relating the 
world system in frame 2 to the world system frame 1. The relationship between the coordinates 
of feature 1 in frame 1 and frame 2 is given by: 

1
2

2
1

1
1 FTF ⋅=  

Expanding this matrix and assuming vehicle rotation only occurs about its z-axis (which is 
sufficient on a level floor), 
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With the assumption that all points are on the ground (1F1,z, 2F1,z = 0), the translation of the world 
frame in the vehicle coordinate system in the x, y, and z directions, Tx, Ty and Tz, are solved: 
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To find the best estimates for the rotation, γ, and translation, Tx, Ty, and Tz, between frames, these 
values are calculated for all combinations of the valid tracked features. For each set of rotation 
and translation values calculated, 2

1T  is composed and multiplied with the coordinates of each of 
the features, 2Fi, to calculate 1F'i. 

ii FTF 2
2

1'1 ⋅=  

An error for the estimated set of rotation and translation values is 

∑
=

−=
n

i
ii FFerror

1

21'1 )(  

where n is the number of valid tracked features available. The set of rotation and translation 
values yielding the least error is used as the best estimate for γ, Tx, Ty and Tz. As demonstrated 
before, this set of values is used to develop 2

1T , which represents the transformation matrix 
relating the world system in frame 2 to the world system frame 1: 
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If oldV
W T ,  represents the last calculated transformation matrix relating the vehicle coordinate 

system to the world system, a new V
W T  is calculated using the latest 2

1T : 
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The final location of the vehicle in the world coordinate system is WPV = (WxV, WyV, WzV). The final 
orientation of the vehicle about the world z-axis is W γ V. Both are extracted from V

W T : 
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W
V T , representing the transformation matrix relating the world system to the vehicle coordinate 

system, can also be calculated from V
W T  (Crane and Duffy, 1998): 
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5. EXPERIMENTAL SETUP 
Three experiments were run to test the visual odometer accuracy and its utilization on various 
level surfaces: translation test, rotation test and verification tests on various surfaces. 
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5.1 Translation Test 
Vehicle translation estimation is used during intersection navigation to determine when the 
vehicle has traveled far enough into the intersection to start its turn. The position must be 
accurate to ensure proper alignment of the vehicle with the next path after turning. Since the 
vehicle is commanded to drive a specified distance forward along a straight line, the odometer 
translation test is run on a straight line along the vehicle y-axis. Small squares of tape were 
placed 15.24 cm apart along the vehicle x- and y-coordinate plane on the ground along the path 
to provide adequate features for the visual odometer to track (fig. 11). Figure 12 shows the tape 
marks as seen from the camera image. 

 
Figure 11. Yellow tape marks used for features during odometer test. 

 
Figure 12. Camera view of path with tape marks. 

For each test, the vehicle was lined up with a reference line and set up at a starting position, and 
the world coordinate system was initialized as the starting vehicle coordinate system. The vehicle 
was instructed to drive straight for a specified distance along the world y-axis direction and stop 
when the visual odometer read a distance greater than the specified distance. Distances of 15.24 
cm to 304.8 cm in 15.24 cm increments were tested. The largest distance, 304.8 cm, was selected 
as the maximum range a vehicle would have to travel to reach the end of a 152.4 cm wide 

Tape Marks

 

Tape Marks
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intersection if the visual odometer was started when the beginning of the intersection was 
114.3 cm from the vehicle. Three runs were performed for each distance. The vehicle was driven 
forward at approximately 11 cm per s. The x and y translations from the visual odometer were 
recorded at the end of each run. The origin of the vehicle coordinate system at the end was 
marked and its translation in the x- and y-directions was measured relative to the world 
coordinate system at the start. Measurements were made to the nearest 0.3 cm using a ruler. The 
measured vehicle translation was compared to the odometer estimation and an error was 
calculated. 

5.2 Rotation Test 
A similar test was conducted for rotation. Instead of tape marks on the floor, paper marks were 
used. The marks were placed in a circle approximately 150 cm in front of the vehicle so they 
only appear in the portion of the image where new features are searched for by the visual 
odometer (fig. 13). 

 
Figure 13. Experimental setup for visual odometer rotation test. 

For each test, the vehicle was lined up with a reference line, as shown in figure 13, and set up at 
a starting position. The world coordinate system was initialized as the starting vehicle coordinate 
system. The vehicle was instructed to rotate a specified angle clockwise about the vehicle z-axis 
and stop when the visual odometer read a distance equal to or greater than that angle. Angles of 
45° to 180° in 45° increments were used. Three runs were performed for each angle. The vehicle 
was rotated clockwise at approximately 3° per second. 

The angle of rotation from the visual odometer was recorded at the end of each run. The front 
and back of the vehicle were marked on the ground, and a line was drawn between the two to 
measure vehicle rotation relative to the starting reference line. The angle was measured to the 
nearest degree. The measured vehicle rotation was compared to the odometer estimation and an 
error was calculated. 

5.3 Verification Tests on Various Surfaces 
To prove that the visual odometer can work in a greenhouse environment, tests were also run on 
various surfaces that may be found in a greenhouse. These included concrete, sand, and gravel. 

Paper Marks
 

Reference Line
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All three tests were performed outdoors. The experimental setups for each surface and the view 
of the surface as seen by the camera are shown in figure 14, figure 15, and figure 16. Sand and 
gravel were placed along the driving path with a width large enough to cover the area of the 
image where feature tracking occurs. The material was placed on a tarp for ease of cleanup and 
did not affect results. 

      A)  B) 

Figure 14. Concrete test setup. A) Concrete surface. B) Camera view. 

      A)  B) 

Figure 15. Sand test setup. A) Sand surface. B) Camera view. 

      A)  B) 

Figure 16. Gravel test setup. A) Gravel surface. B) Camera view. 
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For each test, the vehicle was lined up with a reference line and set up at a starting position, and 
the world coordinate system was initialized as the starting vehicle coordinate system. The vehicle 
was instructed to drive straight for a 152.4 cm distance along the world y-axis direction and stop 
when the visual odometer read a distance greater than that distance. Three runs were made for 
each surface. The vehicle was driven forward at approximately 11 cm per second, as in the 
earlier translation test. 

The x and y translations from the visual odometer were recorded at the end of each run. The 
origin of the vehicle coordinate system at the end was marked, and its translation in the x- and y-
directions was measured relative to the vehicle coordinate system at the start. Measurements 
were made to the nearest 0.3 cm using a ruler. A string was laid down the center of the path along 
the initial vehicle y-axis at the end of each run as a reference to measure translation. The 
measured vehicle translation was compared to the odometer estimation and an error was 
calculated. 

 

6. RESULTS 
Results were obtained for the translation tests, rotation tests, and verification tests on various 
surfaces. The visual odometer ran at an average of 10 Hz during experimentation. 

 

6.1 Translation Test 
Results obtained from the three translation test runs are shown in table 7, table 8, and table 9. 

 

Table 7. Translation test Run 1. 

Command 
Distance [cm] 

Odometer xv 
[cm] 

Odometer yv 
[cm] 

Measured xv 
[cm] 

Measured yv 
[cm] 

Error 
[cm] 

30.48 4.22 32.44 -0.64 33.02 4.88 
60.96 0.66 62.89 0.00 65.10 2.29 
91.44 -3.28 92.61 0.33 95.25 4.47 

121.92 -10.92 123.95 0.33 124.46 11.25 
152.40 -3.23 154.25 0.97 156.85 4.93 
182.88 1.24 184.73 -1.60 185.12 2.87 
213.36 5.54 215.62 0.00 214.63 5.61 
243.84 -6.27 246.10 -4.45 243.21 3.43 
274.32 12.01 276.15 -3.81 276.86 15.85 
304.80 -29.49 307.14 -1.60 306.07 27.91 
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Table 8. Translation test Run 2. 

Command 
Distance [cm] 

Odometer xv 
[cm] 

Odometer yv 
[cm] 

Measured xv 
[cm] 

Measured yv 
[cm] 

Error 
[cm] 

30.48 1.57 32.49 -0.33 33.66 2.24 
60.96 10.41 64.29 0.33 67.31 10.52 
91.44 0.74 93.68 0.64 96.52 2.84 

121.92 3.58 123.49 0.00 125.73 4.22 
152.40 -4.93 154.33 0.00 154.31 4.93 
182.88 9.37 184.28 -1.27 184.15 10.64 
213.36 -1.04 214.83 -1.91 211.46 3.48 
243.84 -0.30 245.03 -3.51 244.48 3.25 
274.32 -6.71 275.74 -0.64 272.11 7.09 
304.80 0.18 305.94 -2.54 300.69 5.92 

Table 9. Translation test Run 3. 

Command 
Distance [cm] 

Odometer xv 
[cm] 

Odometer yv 
[cm] 

Measured xv 
[cm] 

Measured yv 
[cm] 

Error 
[cm] 

30.48 7.26 33.20 0.00 34.93 7.47 
60.96 -7.21 62.97 0.00 64.77 7.44 
91.44 0.84 92.74 0.33 95.25 2.57 

121.92 -1.22 123.60 0.33 126.37 3.15 
152.40 -7.80 154.69 0.33 153.04 8.28 
182.88 3.51 185.22 0.97 182.25 3.91 
213.36 -5.08 215.19 0.97 215.60 6.05 
243.84 -9.50 246.35 -3.51 246.08 6.02 
274.32 7.16 275.97 -2.54 274.65 9.78 
304.80 -0.76 307.06 -3.18 304.80 3.30 

 

The errors listed in the tables represent the difference in distance between the measured vehicle 
position and the position estimated by the visual odometer. Table 10 shows the average, 
minimum, maximum errors and standard deviations from the three runs. The general error range 
remained consistent throughout the range of distances tested. These odometer errors are the 
result of the camera model errors relating pixels to points in the vehicle coordinate system as 
discussed in the previous experiment. Even though a ground feature may have been tracked 
successfully from the top of the image to the bottom, its perceived coordinates by the camera 
model could be off by several centimeters by the time it reaches the bottom of the image. 
Depending on where in the image a feature was originally found and how far it was tracked 
down the path determined the error contribution it made. 
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Table 10. Average error over the three translation test runs. 

Command 
Distance 

[cm] 

Average 
Error 
[cm] 

Minimum 
Error 
[cm] 

Maximum 
Error 
[cm] 

Standard 
Deviation 

[cm] 
30.48 4.85 2.24 7.47 2.62 
60.96 6.76 2.29 10.52 4.16 
91.44 3.30 2.57 4.47 1.02 

121.92 6.22 3.15 11.25 4.40 
152.40 6.05 4.93 8.28 1.94 
182.88 5.82 2.87 10.64 4.22 
213.36 5.05 3.48 6.05 1.37 
243.84 4.22 3.25 6.02 1.55 
274.32 10.90 7.09 15.85 4.48 
304.80 12.40 3.30 27.91 13.52 

 

Several runs gave very high errors above 10 cm, with the largest occurring during Run 1 at the 
304.80 cm distance with a 27.91 cm error. The main contributions to these errors were poor 
estimation of the vehicle translation along its x-axis. Since the error remains relatively low out to 
243 cm, it is possible that vision distortion on the far horizon may contribute to the significant 
jump in error beyond 243 cm. However, it is clear that at moderate command distances, the 
average error is less than 7 cm with relatively small variation. In practice, this accuracy has 
proven adequate for navigating corners in greenhouse simulation tests. 

 

6.2 Rotation Test 
Results obtained from the three rotation test runs are shown in table 11, table 12, and table 13. 

 

Table 11. Rotation test Run 1. 

Command 
Angle 

[°] 

Odometer 
Angle 

[°] 

Measured 
Angle 

[°] 

Error 
 

[°] 
45 45 45 0 
90 90 90 0 

135 136 145 9 
180 182 190 8 
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Table 12. Rotation test Run 2. 

Command 
Angle 

[°] 

Odometer 
Angle 

[°] 

Measured 
Angle 

[°] 

Error 
 

[°] 
45 46 48 2 
90 90 88 2 

135 136 150 14 
180 182 166 16 

Table 13. Rotation test Run 3. 

Command 
Angle 

[°] 

Odometer 
Angle 

[°] 

Measured 
Angle 

[°] 

Error 
 

[°] 
45 46 44 2 
90 90 91 1 

135 135 155 20 
180 181 182 1 

The errors listed in the tables represent the difference in rotation between the measured vehicle 
orientation and the orientation estimated by the visual odometer. Table 14 shows the average, 
minimum, maximum errors and standard deviations from the three runs. There is a general trend 
that the farther the command distance, the larger the error. The maximum error during 
experimentation was 20°, which occurred during a 135° turn. It would be interesting to evaluate 
whether the turning rate and dynamics of the vehicle influenced the error at larger command 
angles. The accuracy of the 45° and 90° turn angles are extremely good and suggest that it may 
be possible to improve the performance at larger turn angles. 

Table 14. Average error over the three rotation test runs. 

Command 
Angle 

[°] 

Average 
Error 

[°] 

Minimum 
Error 

[°] 

Maximum 
Error 

[°] 

Standard 
Deviation 

[°] 
45 1 0 2 1 
90 1 0 2 1 

135 14 9 20 5 
180 8 1 16 8 

 

6.3 Verification Tests on Various Surfaces 
The results obtained for a commanded vehicle translation of 152.4 cm on concrete, sand, and 
gravel are shown in table 15, table 16, and table 17. 
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Table 15. Translation test for concrete. 

Run Odometer xv 
[cm] 

Odometer yv 
[cm] 

Measured xv 
[cm] 

Measured yv 
[cm] 

Error 
[cm] 

1 -19.84 154.69 -0.33 150.50 19.96 
2 -10.44 154.08 -0.33 150.50 10.74 
3 -6.30 154.53 -0.33 152.10 6.45 

Table 16. Translation test for sand. 

Run Odometer xv 
[cm] 

Odometer yv 
[cm] 

Measured xv 
[cm] 

Measured yv 
[cm] 

Error 
[cm] 

1 -5.97 154.03 -3.51 150.83 4.06 
2 -7.32 153.97 -2.54 148.59 7.19 
3 -7.19 154.23 -4.45 152.40 2.97 

Table 17. Translation test for gravel. 

Run Odometer xv 
[cm] 

Odometer yv 
[cm] 

Measured xv 
[cm] 

Measured yv 
[cm] 

Error 
[cm] 

1 -11.30 152.83 -5.08 146.05 9.19 
2 -7.09 154.36 -5.08 147.32 7.32 
3 -6.78 154.00 -3.81 144.78 9.68 

 

The errors listed in the tables represent the difference in distance between the measured vehicle 
position and the position estimated by the visual odometer. Table 18 shows the average, 
minimum, maximum errors and standard deviations from the three runs for each surface. The 
errors acquired from the testing on the lab floor at 152.4 cm as reported in table 10 are also 
shown in table 18 for comparison. The error results for sand and gravel compare favorably with 
that found on the lab floor. In these cases, the availability of distinct surface features provides a 
good basis for visual odometry. However, the concrete surface demonstrates significantly higher 
errors, which may be attributed to the less distinct image features. 

 

Table 18. Average error over the three test runs for concrete, sand, and gravel. 

Surface 
Average 

Error 
[cm] 

Minimum 
Error 
[cm] 

Maximum 
Error 
[cm] 

Standard 
Deviation 

[cm] 
Concrete 12.40 6.45 19.96 6.91 

Sand 4.75 2.97 7.19 2.19 
Gravel 8.74 7.32 9.68 1.25 

Lab 6.05 4.93 8.28 1.94 
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7. CONCLUSION 
The visual odometer gave accurate estimation of vehicle translation and rotation. Translation 
tests of the odometer in a lab environment gave an average error of 4.85 cm for a 30.5 cm 
forward translation and 12.4 cm average error for a 305 cm translation. This increased error may 
be due to far horizon image distortion. Rotation tests of the odometer in a lab environment gave 
an average error of 1° for a 45° rotation about the vehicle z-axis and 8° error for a 180° rotation. 
These were within an acceptable range, as demonstrated in the intersection navigation tests for 
turning in Younse (2005), allowing the visual odometer to guide the vehicle to a position in the 
intersection suitable for the turn. Any positional errors in the location of the vehicle turning 
center were dealt with successfully by the path following algorithm after the turn, which 
corrected any offset error and guided the vehicle towards the center of the second path. Finally, 
tests completed on concrete, sand, and gravel demonstrated adaptability of the odometer on 
different ground surfaces that are common in greenhouses. 

The visual odometer can be improved by averaging vehicle translation and rotation over multiple 
points from several frames, as opposed to using just two features per frame. Utilization of 
techniques researched by Nistér et al. (2004) can allow the visual odometer to track features that 
are not restricted to the ground plane. 
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