
1 

F. Rovira-Más, S. Han, J. Wei, and J. F. Reid. “Autonomous Guidance of a Corn Harvester using 
Stereo Vision”. Agricultural Engineering International: the CIGR Ejournal. Manuscript ATOE 
07 013. Vol. IX. July, 2007. 

Autonomous Guidance of a Corn Harvester using Stereo Vision 
F. Rovira-Más1, S. Han2, J. Wei3, and J. F. Reid4 

1Polytechnic University of Valencia. 46022 Valencia, Spain. 
2John Deere Agricultural Management Solutions. Urbandale, IA 50322, USA. 

3Kansas State University. Manhattan, KS 66502, USA. 
4John Deere Technology Center. Moline, IL 61265, USA. 

E-mail: frovira@dmta.upv.es 

ABSTRACT 
The growing demand for applications in Precision Agriculture has been proportional to the 
emergent interest in automatic guidance of agricultural machines. The difficult, and at the same 
time strenuous, task of driving a harvester during the prolonged working days of the harvesting 
season justifies the special attention paid to this technology. The development of Global 
Navigation Satellite Systems has meant an important push for autonomous navigation, especially 
in the case of off-road vehicles. However, experience has shown that automatic guidance inside 
the tight arrangement of crop rows is difficult to achieve unless local positioning sensors take 
part in the localization unit of auto-steered machines. This research develops a perception engine 
based on stereoscopic vision to detect the cut-uncut edge of corn during harvesting operations. 
The stereo camera was mounted on the head of an agricultural combine. The algorithm 
implemented was capable of finding the edge of corn, allowing the system to automatically guide 
the combine at regular harvesting speeds. 

Keywords: Autonomous navigation, corn harvester, edge detection, guidance, Precision 
Agriculture, stereoscopic vision, visual perception 

1. INTRODUCTION 
Among typical agricultural operations, harvesting is one of the most delicate because it usually 
needs to be carried out in a narrow period of time when ambient conditions are favorable. Total 
benefits obtained from the crop depend on the yield harvested, which is sensitive to the quality of 
the harvesting operation. If maize, for example, is the crop to be reaped, a combination of 
circumstances has to be met: adequate moisture content in the corncob; good weather conditions 
with absence of rain or snow; dry soil to allow the circulation of the machines; accessible 
combine and loading truck; and operators’ availability. When all these constraints are taken into 
consideration, it is not rare to request combining from dawn to dusk, even during the night, for 
several days in a row. Under these demanding conditions, the operator is forced to work under 
stress and fatigue that can result in poor performance or what is much worse, in a serious 
accident. If the ultimate goal of technology is to improve life, harvesting operations bring a 
breeding ground for its application. A natural and logical use of technology in this case would be 
through assisting in the vehicle’s navigation. There is no need to attain a complete automatic 
guidance solution in order to be considered a satisfactory outcome; a semi-autonomous result 
would be helpful in managing the combine since it would relieve the operator from some hours 
of strenuous work. Furthermore, it would be beneficial for acquiring experience in guidance 
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systems, which, eventually, will lead to fully autonomous prototypes. This research investigates 
in such direction, trying to bring some light to the challenge of autonomous navigation for 
agricultural combines. 

Since the incorporation of sensors, electronics, and computers to agriculture at the end of the 
eighties, and more generally after the nineties, many automatic guidance architectures for off-
road vehicles have been proposed, both in industry and academia. Machine vision solutions seem 
to be the most appropriate for the situations faced during harvesting, however, they are not 
exempt from complexities and challenges. One of such intricacies deals with the camera 
location, for which there is no definite solution. Benson et al. (2001) studied four camera 
locations for combine guidance, and arrived to the conclusion that the best position for the 
camera is above the cabin. One of the positions discarded in that work placed the camera 
attached to the combine head, pointing at the cut-uncut edge. The main cause for rejecting the 
low camera position on the combine’s head was due to sparse crop and shadows. In spite of the 
flawed results experienced with such location in previous research projects, the solution 
proposed in this article places the camera on the head of the combine, but adds two significant 
changes: first, the camera was mounted on a sliding bar on the combine’s head in such a way that 
a better view of the cut-uncut edge was acquired by rotating the camera towards the crop; and 
second, stereovision was employed as the main perception method. The advantages of stereo 
over monocular vision can, to some extent, account for the shadows issue: a change in ambient 
illumination will affect both stereo sensors simultaneously. Therefore, the texture patterns that 
allow stereo matching will remain unaltered, as long as there is enough light for the camera to 
detect distinct features in both images of the stereo pair. This property of stereo vision, together 
with the fact that stereo provides the range or third coordinate, has motivated the advent of 
multiple applications for robot perception and autonomous navigation in the last five years. 
Murray and Jennings (1997) demonstrated that stereo is an alternative to laser and sonar, and 
built a lab robot that used stereo for localization and mapping of an unknown environment. The 
scenes found during harvesting present certain structure as corn is planted following regular rows 
separated evenly a known distance. There is, therefore, an a priori knowledge about the scene to 
be acquired by the stereo camera. If landmarks can be placed in the field of view of the camera, 
the location of a vehicle can be determined by means of stereo (Wang et al., 2005); and if a solid 
model of the target object is available, a robotic manipulator will have at its disposal a modeled 
environment for automatic tasks (Lee et al., 2005). While agricultural applications are still scarce 
(Rovira-Más and Reid, 2004; Kise et al., 2005; Rovira-Más et al., 2005; Wei et al., 2005), the 
possibilities of perception via stereo are expanding in all directions; from 3D mapping for 
underwater autonomous vehicles challenged by limited visibility caused by turbid waters 
(Khamene and Negahdaripour, 1999) to humanoid robots that walk around unknown home 
environments (Sabe et al., 2004). 

The object of this study is to develop a perception engine based on stereoscopic vision to detect 
the cut-uncut edge of corn during harvesting operations. Several hardware configurations and 
different edge detection algorithms were evaluated in the course of the experiments. 

2. SYSTEM ARCHITECTURE AND TEST PLATFORMS 
The perception sensor was a binocular stereo camera (BumbleBee, Point Grey Research Inc., 
Vancouver, Canada) with a 120 mm baseline and 6 mm focal length lenses yielding a horizontal 
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field of view of 42 º. The camera communicated with the on-board processing computer (Motion 
Computing Inc, Austin, TX, USA) via an IEEE 1394 connection. The edge detection algorithm 
was implemented in the processing computer and the resulting output, namely the vehicle’s 
offset, was sent to the control unit of the combine. The corn harvester selected to perform 
navigation tests was a John Deere 9660 STS (Deere and Company, Moline, IL, USA) equipped 
with AutoTracTM, an auto-steering system that provides positioning corrections using a GPS 
receiver as the principal localization sensor. The offsets (lateral misalignments) calculated by the 
AutoTrac algorithm were substituted by the offsets sent by the stereo processor, being the 
steering controller and mechanism those of the original AutoTrac. 

One of the key parameters in the system was the camera location. Several options were tested 
before attempting to guide the combine in the field. The monocular camera approach reported by 
Benson et al. (2001) found a low position on the head to be problematic, but when a stereo 
camera was employed as the main perception sensor, the possibility of rendering a 3D view of 
the scene resulted in several advantages for that placement. Nevertheless, different alternatives 
were studied within the head before deciding a permanent mount. Figure 1 illustrates the general 
layout of the system: (a) side view; (b) top view. The first experiments were conducted in 
Weslaco, Texas (USA), on 14 July 2005. The objective of that preparatory phase was to 
scrutinize the potential of stereo for combine guidance. Stereo images were taken with the 
following parameters, as defined in figure 1: hc = 1.61 m, θ = 0 º, Lr = 0.965 m, LW = 5.842 m, 
and Lc = 0. Difficulties encountered detecting the edge, as explained in the following sections, 
led to a reformulation of some parameters, being the camera position for the automatic guidance 
tests, carried out in Des Moines, Iowa (USA) in October 2005, given by hc = 1.66 m, θ = 30 º, Lc 
= 1.42 m. The camera was always mounted flat except for one test where it was tilted down 5°. 

 
Figure 1. System design for autonomous guidance of a combine using stereo vision: 

(a) side view, and (b) top view. 

3. FINDING THE EDGE 
Before obtaining high quality point clouds, it is necessary to acquire satisfactory stereo images, 
that is, to get acceptable disparity images. In the first configuration of the system the camera was 
mounted just on the head’s left side without using the extension arm and looking ahead (θ = 0 º 
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and Lc = 0) at 1.61 m high. Figure 2 shows a raw left image (a) and its corresponding disparity 
image (b) where dark intensities represent far objects and black stands for filtered mismatches. 

 
Figure 2. Outputs from the stereo camera: (a) left image, and (b) disparity image. 

The disparity image stores the 3D information of the sensed scene in camera coordinates. The 
first step in the data process is a transformation from the original camera coordinates to the 
ground coordinates as defined by Rovira-Más and Reid (2004). The result of that transformation 
is a point cloud of the scene given in a more intuitive frame. Figure 3 represents the 3D cloud of 
the scene given in figure 2: (a) side view YZ; (b) front view XZ; and (c) top view XY. 

 
Figure 3. 3D point cloud of the scene given in figure 2: (a) side view, (b) front view, and 

(c) top view. 

The ground system of coordinates places its origin at ground level right under the optical center 
of the left lens. The approximate expected position for the cut-uncut edge can be determined 
beforehand, and therefore 3D information can be restricted to important zones. Apart from 
reducing the size of the point clouds, the processing time is also reduced. The side view of the 
point cloud given in figure 3 (a) shows wrong 3D locations for heights (Z) over 4 m caused by 
the cloudy sky. The representation of the ground level is rather flat, and it is located at Z = 0, 
which indicates a sound coordinate transformation; however the 3D information close to the 
ground level is not important to find the edge, and can be neglected for such purpose. The 
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depiction of the edge can be easily identified in the front view of figure 3 (b). An edge remaining 
from previous passes is also noticeable around 5 m left. As shown in the side view, heights over 
4 m rendered incorrect information. The top view of the scene (fig. 3 (c)) demonstrates low data 
reliability for ranges greater than 15 m. For the scene studied in figure 3, a reasonable three-
dimensional space for data processing can be defined by (1). 

  (1) 

The cloud point represented in figure 3, under spatial restrictions similar to the ones stated in 
expression (1), was converted into a density grid, as defined in Rovira-Más and Reid (2004). The 
Z coordinate was limited to the interval [500, 2000] mm, yielding the 37 x 50 grid of figure 4 (a). 
The variation of the 3D density (d3d) as a function of the range Y is plotted in figure 4 (b). 

 
Figure 4. Density grid representation: (a) grid, and (b) density-range relationship. 

The graphic of figure 4 (b) indicates that the 3D density drops very fast in the first 8 m, being 
very low beyond 10 m. In spite of this unbalance, the position of the edge is well determined, as 
indicated in figure 4 (a). In this particular application, where the goal is to detect the cut-uncut 
edge, since the key information resides in those cells located close to the camera, there is, 
apparently, no urgent need to range-compensate the 3D density. 

With the aim of enhancing the position of the cut-uncut edge so that it can be detected more 
reliably, the gradient mask (V) of equation (2) was applied to a density grid defined around the 
location of the edge. The resulting graphical representation is plotted in figure 5: (a) gives a 
three-dimensional view of the value of the gradient for every cell, and (b) provides the same data 
through a two-dimensional color map. 

  (2) 

The gradient mask marked transitions rather intensely, producing a large increment negative 
maximum- positive maximum where the edge lays. Once the gradient grid was calculated, the 
maximum value for each row was registered, as well as its cell location. After the computation of 
the maximum gradient values, a threshold (5% of the maximum value in the grid) was applied to 

[ ] [ ] [ ]mmzmmymmx 4000,1000;15000,0;2500,2500 ∈∈−∈
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eliminate low-reliability locations. Finally, the X coordinates of the remaining cells were stored 
to estimate the vehicle’s offset. 

 
Figure 5. Application of Gradient Operation: (a) 3D view, and (b) 2D color map. 

When only the first row was detected (row that signals the position of the cut-uncut edge), the 
gradient operation yielded similar results to the outcomes obtained after detecting the edge 
directly from the density grid. However, the gradient became more valuable when special 
situations occurred. One such circumstance took place when several rows were detected in the 
same scene. The gradient procedure marked the largest transition between the maximum and 
minimum peaks for the edge. Figure 6 (a) represents the gradient response when more that one 
row is captured in the image. Figure 6 (b) provides the locations of the found rows. The highest 
peak to peak difference determined the placement of the edge, and the density of those rows 
detected on the right side of the chosen row were weighted by a reduction coefficient before 
calculating the final position of the edge. 

 
Figure 6. Edge detection when several rows are captured in the scene: 

(a) 3D view, and (b) 2D map. 
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Even though the camera was initially installed on the left side of the combine head with θ = 0 º 
and Lc = 0 (fig. 1), the navigation tests were performed with a significantly different 
configuration: θ = 30 º and Lc = 1.42 m. The reason for such modifications is due to the need to 
generate more robust stereo images and avoid the detection of multiple rows as shown in figure 
6. An even more problematic situation arose when the corn leaves got so near to the camera that 
they touched the lenses and blocked part of the field of view. In that case, the cut-uncut edge was 
not always properly detected, causing instability problems. Figure 7 illustrates the situation of a 
camera mounted too close to the actual crop: (a) left image of the stereo pair; (b) gradient 
representation of the scene; and (c) approximate position of the edge after the inner rows have 
been penalized. 

 
Figure 7. Inappropriate distance camera-crop: (a) raw image, (b) gradient plot, and 

(c) estimated edge position. 

4. CONFIDENCE METRICS 

With the second configuration for the camera position (hc = 1.66 m, θ = 30 º, Lc = 1.42 m.), the 
estimates for the edge’s position improved, yet sometimes there were appreciable differences 
between consecutive estimates. The objective of the confidence index is to assess the quality of 
the edge position estimation in such a way that every result (estimate) is accompanied by a 
quality indicator, representing a confidence value for the solution. The expression for the 
Confidence Index (CI) is defined in (3), where Mx is the moment index and Cx is the clustering 
index, whose definitions are included in the next paragraphs. 

   (3) 

4.1 Moment and Moment Index 
Figure 8 represents an archetypal output of the edge detection algorithm: a set of cells arranged 
approximately drawing a line. For every single valid cell, three parameters are known: x 
coordinate, y coordinate, and 3D density. Valid cells are those whose density exceeds certain 
threshold, determined after the gradient operation. The optimal position of the edge is 
approximated by a regression line applied to the valid cells. 

xx CMCI ⋅=
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Figure 8. Confidence index calculation: Moment definition. 

The Moment for a particular image k is defined in equation (4), where n is the number of valid 
cells after thresholding, di is the perpendicular distance from valid cell i to the fit line L, and Di is 
the density of the cell number i. 

 ∑
=

=
n

i i

i
k D

dM
1

2
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If the fit line L is determined by the equation 0=++≡ cbyaxL , the perpendicular distance for 
the valid cells di can be calculated following the conventional expression of equation (5): 
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Due to the fact that the Moment Index was intended to range between 0 and 1, a maximum value 
reachable by the Moment had to be deduced. Such value was named the estimated maximum 
moment of the image k (MoMaxk), and was defined according to equation (6). Note that an 
adjustment constant equal to 2 has been arbitrarily added to the denominator in order to obtain 
more rational values for the Confidence Index CI. The other parameters taking part in the 
equation are dmax as the maximum distance considered in the image k after the threshold has been 
applied, and Dmin, the non-zero minimum density recorded among the n valid cells. 
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The expression of the Moment Index is given in equation (7). It is, by definition, a number 
comprised in the interval [0, 1], and it will decrease when the valid cells are located far from the 
regression line and having low densities, since that specific combination will enlarge Mk. 

 
k

k
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MM −=1  (7) 
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4.2 Clustering Index 

An alternative way to evaluate the capacity of the valid cells to delimit the cut-uncut edge is by 
quantifying their tendency to cluster around the optimal line L. A basic procedure to quantify 
that clustering ability is by analyzing the distribution of the perpendicular distances di calculated 
with equation (5). The standard deviation of the perpendicular distances di for a given image is 
shown in equation (8), where d is the average perpendicular distance: 

 
1
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1

2

−

−
=
∑
=

n

dd
n

i
i

dσ  (8) 

The Clustering Index Cx is finally defined in equation (9a), with the conditional constraint stated 
in equation (9b), which assures that Cx is never above 1. 

 d
xC

σ
2.08.0 +=  

11 =⇒> xx CCIf  

(9a) 

(9b) 

The ultimate goal of the confidence metrics is to rate the quality of the estimate (offset) and 
weight its contribution to the final control command accordingly, mainly if sensor fusion is 
employed for automatic guidance. In the navigation tests performed with the combine, the 
Confidence Index was calculated but no action was taken in the steering based on such index. 

The plots represented in figure 9 give three examples of the application of the confidence metrics 
to the edge detection algorithm: (a) CI = 60%; (b) CI = 80%; and (c) CI = 94%. Table 1 lists the 
key parameters involved in the calculation of CI for the cases represented in figure 9. 

 
Figure 9. Confidence Metrics for edge detection: (a) CI = 60%, (b) CI = 80%, and (c) CI = 94%. 

Table 1. Basic parameters obtained in the calculation of the Confidence Index CI. 

Case n M dmax Dmin MoMax Mx σd d  Cx CI 
(a) 154 112 15 45 385 0.71 4.7 5.3 0.84 60% 
(b) 168 33 13 34 417 0.92 2.9 1.5 0.87 80% 
(c) 121 2 6 44 49 0.96 1.1 0.2 0.98 94% 
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5. OFFSET ESTIMATION 

The methodology covered thus far tries to identify the approximate location of the cut-uncut 
edge and, at the same time, provide an estimate of the quality of the solution found. Once the 
grid cells that bear the key information have been isolated, the offset of the vehicle is computed 
from the position of the selected cells. The offset can be defined as the lateral distance between 
the actual position of the combine and its optimal position determined by the location of the cut-
uncut edge. The offset is the output of the edge detection algorithm, and is sent out to the 
steering control unit of the AutoTrac system. The first step in the calculation of the offset is to 
generate the profile of cumulative densities by summing up the densities for every column of the 
grid, eliminating the data stored in the boundaries of the grid (20%). Figure 10 (a) represents the 
profile of cumulative densities for several images whilst figure 10 (b) plots the profile for a 
single image. In the former case, it is difficult to decide where the best placement for the edge is. 
The latter gives a clearer idea of the possible situation for the searched edge, however, there are 
two distinct peaks separated by 10 cells, and an extra verification would be helpful before 
making the final decision. The application of the gradient operation, defined in equation 2, to the 
profile of figure 10 (b) gave the profile of figure 10 (c), where the biggest peak to peak 
difference provides a redundant value for the approximated position of the edge. The most 
accurate estimates were obtained with the gradient operation, although most of the times the 
results from both plots coincided. After the final position for the solution cell has been chosen, 
the last step consists of transforming the position of that cell to conventional length units, taking 
into account the extension of the arm Lc and the width of the combine head fingers. 

 
Figure 10. Offset estimation: (a) cumulative densities of several images, (b) cumulative densities 

of a single image, and (c) gradient applied to the profile of cumulative densities of (b). 

6. RESULTS 
The results obtained during the preparatory tests led to the final configuration camera-vehicle 
defined by the parameters hc = 1.66 m, θ = 30 º, and Lc = 1.42 m (fig. 1), as well as to the 
development and tuning of the algorithm. The conclusive experiments to examine the behavior 
of the entire system were carried out guiding the combine autonomously through a cornfield in 
central Iowa (USA), on 21 October 2005. Since the auto-steering operation was executed by the 
AutoTrac system, it was not possible to introduce modifications in the steering controller or 
vehicle dynamics model; correct offsets given by the algorithm were supposed to produce stable 
and precise navigation. The assessment of the quality of the automatic guidance was realized 
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visually, paying attention to possible damage caused to the crop. Corn usually leans as the snouts 
of the combine head run over the plants laterally, which is easily detected from the cabin. The 
harvester was automatically guided through the field for several passes at speeds ranging from 
2.5 to 4 km/h, a representative velocity interval for corn harvesting operations. The stability of 
the vehicle greatly depended on the quality of the images and, consequently, the edge detection 
results. Figure 11 shows two results of the edge detection algorithm when the edge was not the 
only feature detected: in (a) there were some leaves registered in the grid on the left of the edge; 
and in (b) there were plants belonging to the inner rows detected on the right side of the cut-
uncut edge. 

 
Figure 11. Edge detection results with challenging grids. 

Figure 12 represents the opposite case, when the edge is basically the unique feature detected in 
the density grid. Even though there were some cells providing information on the right side of 
the edge in (b), they had low density values, and basically did not perturb the estimation of the 
line. In the four cases presented in figures 11 and 12, the position of the estimated edge (marked 
by a dotted vertical line) gives the impression of being properly situated. 

 
Figure 12. Edge detection results. 

7. CONCLUSIONS 

The numerous benefits of assisting combine drivers in the monotonous task of harvesting 
motivated the development of an algorithm for autonomous guidance of harvesters. The 
elaborated methodology was based on the detection of the cut-uncut edge of corn plants using 
stereoscopic vision. Several operations and techniques such as density grids and gradient profiles 
resulted very helpful in estimating the position of the edge. A confidence index to evaluate the 
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probability of obtaining good results was also developed, although it was not used in the actual 
control of the vehicle. One of the most sensitive parameters in the configuration of the system 
was the location of the camera. The best results were achieved with a low camera position on the 
combine head, and by separating the camera from the cut-uncut edge with an extension arm. 
Even though this solution turned out to be optimal from the image processing standpoint, it is not 
the most adequate from the structural point of view: a metal bar with a camera and its cables 
protruding from the combine head does not seem to be an efficient design. The choice of stereo 
for the perception of the edge produced good results due to the advantage of having the three 
dimensions of a scene where the wall created by the edge can be easily detected. The combine 
was capable of driving autonomously at regular harvesting speeds; however, more guidance tests 
are necessary to challenge the system and develop a more robust algorithm that can work for a 
broad variety of conditions. A methodology to evaluate the quality of the automatic task would 
also be beneficial for comparing the results found with different configurations of the developed 
system. 
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