
1

J. Lenz, R. Landman, and A. Mishra. “Customized Software in Distributed Embedded Systems:
ISOBUS and the Coming Revolution in Agriculture”. Agricultural Engineering International: the
CIGR Ejournal. Manuscript ATOE 07 007. Vol. IX. July, 2007.

Customized Software in Distributed Embedded Systems:
ISOBUS and the Coming Revolution in Agriculture

J. Lenz1, R. Landman2, and A. Mishra3
1Deere and Co., Moline, IL, USA.

2Phoenix International Corporation, 1750 Research Park Drive, Fargo, ND 58102, USA.
3University of Minnesota, Minneapolis, MN 55445, USA.

E-mail: lenzjamese@johndeere.com

ABSTRACT
The electrification of agricultural equipment has been evolving for many years and in some ways
is lagging behind other industries. However this strategy of following the lead of other industries
now offers Ag the opportunity to move forward at a revolutionary pace. Network standards
defined by the Society of Automotive Engineers (SAE) and the International Organization for
Standardization (ISO) committees are the basis for defining a rulebook for this industry-
standardizing worldwide electronics interoperability. ISOBUS (ISO 11783) which defines a
physical standard between tractors and implements will be an important enabler for most new
product definitions. The foundation of this coming revolution will be provided through software.
This paper outlines the electronics hardware and software architecture for off-road vehicles that
allows for implementation of customized machine control features. There are several key areas
discussed. The first enabler for this revolution is a software development and delivery system
that defines a design methodology for creating and delivering software modules for a distributed
set of controllers. This design methodology presents two advantages that today’s modern
electronic technologies can deliver: 1) Customization with commodity hardware and 2) Service
without replacing hardware parts anywhere in the world. The second enabler for this machine
revolution is an ‘agile’ process to develop the software. Many product ideas are being valuated
through a trial and error and continuous improvement process. Software will play an important
enabler for these product definitions. A comparison between the worldwide trend for software
processes, the Capability Maturity Model (CMM), and what type of process would fit the off-
road industry is based around the maturity of the new product ideas. The strong supply chain link
between dealers and customers for off-road machines, coupled with the emerging awareness of
electronic functions and controls, sets a basis for a specialized software development process. An
important enabler for this ‘agile’ process is the re-use of code and incremental testing with
reviews.

The history of the off-road machine business has been based on proven designs and long times
between model updates. However, the worldwide adoption of the ISOBUS standard is poised to
change this history. ISOBUS is not only establishing an open system for interoperability, it is
establishing a sequence of features for diagnostics, sequenced operations, and information
management. As customers discover these capabilities, they will expect them to be further
advanced and customized for their specific needs. This requires adding agility into the proven
durable processes so that manufacturers can respond faster to these growing needs. Electronics,
and especially well-planned software systems, offer an agile technology for meeting this coming

2

J. Lenz, R. Landman, and A. Mishra. “Customized Software in Distributed Embedded Systems:
ISOBUS and the Coming Revolution in Agriculture”. Agricultural Engineering International: the
CIGR Ejournal. Manuscript ATOE 07 007. Vol. IX. July, 2007.

need. This paper presents the benchmarking of various embedded software development projects
relating project content, project rigor, and quality. From this, insights into maintaining quality are
gained in order to include agility into a durable development project. Also, risk and rewards of
leveraging low cost country software development skills are addressed to stretch resources or
even develop common resources for software systems.

Keywords: Agile, durable, embedded systems, interoperability, ISOBUS, off-road, software

1. INTRODUCTION

Electronics allow easier operation and customization of machines for various operator needs. The
initial step of replacing mechanical operator controls, such as levers, with electronic switches
and computers are optimizing agricultural machine control in real time. Figure 1 illustrates the
general path and pace in which electronic controls have evolved.

Machine Electric
Assisted

Computer
Assisted

Computer
Controlled

Remote
Operator

Autonomous
Machine

Engines

Self Propelled

Implements

Tractors
Small

Large

In-DevelopmentProduction

Hay

Tillage

Seeders

Combines

SPFH

Figure 1. Comparison of machine electronics.

1.1 Electric Assisted

The first step in this evolution is defined as Electric Assisted. This step involves adding switches,
wiring, indicators, and wire harnesses to the machine, such as electric start for engines. User
controls can be more compact and sensors are used to monitor critical functions.

3

J. Lenz, R. Landman, and A. Mishra. “Customized Software in Distributed Embedded Systems:
ISOBUS and the Coming Revolution in Agriculture”. Agricultural Engineering International: the
CIGR Ejournal. Manuscript ATOE 07 007. Vol. IX. July, 2007.

1.2 Computer Assisted

When machinery becomes Computer Assisted, logical and mathematical processing is added,
such as the processing that takes place in engine position timing. The main advantage is added
safety along with re-configurable labeling for fewer switches and more parameter settings.

1.3 Computer Controlled

Adding Computer Controlled electronics involves using sensor inputs to automatically control a
function independent from the operator, such as engine fuel injection. Functions can be done
repetitively with more precision.

1.4 Remote Operator

Introducing Remote Operator electronics into a vehicle involves adding self-reasoning to the
control circuit, such as adaptive emissions-managed engine control. The control can diagnose its
operation and adapt for optimum performance and safety.

1.5 Autonomous Machine

Creating Autonomous Machines involves adding awareness and intent to the decision process
and control, such as an engine that runs on power demand.

Of the major ag-related machines, engine manufacturers have lead the way in adopting
technology while tractors and combines have been close followers. With the coming ISO 11783
standards for ag equipment, implements are jumping to a level equal to tractors in sophistication.
By incorporating ISO 11783 standards, an entire function and its precise, safe coordination
within the machine, are transparent to the user who then can focus on larger needs. A brief
discussion of the ISO 11783 standards is provided in the following paragraphs.

2. ISOBUS: THE EMERGING STANDARD FOR AGRICULTURE
AND FORESTRY EQUIPMENT

ISOBUS is the term usually used to refer to the ISO standard 11783, the general standard for
mobile data communication for the agricultural and forestry equipment industries (Benneweis,
2006). Equipment that is ISOBUS compliant promises to communicate seamlessly (i.e., plug and
play) with other equipment to form systems of machines and implements that can be flexibly
configured to meet user needs. A major piece of the standard deals with a virtual terminal, or VT,
that can be used by various devices to display setup, status, and diagnostic information about a
particular implement or subsystem. This permits vehicle manufacturers and third parties to build
display devices that work with any number of implements regardless of manufacturer. This is a
major departure from the proprietary systems often used in the past and creates major benefits
for the end user. Competition will drive the market for best features and productivity
enhancements via this standardized integration.

Another part of the standard addresses task controllers. This allows integration of the business
(farm) management from the office to the mobile equipment. This enables on-demand and near
real time use of precision farming. Location dependent prescription chemical application and

4

J. Lenz, R. Landman, and A. Mishra. “Customized Software in Distributed Embedded Systems:
ISOBUS and the Coming Revolution in Agriculture”. Agricultural Engineering International: the
CIGR Ejournal. Manuscript ATOE 07 007. Vol. IX. July, 2007.

yield monitoring are just two examples. Still other parts of the ISOBUS standard deal with the
details of network management, data integrity, data storage, and gateways between network
segments. As a whole ISOBUS, has the potential to revolutionize the industries that adopt it.
These industries will in turn deliver the benefits to users in the form of productivity and
efficiency.

2.1 The Value of Electronic Controls

A typical architecture being encouraged by the ISO 11783 standards is illustrated in figure 2. It
shows tractor controllers for five distributed control functions. A series of implement controllers
can also be added to the system. A Virtual Terminal (VT) acts as a reconfigurable, shared
interface to this distributed control system. This system approach creates a “plug and play”
environment for tractor and implements (Lenz and Jensen, 2004).

Transmission
Unit

Suspension
Control

Unit

Dedicated
Monitor

BCU/
Hitch-Chassis

Control Unit

Electro
Hydraulic

Valves

Motor Solenoid
Valve

Actuator Datalink

Intelligent Actuators

Engine Control

Pump

ECU Wiring

Tractor Network

Implement
Controller

Tractor -ISO BUS
Gateway

CAN J1939

Hitch
Control Unit

Implement Network ISO11783

VT

Figure 2. Distributed control architecture.

One challenge is to provide a system that is cost effective in comparison to the benefit it provides
as well as to make it expandable for future needs. The benefits of electronics in machine control
are best gained through use of common modules such as software, microcomputers, connectors,
sensors, actuators, and housings. These common modules offer development and performance
benefits such as:

• Easy customization of machines for each operators needs.

• Efficient service for customer updates and upgrades.

• Standard diagnostic procedures.

5

J. Lenz, R. Landman, and A. Mishra. “Customized Software in Distributed Embedded Systems:
ISOBUS and the Coming Revolution in Agriculture”. Agricultural Engineering International: the
CIGR Ejournal. Manuscript ATOE 07 007. Vol. IX. July, 2007.

• Shorter development time enabled by modular development.

• Local real-time response and control.

• Isolation of faults allowing reduced but continued operations.

• Improved software quality and reliability.

The modular approach also reduces development and machine cost through:

• Reduced part numbers and hardware inventory.

• Reduced wiring and electrical connections.

• Standard processors (i.e. controllers) that can be configured through software.

• Modular hardware that is mass-produced even at relatively small off-road machine
volumes.

• Modular software where re-use is maximized.

• Development workforce mobility.

• Reduced verification costs.

A key to maximizing the value of electronics in machine control is having one set of hardware
modules that can be installed anywhere and software modules that can be configured and loaded
at the end of the production line. The underlying architecture for this modular approach is
distributed control (fig 2). The hardware modules, primarily displays and controllers, can be
readily designed and maintained. However, developing modules in a way that they work
seamlessly together is a significant challenge. Part of the problem is that multiple design teams -
often in different locations, business organizations, or even separate companies - typically
develop different modules. This is further compounded by the global nature of today’s products.

2.2 Modular Structure of Embedded Software

The major software modules in a controller are illustrated in figure 3. There are two layers to the
structure. The application layer is the specific software that causes the controller to offer unique,
customizable features to the machine control. The infrastructure layer provides the standards for
communication, security, memory management, processor function, and connections to the
machine.

The infrastructure layer consists of four major modules:

1) Operating System,

2) Common Services such as Timing Management, On-board Debugger, and Fault
Management,

3) Hardware Drivers such as Analog Acquisition, PWM Driver, and CAN Communications
and

4) Security/ Re-programming Pass code.

6

J. Lenz, R. Landman, and A. Mishra. “Customized Software in Distributed Embedded Systems:
ISOBUS and the Coming Revolution in Agriculture”. Agricultural Engineering International: the
CIGR Ejournal. Manuscript ATOE 07 007. Vol. IX. July, 2007.

For each controller configuration the application software module is linked with the selected
infrastructure modules to form a controller payload. For a typical 128K byte payload, the
application code will use 25% of the controller’s memory and the re-useable infrastructure code
will fill the remaining 75%.

Figure 3. Modular structure for the controller software.

2.3 Software Architecture and Delivery

ISOBUS will require a capability for seamless development of software modules and delivery of
these software modules to machines on the production line and in the field. This encompasses the
four aspects of a life cycle of a controller software payload:

1) Final Programming - at factories,

2) Service Reprogramming - at the machine site,

3) Field Reconfiguration - at dealers or machine site, and

4) Aftermarket Features – direct to the machine.

Through use of the World Wide Web to deliver this customization, an IT infrastructure for
embedded software for distributed controllers has been created. This Embedded Software
Information Technology (ESIT) system consists of the following key parts:

• Rulebook: CAN Management — This allows every developer, regardless of
organization or geography, to conform to the distributed control communication and data
structures

• Library — This is the infrastructure layer software including the drivers and electrical
specifications to the various switches, sensors, and actuators for our family of machines.

7

J. Lenz, R. Landman, and A. Mishra. “Customized Software in Distributed Embedded Systems:
ISOBUS and the Coming Revolution in Agriculture”. Agricultural Engineering International: the
CIGR Ejournal. Manuscript ATOE 07 007. Vol. IX. July, 2007.

• Memory Access/Pass Code — This is the infrastructure layer software providing
uniquely configurable security to prevent un-intentional access to re-writing or storing
data or software code.

• Formatter — This desktop application allows engineering to build software payloads for
a controller. Through parameter sets, payloads can be customized for nearly every user’s
requests.

• Order Delivery: WebIT — This web enabled server application allows for ordering and
delivery of compacted software payloads for controller.

Figure 4 shows the flow of these parts and how they are used to create and deliver a controller
software payload. This ESIT system has been designed to utilize the benefits of World Wide Web
technologies and its global reach. It establishes a core competency for all future machine control
systems. The latest features for a machine can be customized for an individual end-user if
needed. The developers for new features have well-established infrastructure and programming
guidelines. Ultimately this system provides the most efficient, most flexible, most re-
configurable platform to developing controls and delivering them to customers for their specific
needs.

SDS Central Server
Moline

Programming History,
Vehicle Options, &

Engineering Software

Engineer

JDJet Engineering Tool

Simulation Iterative Development,
Testing, and Release

Factory Vehicle Build Database

Line Operator

Factory Programming and
EOL Configuration

Vehicle Diagnosis and
Field Programming

EOL Programming Tool Diagnostic Tools

Dealer SupportCustomer Support

Dealer

Software
Release

Programming
History Data

Payload Files

Product Serial
Number

 Build Options,
Software
Assemblies

Programming
History Data

Payload Files

Change/Add Field Kit
Software & Options

View Vehicle
Programming

History

Manufacturing Sales and Service Development

Technical Support

Figure 4. A critical function for an embedded software system is use of a single IT based
infrastructure to connect development, manufacturing, and service.

8

J. Lenz, R. Landman, and A. Mishra. “Customized Software in Distributed Embedded Systems:
ISOBUS and the Coming Revolution in Agriculture”. Agricultural Engineering International: the
CIGR Ejournal. Manuscript ATOE 07 007. Vol. IX. July, 2007.

The main objective of the software development methodology and delivery system illustrated in
figure 4 is to tailor products to specific customer needs, both on the production line and in the
field. Aftermarket sales of upgrades benefit from ease of software reconfiguration. Field support
costs decline because technicians can remedy many machine problems through software updates
rather than hardware replacement.

While the goal of the software system in an off-road industry is for long-term service and
customization, this distributed architecture has other benefits. Substantial code re-use can result
in a 75% reduction in software development time and cost while maintaining quality and
efficiency. Also, because all software must conform to standards for interoperability, this single
system drives a software development process leveraging a software service 'help desk'
approach. Higher reuse and clear design guidelines have also translated into fewer software
defects and smoother system integrations due to “plug and play” interoperability between
controllers. The full value of this infrastructure can be achieved through shared usage similar to
what is achieved with most IT technologies. It is expected that as ISO 11783 drives more
interoperability between machines and suppliers there will be a need for a common infrastructure
that is available to every developer and service center.

3. CHALLENGES FOR SOFTWARE DEVELOPMENT

Electronics is a growing part of the control and functions for off-road vehicles, and the use of
software to configure the machines is an especially important capability. However the history of
software development is often linked to projects having unmanaged costs and schedule overruns.
As the off-road equipment industry relies on electronics to meet future needs, software
development must be approached differently than other industries have done in the past.

3.1 Software Development Evolves to Meet New Business Models

In the 1980’s when software was being recognized as a recurring area of project management
difficulty, there were two prevalent themes that underscored the problem: poorly defined and
changing needs and a ‘discovery’ approach to software coding. Several major efforts to address
this problem resulted in bringing maturity to the industries embracing electronics in the 1990’s.
This maturity cycle is illustrated in figure 5. As the product is developed, the verification of the
requirements and the validation the product needs is done early in the build cycle of the product.
When customer needs are grouped and defined early in the development cycle, the product,
verification, and customer expectation can be forecast and determined before the product launch
even begins. Nearly all of the product specifications and requirements can be evaluated and
optimized during the technical feasibility and market feasibility development steps. Once the
product is launched there are few product specification unknowns. The resources can be focused
on delivering to this specification. Most products fit into this type of business model. A
characteristic of the type of business is that the learning curve and experience of the sales
channel (dealership and customer) are not expected to contribute significantly to the product’s
continuous improvement. In this case the software development can be defined like a component
and developed accordingly. Today there are a number of standard processes for developing
software where specifications can be defined and forecast with reasonable accuracy. Software
still requires a ‘discovery’ process and as a result can attempt higher levels of complexity than
hardware only approaches.

9

J. Lenz, R. Landman, and A. Mishra. “Customized Software in Distributed Embedded Systems:
ISOBUS and the Coming Revolution in Agriculture”. Agricultural Engineering International: the
CIGR Ejournal. Manuscript ATOE 07 007. Vol. IX. July, 2007.

Figure 5. Illustration of product specification verification and customer expectation validation
resources expended during the product development cycle for a definable need.

3.2 Setting Standards for Software Development

The growing standard for software development where needs are clearly defined has been
developed by Carnegie Mellon® Software Engineering Institute (SEI). The Capability Maturity
Model (CMM) (fig. 6) for software provides organizations with two sets of guidance:

1) Establishing processes for developing and maintaining software, and

2) Creating a culture of software engineering and management excellence.

Figure 6. The five levels of software process maturity as defined by CMM.

idea technical market product build deliver field
 feasibility feasibility launch support

Life cycle of new product idea

E
ffo

rt
/ r

es
ou

rc
es

 e
xp

en
de

d
on

pr

od
uc

t v
er

ifi
ca

tio
n

an
d

va
lid

at
io

n

10

J. Lenz, R. Landman, and A. Mishra. “Customized Software in Distributed Embedded Systems:
ISOBUS and the Coming Revolution in Agriculture”. Agricultural Engineering International: the
CIGR Ejournal. Manuscript ATOE 07 007. Vol. IX. July, 2007.

The CMM (Paulk et al., 1993) was designed to guide software organizations in selecting process
improvement strategies by focusing on a limited set of activities and working aggressively to
achieve them.

The staged structure of the CMM is based on principles of product quality that have existed for
the last sixty years. These principles have been adapted into a maturity framework that
establishes a project management and engineering foundation for quantitative control of the
software process, the basis for continuous process improvement. A characteristic of the type of
business that benefits from CMM is when the learning curve and experience of the sales channel
(dealership and customer) are not expected to contribute significantly to the product’s continuous
improvement.

However what happens when the experience of the customer is a main driving factor for new
needs? How readily can an organization move up levels in this capability maturity model when
the specifications for the product do not become evident until late in the life cycle? How can
agility be offered with durable products? These are some of the questions facing the off-road
equipment industry that drive a different approach to software development.

3.3 Durable and Agile Processes

In the off-road equipment industry the type of customer and their needs are quite diverse. They
require precise performance for their individual applications. Since the market is fragmented, the
supply chain (dealer and customer) has difficulty verbalizing general product requirements. This
tends to drive the product verification and validation late in the product life cycle with much of it
being done through the learning curves of the supply chain as illustrated in figure 7.

Figure 7. Illustration of product specification verification and customer expectation validation
during the product development cycle for a fragmented market where final

 product specifications rely on the learning curves in the supply chain.

idea technical market product build deliver field
 feasibility feasibility launch support

Learning Curve in
Dealerships for

new product

Learning Curve
of customers

Life cycle of new product idea

E
ffo

rt
/ r

es
ou

rc
es

 e
xp

en
de

d
on

pr

od
uc

t v
er

ifi
ca

tio
n

an
d

va
lid

at
io

n

11

J. Lenz, R. Landman, and A. Mishra. “Customized Software in Distributed Embedded Systems:
ISOBUS and the Coming Revolution in Agriculture”. Agricultural Engineering International: the
CIGR Ejournal. Manuscript ATOE 07 007. Vol. IX. July, 2007.

Another way to compare the differences between the durable and agile levels of market maturity
is shown in figure 8. The ‘room for discovery’ as a metric is compared between the two types of
software processes. A traditional product development process is based on a stage-gate method
where innovation is managed as the product is defined for product launch. One can think of this
as a Durable Software Development Process. However, software because of its virtual, re-
programming structure can be adapted to a product readily if this has been anticipated.

This can be thought of as an Agile Software Development Process. The Agile process works for
software because there is no extra tooling or manufacturing elements. Once the software
component is developed and tested, it can be immediately inserted into machines. Figure 8 shows
three software updates being done as the machine nears initial delivery.

Figure 8. Software can deliver innovation late in the product life cycle.

The Durability Software Process, i.e. CMM levels 2 through 5 (fig. 6), has these characteristics:

• Reduced ‘discovery’, detail specification defined up front.

• Quickly drop ‘poor’ ideas in favor of ‘good’ ideas.

• Can control development schedule for substantial durability testing and meet product
launch date.

• As components are defined can engage a competitive supplier bid process.

• Better manage costs, leverage use of low cost sources.

The Agile Software Process has these characteristics:

• Can deliver software very late in product build-innovation.

• Software quality must be achieved without long corner condition testing.

idea technical market product build deliver field
 feasibility feasibility launch support

Agile Software Process

Stage – gate Processes

Durable(i.e. CMM) process

Innovation

Life cycle of new product idea

R
oo

m
 fo

r ‘
D

is
co

ve
ry

’,
In

cl
us

io
n

of
 n

ew
 id

ea
s,

In

co
rp

or
at

io
n

of
 n

ew
 c

us
to

m
er

ne

ed
s

12

J. Lenz, R. Landman, and A. Mishra. “Customized Software in Distributed Embedded Systems:
ISOBUS and the Coming Revolution in Agriculture”. Agricultural Engineering International: the
CIGR Ejournal. Manuscript ATOE 07 007. Vol. IX. July, 2007.

• Marketing and engineering works together to offer short time to market features.

• Difficult to outsource software production when the specifications are not fixed.

• Development costs are more difficult to manage.

• Ability to match the product to the true un-met needs is optimized when the un-met needs
are difficult to verbalize before experiencing.

Many features of off-road vehicles must precisely fit the customer’s need. The Agile Software
Process provides a fast-learner method to respond to needs as they are discovered (Erickson et
al., 2005). The main trade-off between the Agility and Durability approaches is if software
quality is compromised. However, the customer does not readily distinguish between software
quality and performance if the overall product does not meet their needs. But the true need is
often difficult to specify until the operator, dealership, and the manufacturer experience a large
statistical number of occurrences. When this discovery occurs, it has great value. The faster this
discovery can be turned back into the product, the greater the reward.

3.4 Software Development

The five key steps to developing software modules for controllers are illustrated in figure 9. This
diagram is referred to as the V chart. It depicts the software development process moving from a
larger systems view of the software to the coding details and then back to the larger machine
view. The left side of the V represents the systems engineering and the software specification and
design. The right side of the V shows code verification to the specification and integration. The
major effort is at the bottom in creating the software code. The key to managing costs using this
process is to keep these five steps tightly coupled. This impacts the use of outside engineering
resources. A key part to managing this process is the use of development tools such as document
version control, requirement capture, and regression testing. However, one of the most important
aspects of controlling costs and continuously improving software quality is establishing a code
re-use system.

Figure 9. The five key steps to developing an embedded systems software payload.

Specification

Design

Implementation

Verification

Integration

Requirements capture
System configuration

SW Version control
Algorithm definition

Code re’-use

Issue tracking and
change management

Bench tests
Automated testing

Environmental, EMC
Code review

Field-testing
Redesign

13

J. Lenz, R. Landman, and A. Mishra. “Customized Software in Distributed Embedded Systems:
ISOBUS and the Coming Revolution in Agriculture”. Agricultural Engineering International: the
CIGR Ejournal. Manuscript ATOE 07 007. Vol. IX. July, 2007.

These five major tasks, along with leveraging re-use architecture, defines an agile software
development process. This is assisted through having a strong infrastructure for re-usable code
and a tightly coupled development team. The Agile Process is a good fit for products where
customer needs are emerging and difficult to specify until experienced.

CMM is portrayed as related to a durable but maybe not as an agile process. This reflects the
general thinking as organizations have developed and improved their software development
process. However the issue is not CMM, but adapting the process to what is most needed.
Software in the off-road industry uses ‘updates’ and thus a process must have the rigor for
durability but also the agility to serve these updates. The three general reasons for software
updates are:

• Customer Needs: Software enhancements to address missing requirements, for example
issues found through field use

• Design Issues: Software enhancements to fix hardware problems

• Software Quality: Software ‘patches’ to fix ‘bugs’: typos, formatting, timing, math errors

Figure 10 illustrates that the focus on an agile or durable process results from the level of the
customer maturity. When the product and its software is serving an emerging use of electronics,
having a ‘fast learner’ or incremental process is the best fit. When the value of electronics is well
understood then the focus is on software quality. Software will always be used to fix hardware
problems mainly because it can, but no one would set up a process specific for this purpose.

Figure 10. The maturity of the market being served is a main driver in having a software process
that has its primary focus on agility or durability.

Many items required for CMM/CMMI (Requirement for Management, Process, Documentation,
etc.) are also showing up in 61508, the IEC standard for safety relevant components. Thus the
software development process for off-road machines will continue to be challenged between

Software
Development

Approach

Main focus of
Software
Updates

Customers
use of

Electronics

Agile:
Focus on ‚fast
learner’ to capture
and meet needs as
customers ‚discover’
them.

Durable:
Focus on software
quality secondary
issue with capturing
incorrect
requirements.

Emerging:
Fragmented market
where nearly each
customer validates
product features.

Mature:
Defined needs and
specifications for
product features
and their value.

Capture
Requirements

with Agility

Fix hardware
problems

Avoid ‘bugs’

14

J. Lenz, R. Landman, and A. Mishra. “Customized Software in Distributed Embedded Systems:
ISOBUS and the Coming Revolution in Agriculture”. Agricultural Engineering International: the
CIGR Ejournal. Manuscript ATOE 07 007. Vol. IX. July, 2007.

delivering to very specific requirements and delivering into an emerging market where the value
of the product feature is challenged and re-worked nearly every day.

3.5 The Challenge between Durability and Agility

Traditionally quality in electronics is built through long durability developments (Henning and
Heide, 2004). These long development cycles serve the market need when the market pull for
new features changes slowly (fig.11). Even this process tends to over-serve the market.

Pe
rfo

rm
an

ce

Time

Customer Needs for
Machine Control

Products

Model Update

Performance of Machine

Figure 11. Durable Approach. A Durable Product Development approach serves the customer if
their need for machine updates increase slowly.

Because of the length of time between updates, there is a strategy to go beyond what customers
are asking for. Introducing a product that over-serves (provides more performance and features
than the customer needs at the time) can produce a negative impression of the product. The
concept of a durable process as defined in this paper represents the long time between feature
updates. This includes time to define the requirements and validate to these requirements so that
the product does not significantly over-serve the market. This durable process is then managed to
produce a high quality product where the electronics are primarily performing machine control
features.

With the coming of ISOBUS standards for sharing controls and interoperability, there is a
growing need for features related to machine intelligence instead of just simple machine control.
These intelligence features are emerging from many users and suppliers in the industry, fueled by
the interoperability of ISOBUS. These features are primarily developed and delivered through
software in the electronics.

To keep up with the growing demand, a more agile process is needed (fig. 12) which can more
rapidly deliver when a durable process may mostly under-serve the current market needs. Our
industry is being challenged to find a way to produce high quality, i.e. durable software in a
faster, i.e. agile process.

15

J. Lenz, R. Landman, and A. Mishra. “Customized Software in Distributed Embedded Systems:
ISOBUS and the Coming Revolution in Agriculture”. Agricultural Engineering International: the
CIGR Ejournal. Manuscript ATOE 07 007. Vol. IX. July, 2007.

Pe
rfo

rm
an

ce

Time

Agile
Approach

Durable
Approach

Customer
Needs grow faster for
Machine Intelligence
Products

Software Updates

Figure 12. Agile Approach. An Agile Product Development approach serves the customer if their
needs are growing faster than traditional machine updates can accommodate.

There are two basic foundations to adding agility to a traditional durability development process.
The first is highly reliable reusable software components that can be quickly assembled to
implement new features or completely new modules. Reuse of components such as vehicle
network communications, reprogramming, fault management, user interface and many more give
the machine designer a rapid development environment to build their individual module’s
capabilities (Lenz and Muench, 2005).

The second foundation is developer support. Developer support binds together the proven
software architecture, standard software modules, and implementation details. Together these
reduce development time and eliminate duplication of efforts. This approach is effective in
avoiding repetition of costly mistakes that have already been solved. Developer support
provides:

• A library of code software for selected microcontrollers that includes I/O drivers,
hardware abstraction, and operating system.

• Re-programming software based on standard IT functions preconfigured for specific
microcontrollers, memory, and hardware combinations.

• In-depth training on the above components.

• Application integration and debug support available by phone and email to all users.

• Continuous improvement of “core” software with needed features as determined by a
user group.

3.6 Software Development and Quality

Quality is the motivation for a durable process. As developers face the demand of the schedule
there are two options: add inexperienced staff, or tailor the process. In an emerging or ‘immature’
situation, it appears quality is achieved better by tailoring the process and maintaining a tightly
integrated team. High quality is still achieved through four factors:

16

J. Lenz, R. Landman, and A. Mishra. “Customized Software in Distributed Embedded Systems:
ISOBUS and the Coming Revolution in Agriculture”. Agricultural Engineering International: the
CIGR Ejournal. Manuscript ATOE 07 007. Vol. IX. July, 2007.

1) Using a software process,

2) Leveraging a high percentage of re-use in the interoperability software,

3) Help desk support that gives assistance for the coding details, and

4) Experienced staff that specializes in capturing systems domain knowledge in software.

The future goal is always perfect quality. As complex systems grow with still emerging values
for electronics, even faster turns on ideas are needed while maintaining quality and customer
expectations. Modeling and simulations are the next engineering practice to include Agility in a
durable product development process.

4. OFF SHORING EMBEDDED SOFTWARE DEVELOPMENT

The tremendous growth in information technology hardware and software has opened up a
number of alternatives for executing embedded software development projects. Teams of
professionals armed with laptop computers, fax-modems, e-mail, voice mail, videoconferencing,
interactive databases and frequent flyer memberships, are being sent out to conduct business in
this global arena. With respect to this trend, offshoring of embedded software development work
has increased significantly in the last decade.

While the subject of offshoring has received extensive coverage in business and academic press
in recent times, a majority of these studies have focused on understanding this phenomenon in a
setting that involves routine manufacturing and service activities (such as call center, medical
transcription etc.) as opposed to knowledge-based work such as software development
(Youngdahl et al., 2005). Offshoring in manufacturing and service industries typically involves
handing off standardized tasks such as manufacture of component parts, administrative tasks, or
back office operations to vendors, with little day-to-day interaction required between the local
firm and the off-shore supplier firm. Yet understanding how to manage these activities is likely to
be very different from knowledge-based work like embedded software development. As
described above, the use of embedded controls in the off-road industry is an emerging capability
where there is minimal routineness and a multitude of feature details. Finalizing the exact
machine performance requires significant exchange of complex information between the
customer, the service center, the factory, the systems engineer, and the software developer.

Offshoring of embedded software development projects present a unique challenge to the off-
road equipment manufacturer (Rottman, 2006). On one hand, firms are likely to outsource their
software development projects for reasons related to the low cost of labor in offshore destination
countries as well the availability of manpower resources in these countries. On the other hand,
given the uncertainty associated with software development and the increasing interdependence
between development tasks, the entire development team needs to exchange information
continuously. This brings forth the challenge of coordination and effective project management
across geographical, temporal, and cultural boundaries (Overby, 2003). The difference in
working styles across team members situated in difference geographical locations can also be a
source of constant misunderstanding and frustration among the team. Herbsleb and Grinter
(1999) found that members of distributed software development teams, regardless of the way
they structured their work, were “constantly surprised” and confused about the activities of their
distant colleagues. While there is some understanding of the strategic reasons (such as lower

17

J. Lenz, R. Landman, and A. Mishra. “Customized Software in Distributed Embedded Systems:
ISOBUS and the Coming Revolution in Agriculture”. Agricultural Engineering International: the
CIGR Ejournal. Manuscript ATOE 07 007. Vol. IX. July, 2007.

costs of development, availability of technical expertise in popular offshoring destinations etc.)
that motivate firms to offshore their development projects, it is not clear as to how such projects
can be managed effectively. The above identified issues bring forth the need for more research on
project management of offshoring teams especially in managing the relationship and the
development of a shared understanding between the client and vendor teams.

5. SUMMARY AND FUTURE DIRECTIONS

The coming ISOBUS standard will revolutionize the Agriculture industry in many segments.
This revolution will be driven by the customers pull for ease of use and operations that are more
efficient. In order to deliver this solution across our industry there is significant complexity, as
described above, which must be transparent to the end customer. The revolution will come from
how the off-road industry deals with these complexities of which some are:

• Single Service Capability – Service electronics and finding root cause faults is
challenging in distributed control systems. The ISOBUS standard starts with
identification information but eventually common built-in test and data logging
procedures may be needed (Darr and Hudson, 2004).

• Software Interoperability – The ISOBUS standard leads to strict formats for
communication protocol (CAN J1939) and input/output commands (Virtual Terminals). It
is software subroutines that deliver this interoperability (Hofmann, 2006). The lowest
cost solution comes when a single source is used for this software. There is cost for each
machine manufacturer to develop these software libraries with an even greater cost for
each to maintain this code for years. This is a cost that the off-road industry cannot afford
and if not managed will make ISOBUS unaffordable.

• User Interface Commonality – The most visible part of the ISOBUS standard to the
customer will be the display and the control switches. The customer will want something
that is intuitive and familiar across all machines (Haapala et al., 2006). The industry will
need to work together to provide an ease of use format.

• Hardware Common Modules – Connectors are the beginning of the commonality and
an obvious necessity for interoperability. However this need for commonality will grow
to other hardware such as displays, controllers, sensors, wireless devices, etc. To gain
confidence in the use and maintenance of this electrical system, the customers and service
centers will want to become familiar with the components. Again as this commonality
grows so will the pull for ISOBUS.

ISOBUS will help off-road industry manufacturers distinguish between their core competencies
and the core values they offer the customer, and what just has to work 'behind the scenes'. The
coming revolution will clarify this for each manufacturer in this industry.

6. REFERENCES
Benneweis, R. K. 2006. Facilitating Agriculture Automation Using Standards, Club of Bologna

Session: Information Technology for Agricultural Machines, Sept. 2006, Bonn, Germany.

18

J. Lenz, R. Landman, and A. Mishra. “Customized Software in Distributed Embedded Systems:
ISOBUS and the Coming Revolution in Agriculture”. Agricultural Engineering International: the
CIGR Ejournal. Manuscript ATOE 07 007. Vol. IX. July, 2007.

Darr, M., and K. Hudson. 2004. Standardization of Electronics in Machinery Systems - ISO
11783 nears completion for ag, construction, and forestry equipment, In: Resource -
Engineering & Technology for a Sustainable World Vol. 11 No. 10, Dec. 2004, published
by ASABE.

Erickson, J., K. Lyytinen, and S. Keng. 2005. Agile Modeling, Agile Software Development, and
Extreme Programming. The State of Research, Journal of Database Management, Vol. 16
Issue 4, pp.88-100.

Haapala, H.E.S., L. Pesonen, and P. Nurkka. 2006. Usability as a Challenge in Precision
Agriculture – case study: an ISOBUS VT. Agricultural Engineering International: the CIGR
Ejournal. Manuscript MES 05 001. Vol. VIII. March, 2006.

Henning, K., and A. Heide. 2004. Embedded Software Failure Analysis. In: Bildverarbeitung -
Safety and Security. 8. Symposium der Technischen Akademie Esslingen. Hrsg. v.
Technische Akademie Esslingen.

Herbsleb, J. D., and R. E. Grinter. 1999. Architectures, Coordination, and Distance: Conway's
Law and Beyond. IEEE Software, Vol. 16 No. 5, Sept.-Oct. 1999, pp. 63-70.

Hofmann, R. 2006. Software in Tractors: Aspects of Development, Maintenance and Support,
Club of Bologna Session: Information Technology for Agricultural Machines, Sept. 2006,
Bonn, Germany.

Lenz, J., and R. Jensen. 2004. Customized Software for Distributed Control, VDI Conference
Agricultural Engineering 2004, Hannover, Germany, VDI-Berichte Nr. 1855, pp. 137-144.

Lenz, J., and P. Muench. 2005. Software Development for Off-road Machines, VDI Conference
Agricultural Engineering 2005, Dresden, Germany, VDI-Berichte Nr. 1895, pp. 315-322.

Overby, S. 2003. The Hidden Costs of Offshore Outsourcing, CIO Magazine, 1 Sept. 2003.
(http://www.cio.com/archive/090103/money.html).

Paulk, M., B. Curtis, M. Chrissis, and C. Weber. 1993. Capability Maturity Model for Software
(CMM), Version 1.1, Technical Report, CMU/SEI-93-TR-024, ESC-TR-93-177, Carnegie
Mellon University, Pittsburgh, Pennsylvania, USA.

Rottman, J. W. 2006. Successfully Outsourcing Embedded Software Development. IEEE
Computer, Vol. 39 No. 1, Jan. 2006, pp. 55-61.

Youngdahl, W., K. Ramaswamy, R. Verma, and B. S. Sahay. 2005. Offshoring of Service and
Knowledge Work. Journal of Operations Management, Jan. 2005, Vol. 23 Issue 1, pp. 109-
110.

