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Abstract: One of the most significant crops, the production of which the Egyptian government tends to increase, is 
chamomile flowers.  In contrast, the expansion of this crop's agriculture is being driven by the high cost of manual 
harvesting.  The goal of this study was to design and test a robot that could harvest chamomile flowers while preserving 
the plant's health, cutting costs, and maintaining flower quality.  A prototype of chamomile flower harvesting robot was 
designed, manufactured and tested.  The robot consists of three main systems: the mobile platform, the delta mechanism, 
and the visual selection system which detects the flowers ready for harvesting.  The flower quality and technical 
evaluation criteria were the two primary evaluation factors.  An overall evaluation criterion for manual harvesting and 
harvesting robots was also calculated in order to compare the two harvesting systems.  The chamomile robot could 
achieve a cycle time of 3 s and harvest time 21 s/plant.  During the harvest season, the robot produced 1200 flowers/hour 
with an average harvest success 75% - 89%.  Three aspects of the robot's visual system were examined: detection ability, 
accuracy, and detection precision ratio.  The outcomes demonstrated that the robot could achieve an accuracy of 72.4% 
and a detection precision ratio of 75%.  For the flower quality criterion, the majority of the flower samples gathered by 
the robot fell into the high-quality and medium-quality flower categories.  According to the overall endpoint results, the 
robot outperformed manual harvesting (23.53%) in terms of percentage (80%). 
Keywords: robot, harvesting, chamomile, visual selection, evaluation   

Citation: Nasr, G. E. M., M. M. Ibrahim, M. Y. Tayel, and D. S. Salama. 2024. Innovative robot for chamomile flower 
harvesting as a new approach based on visual selection. Agricultural Engineering International: CIGR Journal, 
26(4):261-275. 

 
 1 Introduction 

Since at least 5,000 years ago, herbs have played 
a significant role in both conventional and alternative 
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medical treatments (Srivastava et al., 2010). In 
addition, medicinal plants are also used for the 
production of teas, extracts, tinctures, food 
supplements, and natural colors. They are also often 
used in the food industry, varnishes and paints, 
cosmetics, as well as for the ecological restoration of 
paintings (Woldeab et al., 2018). Chamomile is 
considered one of the most important and valuable 
plants in the medicinal and aromatic plant exporting 
market and is widely utilized in numerous industries 
(Ivanović et. al., 2014). Egypt is one of the chief 
producers’ countries within the production of 
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chamomile, as it occupies second place after 
Argentina, taken after Germany, France, Italy, Turkey, 
Greece, Bulgaria, Yugoslavia, Hungary, Slovakia, 
and Australia (Prasad, 2021). Egyptian chamomile 
has great popularity in the global export markets due 
to the quality of its flower heads and the application 
of organic farming systems (Shalaby et al., 2010). 
Currently, however, chamomile flowers are mainly 
harvested manually. The high cost of manual 
harvesting, in addition to the lack of labor required to 
conduct it, is considered one of the most important 
problems facing chamomile production and impeding 
the expansion of its cultivation in Egypt. Many 
studies have been conducted to develop mechanical 
harvesting of chamomiles (Vangeyte et al., 2008), 
Portable machines (Radwan et al., 2015), and 
harvesting tools, but harvested flower quality remains 
the determining criterion for the applicability of this 
type of different harvesting methods. 

Over the years, a number of mechanical 
harvesting methods have been developed in response 
to the need for chamomile flower mechanical 
harvesting methods. The development of mechanical 
chamomile harvesting has been the subject of 
numerous studies (Vangeyte et al., 2008; Radwan et 
al., 2015). The several automated methods have also 
been utilized to harvest chamomile flowers. Extensive 
research has been conducted with the aim of 
exploring the implementation of robotic technology 
in the floral harvesting process. Abarna and 
Selvakumar (2015) developed flower picking robots, 
they designed and developed a rose flower picking 
robot based on image processing to select the flowers 
to be harvested. In their recent study, Shree et al. 
(2019) proposed an innovative approach to automatic 
harvesting through the use of a deep convolutional 
neural network robotic system. Specifically, the 
system was designed and implemented for the 
purpose of detecting flowers to be harvested in an 
efficient and streamlined manner. Vinoth Kumar et al. 
(2019) designed and implemented a fully autonomous 
robotic system capable of collecting flowers. The 
flowers can be harvested from the plant in perfect 

condition with the help of the robotic arm cutter, 
which takes less time to harvest than manual 
harvesting. Guo et al. (2022) designed a picking robot 
based on a parallel manipulator to harvest safflower 
plants. However, other concepts are used for image 
analysis to compute the best cutting spot, which is 
then given to a driver who positions a straightforward 
mechanical cutting mechanism to produce a clean cut. 

In the past ten years, deep learning (DL) has 
received a lot of attention as a tool for computer 
vision and object detection. Older computer vision 
techniques perform better than supervised DL 
technologies (Kamilaris and Prenafeta-Boldú, 2018; 
Liu et al., 2018). Convolutional neural network-based 
object and keypoint detectors like YOLO (Redmon et 
al., 2016) and CenterNet (Zhou et al., 2019) have 
advanced to the state-of-the-art thanks to these 
breakthroughs and can now recognize learnt objects 
in real-time under difficult circumstances. However, 
large, labelled datasets are frequently needed in order 
to train supervised DL systems. This is especially true 
for agricultural applications, where it might be 
difficult to handle all potential variables, such as 
changes in lighting, background, object arrangement, 
the presence of weeds, and plant growth stage. 
Additionally, this raises the expense of data gathering 
and puts a stop to the use of DL in agricultural 
settings (Kamilaris and Prenafeta-Boldú, 2018; Roh 
et al., 2021).  

A unique visual selection-based robot for 
harvesting chamomile flowers was the primary 
objective of the current project. The optical system 
ensured that only blossoms at the appropriate stage of 
maturity were harvested, protecting the health of the 
plants and flowers in the process. According to the 
specified Assessment Criteria, the aforementioned 
robot's evaluation and testing were conducted. Using 
these standardized measures, the robot's performance 
during the harvesting process was examined for 
effectiveness. 

2 Materials and methods 

The different steps in the design and use of 
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chamomile flowers harvesting robot can be divided 
into three categories: building detection model, 
design and implement the mechanical parts of the 

robot, and real time evaluation of the robot. These 
subdivisions and their corresponding steps are shown 
in Figure 1. 

 
Figure 1 Visualization of the design and use of chamomile flowers harvesting robot: building detection model, design and implement 

the mechanical parts, and real time evaluation of the robot 

2.1 Programming  
2.1.1 Detection model building 

Dataset of images of chamomile flowers in 
different maturity stage (Figure 2) captured in an 
uncontrolled environment to create detection model. 
The software pipeline of the robot can be divided into 
three main parts: The AI algorithm detects the flower 
positions, it then feeds them into the robotics equation 
to calculate the delta mechanism motion angles, this 
is transmitted to the low level controller to move the 

stepper motors and cut the flowers. The low-level 
controllers also handle robot motion. 
2.1.2 Flower detection and classification 

The task of classifying flowers is a major reason 
why artificial neural networks emerged and is the 
reason why a DL approach was taken. In this research 
our main goal was to classify mature chamomile 
flowers, for them to be cut later using extended 
robotic tools. Generally, this can be done by training 
a computer on how to differentiate between flowers. 

 
(a) hole plant, (b) Ideal maturity stage, (c) advanced maturity stage, and (d) early maturity stage 

Figure 2 Chamomile flowers in different maturity stage

A data pipeline or data flow, in our case, would 
typically consist of three phases, as follows: 

1. An input device (a camera) is used to capture a 

snapshot of the flowers. 
2. An object detection algorithm is used to find 

objects in the snapshot and classify and filter mature 

                     

             
                     (b) 

              
                      (c) 

              
 (d)                  
 

                                            (a) 
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chamomile flowers. 
3. The algorithm then returns coordinates, these 

coordinates are then sent to the microcontroller of a 
parallel embedded system used to control cutting and 
collecting tools. 

For the detection algorithm (YOLOv4) 
(Bochkovskiy et al., 2020) algorithm was used and 
implemented in Python and TensorFlow, due to its 
CPU (Centeral Processing Unite) and GPU (Graphics 
Processing Unite) performance conservation for real-
time application, while also keeping the required high 
accuracy. A deep convolutional neural network (CNN) 
is trained to identify object-like parts of the image 
simultaneously and then predict multiple bounding 

boxes of the objects. Figure 3 is the architecture of 
the YOLO CNN 
2.2 The prototype design of Chamomile Flower 
Harvesting Robot (CFHR) 

The prototype CFHR components were 
constructed of two main parts, as illustrated in Figure 
4. The first part is the mechanical parts including 
four-wheel drive metal chassis (moving platform), 
delta mechanism, and cutting mechanism. The second 
part is the control system containing Raspberry Pi 
Camera Module, Nvidia Jetson Nano controller, 
Arduino UNO, stepper motors, DC motors, motor 
drivers, power supply, and battery. The prototype of 
CFHR is shown in Figure 5. 

 
Figure 3 The architecture of YOLO CNN 

 
Figure 4 CFHR components 
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Figure 5 CFHR prototype 

2.2.1 Moving platform 
The mechanical parts of CFHR design are 

constructed with Steel square tubes of SAE 304 
stainless steel (20 × 20 mm) with 2 mm thickness for 
the moving platform. The final dimensions of the 
moving platform were 60 cm × 60 cm with adjustable 
height of 120 cm. This feature enables the robot to be 
conveniently maneuvered through a plant 

environment. Four heavy-duty rubber wheels (10 inch) 
powered by Four 24 V DC motors were attached to 
the system frame for easy movement between rows in 
the farm. A numerical finite element analysis was 
done on the chosen cross section to confirm the 
analytical results using ANSYS Mechanical APDL 
(Figure 6) and the results showed much safer values 
than the analytical solution. 

 

Figure 6 Numerical Finite Element Analysis using ANSYS Mechanical APDL stress analysis results 

 
1. Fix base 2. Input link 3. Revolute joint 4. Forearm 5.Travelling plate 6.Actuator 

Figure 7 The delta robot mechanism for picking device, 
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Table 1 The dimensions of each part of Delta robot 

Parameter Description  value 

LA Length of arm 0.16 m 

LB Length of forearm 0.5 m 

RA Distance from the center of base to the motor joint 0.085 m 

RB Distance from the center of travelling plate to the joint 0.03 m 

τ Motors torque  16 kg cm  

X workspace Workspace in x-direction 0.15 m to 0.15 m 

Y work space Workspace in y-direction 0.15 m to 0.15 m 

Z work space  Workspace in z-direction 0.34 m to 0.40 m 

To design and control the delta robot a 
mathematical model is driven through invers and 
forward kinematics to find a relation between the 
motors’ angles and the end effector position. Another 
relation is driven by Jacobian matrix between motors’ 

rotational speeds and end effector linear speed. The 
Kinematics model of delta mechanism includes 
both inverse kinematics and forward 
kinematics. The yield equations of inverse 
kinematics were as follow. 

𝑙𝑙1𝐵𝐵 = � 
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𝑦𝑦 + 𝐿𝐿 𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃1) + 𝑎𝑎
𝑧𝑧 + 𝐿𝐿 𝑐𝑐𝑠𝑠𝑠𝑠 (𝜃𝜃1)
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Where , x, y, z are coordinates located within the 
working space in both directions x, y, and z, L is 
upper legs length (mm), θ1,2,3 revolute joint angles 
(degree), WB is Planar distance from {0} to near base 
side (mm), 𝑢𝑢𝑃𝑃  is Planar distance from {P} to a 
platform vertex (mm), SP is Platform equilateral 
triangle side, and WP is Planar distance from {P} to 
near platform side (mm). Regarding forward 
kinematics as a result of the translation-only motion 

of the three degree of freedom delta mechanism, there 
is a straightforward analytical solution for which the 
correct solution set is easily chosen. After solving all 
equations the MATLAB given simulation model for 
delta motion. A numerical method was carried by 
using MATLAB R2016B- to determine workspace. In 
this method, first, kinematic equations are derived. 
Afterward, applied constraints on joints are 
considered. Through point by point search in 
Cartesian space and using kinematic equations, joints 
variables can be calculated for each point. If these 
variables satisfy the applied constraints and the 
determinant of Jacobean is not equal to zero, the point 
will be distinguished as a part of workspace. 
Collecting all these points, the robot workspace is 
determined. 
2.2.3 Cutting end effector 

The harvesting methodology employed in the 
chamomile harvesting robot consisted of utilizing 
linear picking combs complemented by an auxiliary 
cutting implement for the stalks. The design of the 
cutting mechanism (Figure 8) has been developed 
with the primary goal of ensuring the complete 
inclusion of flowers within the designated cutting 
area during the cutting process. The process of 
restricting the chosen flowers within confined 
parameters was achieved through the utilization of 
three fundamental components, specifically the duo 
of cutting blades paired with a comb designed to 
secure the floral component and facilitate the delivery 
of incisive action executed at a duration most 
conducive to optimal harvesting outcomes. This 
technique proved instrumental in achieving a superior 
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caliber of selected flowers. The tripartite systems 
undergo movement facilitated by three servo motors 

with a maximum torque of 16 kg cm-1. 

 
Figure 8 The cutting mechanism 

2.2.4 Control system   
At the core of the robot, there are two main 

programmed controllers driving the logic of the robot 
motion and actions. The first controller is an Arduino 
Uno device. The Arduino operates on 16 MHz clock 
and has support for GPIO, PWM and Serial 
communications which makes it very suitable for this 
purpose of low-level control. It is responsible for 
driving the motors by accepting data from the second 
controller or the remote controller and output the 
relevant signals to the motor drivers to move the 
robot or the delta mechanism. The second controller 
is an Nvidia Jetson Nano. The most important aspect 
of this controller is that it has a GPU which makes it 
specifically suitable for the purpose of computer 
vision and object detection by the help of the added 
Raspberry Pi V2 Camera connected onboard and the 
detection algorithm. This controller is responsible for 
the detection and classification of the chamomile 
flower as well as carrying out the computations for 
the delta mechanism due to its powerful onboard 
computer. The controlling schema illustrated in 
Figure 9. In order for the robot to function reliably 
during its operating hours, it is imperative to equip it 
with a power supply that is both portable and capable 
of providing the necessary energy output. The Lead-

Acid battery has been selected as a viable power 
supply method. The current draw of the robot was 
estimated through practical means to be 
approximately 10 A. Subsequently, a battery with a 
capacity of 55 A h was selected to enable the robot to 
operate continuously for more than 5 hours prior to 
requiring a recharge. 

 
Figure 9  Robot core schema 

2.3 Chamomile plants’ and flowers’ geometric 
properties 

The dimensions of CFHR were designed 
according to the geometric properties of plants and 
flowers. The geometric properties were collected 
from a traditional flower farm at Giza, Cairo, Egypt 
(29°56'25"N 31°15'00"E), where chamomile plants 
are planted in rows. The plant height was measured 
using a meter (m), as well flower distribution.  
2.4 Assessment criteria of CFHR 

 

25 cm 

13 cm 
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The evaluation of the CFHR rests upon two 
pivotal parameters, namely, the technical appraisal of 
the robot itself and the quality of the picked flowers. 
The evaluation of flower quality stands as a crucial 
comparative measure that consistently favors manual 
harvesting over mechanized harvesting within the 
setting of Egyptian conditions. A random sampling 
approach was adopted to select a portion of the 
flowers harvested, with the aim of assessing their 
quality. Each of these selected flowers was subjected 
to a meticulous grading process according to Mohr 
(1993), resulting in the determination of quality 
grades (Table 2).  

Table 2 Quality grades for chamomile flowers 
Grade   Specifications   
First Flowers with stem <10 mm, 

Second  Flowers with stem 10–30 mm, 
Third  Flowers with stem 30–50 mm 

Furthermore, the proportion of each quality grade 
was mathematically computed and compared with 
manual harvested flowers samples. The assessment of 
the technological capabilities of the chamomile 
harvesting robot was centered around a set of 
fundamental criteria, which pertained to cycle time, 
harvesting time, production rate, the harvest success 
ratio, and the visual selection assessment parameter. 
Pots experiment was carried out to test and evaluate 
the robot's technical performance criteria. The 
experiment includes 20 pots (5 rows × 4 pots) with 
one plant in each pot and medium texture soil. The 
distance between pots was simulated to the distance 
between plants in the field (30 cm × 30 cm). 
Irrigation and fertilization were carried out in 
accordance with the recommended doses. The 
aforementioned variables were considered essential in 
evaluating the efficiency of the robot. To evaluate the 
visual selection system of chamomile harvesting 
robot there were three main parameters were used 
(Detection capability – Accuracy – Detection 
precision rate %). To calculate the accuracy of the 
robot there were 4 possible cases according to Yang 
et al. (2018): True positive (TP) is the number of 
cases that are positive and detected positive. False 
positive (FP) is the number of cases that are negative 

but detected positive. True negative (TN) is the 
number of cases that are negative and detected 
negative. False negative (FN) is the number of cases 
that are positive but detected negative  

The Accuracy (%) = TP/(TP+TN) × 100           (7) 
Detection precision rate was calculated according 

to Yang et al. (2018) as follow: 
Detection precision rate (%) = TP/(TP+FP ) ×100                    

(8) 
 In expansion to these criteria, a comprehensive 

assessment criterion (overall evaluation criterion) was 
calculated to compare both manual harvesting and 
harvesting utilizing robotics to provide a 
comprehensive view of the assessment. Criterion 
value was calculated for both manual and robotic 
harvesting according to Ghonimy et al. (2021), where 
three basic evaluation criteria (flower quality, 
production speed and price) were combined to 
calculate a comprehensive evaluation criterion. The 
overall evaluation criterion (OEC) was calculated in 
the following three steps. 

1. Organization of evaluation criteria according 
to their relative weight.  

2. Defining a quality attribute for each criterion  
3. Calculation of the value of the general 

evaluation criterion.  
Evaluation criteria were selected (quality of 

harvested flowers, production costs and production 
speed). The relative weights were chosen after a 
careful analysis of the relative importance of each 
evaluation criterion as shown in Table 3. The relative 
weight of the evaluation criteria was decided based on 
the nature of the registration process. Harvest flower 
quality (QHF) had the highest relative weight (40%) 
because it is considered the most important criteria 
for chamomile production. Production cost (PC) had 
the same relative weight (40%) because it represents 
the main problem in the production process of 
chamomile under Egyptian conditions. The 
production rate (PR) was given a lower relative 
weight (20%) because its values were considered in 
the calculation of productivity and production costs. 
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Table 3 Assigned weights of the evaluation criteria 
Evaluation criteria Relative weight (%) 

Quality of harvested flowers (QHF) 40 
Production cost (PC) 40 
Production rate (PR) 20 

3 Results 

3.1 Chamomile plants’ and flowers’ geometric 
properties 

The plant height that cultivated under Egyptian 
conditions exhibit a range between 70cm to 85 cm, 
whilst the mean dimension amounts to approximately 
77 cm. During the peak of the harvest season, the 
quantity of flower blooms on a single plant varied 
within the range of 15 - 25 blooms per plant. The 
investigation examined the arrangement pattern of 
flowers at the pinnacle of flowering, relative to the 
vertical dimension of the plant. Measurements were 
obtained from three different distances, namely 10, 20 

and 30 cm, above the apex of the plant. The 
aforementioned distances were selected since they 
correspond to the location of the flowers that were 
deemed suitable for harvest. Through the analysis of 
the data, it was determined that a majority of the 
flowers, quantified at 76.22% were situated within the 
initial 10 cm of the plant's length. Additionally, a 
smaller percentage of the flowers, amounting to 21.63% 
were positioned approximately 20 cm from the apex 
of the plant. The findings also revealed a minimal 
proportion of flowers, constituting merely 2.15%, 
located at a distance of 30 cm from the uppermost 
extremity of the plant (refer to Figure 10 for graphical 
representation). As evidenced by the data, a majority 
of the flowers (approximately 88%) are observed to 
be situated within the uppermost 20 cm region of the 
plant. 

 
Figure 10 Flower distribution as percentage along plant stem 

3.2 Technical aspects testing results 
3.2.1 Delta mechanism working space simulation 
(MATLAP)  

The delta robot's working space was simulated to 
ensure it covered the planned work area by imposing 
a set of random points with coordinates located 
within the working space in directions X, Y, and Z. 
According to the simulation results as shown in 
Figure 11a, the delta robot was able to cover the 
working plane Y-Z in the prescribed area (30 cm in 
the Y direction and 30 cm in the Z direction) as well 
as in the X-Z plane (Figure 11b). The simulation 

results (Figure 11c) demonstrated that the delta robot 
covers the working space designed to cover it by 
covering the X-Y plane in accordance with the 
designed work circle (30 cm diameter). 
3.2.2 Cycle time and harvesting time 

According to the testing results, CFHR recorded 
constant value of cycle time with 3 seconds. The 
previous researches results showed that wide variance 
in cycle time values for different types of flowers 
harvesting robots. Wu et al. (2022) recorded cycle 
time for Camellia oleifera flowers as 1.2 seconds, 
while Guo et al. (2022) recorded 16 seconds cycle 
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time for safflower harvesting robot. By good 
observation of researches results it could be cleared 
that type, size, physical and mechanical properties of 
the plant may be the reason of cycle time variation as 
well as the appropriate harvesting method. This 
explains the value of cycle time for chamomile 
flowers harvesting robots, as the flowers are sensitive 
and its stems have small diameter. As for the 
harvesting time, it was calculated during the three 
harvest times for each of (one pot - a row of pots - the 
entire experiment). Table 4 shows the distinctive 
values of harvest time during the three harvests. The 
robot was able to attain an average harvesting time 
for one pot of 21 seconds, whereas the average time 
required to harvest a row of pots was 84.18 s seconds. 
The harvest time for the complete experiment 

included the times lost in turning and moving through 
rows and the times taken to fix technical absconds 
during operation. The robot was able to achieve the 
average harvesting time for the entire experiment of 
13.88 minutes. Crop characteristics, the nature of the 
vegetative development, the cover and dispersion of 
flowers or fruits on the plant, this factors significantly 
influence the collect process, as they have an impact 
on the speed of detection and separation (Edan et al., 
2000; Gu et al., 2012; Yaguchi et al., 2016; Bac et al., 
2017; Xiong et al., 2020). It is possible to explain the 
increase in harvesting time as a result of the increase 
in the rate of flowering and the vegetative growth, in 
addition to the overlapping between plants and the 
flowers locations on the plant. 

 
(a)                                                                           (b) 

 
(c) 

Figure 11 Delta mechanism working space simulation (MATLAP) 
Table 4 Harvesting times for CFHR during harvesting season 

Parameter 
Harvest times 

1st 2nd 3rd Average 
Harvesting time for one plant (sec) 13 22 28 21 

Total harvesting time for pots line (sec) 52.15 88.20 112.20 84.18 
Flower numbers (one plant) 4 7 9 6 

Total harvesting time for experimental plot (min) 10.35 13.95 17.35 13.88 

3.2.3 Harvesting success ratio and production rate 
The results of measuring the harvesting success 

ratio criterion for the chamomile robot are shown in 
(Table 5). During the harvest season, estimations 
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were taken for three harvest times (first, second and 
third harvests). During the three harvest times, 
chamomile robot recorded a success ratio of 75% 
within the first harvest and 85.7% within the second. 
Whereas the third harvest had the most noteworthy 
success ratio of 89.7%. By perception of flower 
harvesting robots research results it can be found that 
the harvest success ratio for these robots ranges from 
80% to 96%. Gerbera Jamesonii harvesting robot 
recorded harvesting success ratio 89.7% whereas 
Rosa Damascene harvesting robot had harvesting 
success ratio 82.22% (Kohan et al., 2011; Rath and 
Kawollek, 2009). Safflower harvesting robot recorded 
harvesting success ratio 87.91% (Guo et al., 2022) 
and the most noteworthy harvesting success ratio was 
recorded by Camellia oleifera Flowers harvesting 
robot and it was 96% (Wu et al., 2022). It is obvious 
that the increment within the success ratio can be 
ascribed to the increment in plant density and 
flowering rate during the harvest season. The 
production rate of chamomill harvesting robot was 
recorded as 1200 flowers/hour. The production rate 
also expressed in g h-1 and it was 24.86 g h-1. 

Table 5 Harvesting success ratio for chamomile robot 
during harvesting season 

Harvesting times Harvest success ratio % 
First 75.0 

Second 85.7 
Third  89.7 

3.2.4 The visual assessment parameters 
The chamomile robot's visual selection system 

was judged based on two important factors (accuracy % 
and detection precision rate %). These factors were 
checked three times during harvesting season (first, 

second, and third harvest times) and it's shown in 
Table 6 and Figure 12. The comes about of the 
precision basis varied concurring to the distinctive 
harvest times. The robot was able to realize an 
accuracy of 72.4% within the to begin with collect, 
and 59.5% within the second harvesting whereas the 
most reduced esteem was recorded within the third 
time of harvesting, and it was 53.9%. The reason can 
be attributed to the low accuracy due to the increase 
in plant density, which makes it difficult to accurately 
detect the flowers ready for harvest, as well as the 
different locations of the flowers on the plant, where 
the robot was able to detect the clear flowers, while 
finding it difficult to find other flowers. The quality 
of the image and lighting often affected the accuracy 
of the discovery and selection of flowers. The comes 

about of the detection precision rate showed that the 

robot was able to realize an average detection 
precision rate of 75% for the first harvesting and 50% 
for the second, whereas its least esteem was within 
the third time, which summed to 49.7%. Table 7 
showed the parameters values that included in the 
overall evaluating criterion (OEC) calculation for the 
harvesting methods of chamomile (robot and manual). 
The quality characteristic (QC), worst value (WV), 
target value (TV), and relative weight (RW) of the 
evaluating criteria were shown in Table 8.  
Table 6 Visual selection evaluating parameters for CFHR 

Visual selection evaluating parameters  
Harvesting times 

1st 2nd 3rd 

Accuracy % 72.4 59.5 53.9 

Detection precision rate % 75.0 50.0 49.7 
    

Table 7 The average values of evaluating criteria for different harvesting methods (Robot, Manual, and Mechanical) 

Parameters Robot Manual  

Quality of harvested flowers (%)* 

First 78.3 65.04 

Second 21.7 33.65 

Third NF** 1.31 

Production cost (EGP/fed.) 9813.74 10250 

Production rate (Kg h-1)*** 0.025 1.5 

Note: * Quality of harvested flowers for the robot is the average values for each grade during the three harvesting time  
** NF means no flowers recorded in this grade. 

*** Production rate for manual harvesting was calculated according fielding data. 
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 (a) first harvest time, (b) second harvest time,  (c)third harvest time 

Figure 12 Detection Images for CFHR 
Table 8 Values of evaluating criteria related to the overall evaluation criterion 

Evaluation criteria Worst Value Target Value Quality characteristics Relative weight (%) 
Quality Of Harvested Flowers (QHF) (%)* 45.84% 78.3% Higher 40 

Production Cost (PC) (EGP/Fed.) 21392.7 9813.74 Lower 40 
Production Rate (PR) (Kg/h) 0.025 34.8 Higher 20 

Note: *The percentage of harvested flowers in first grade. 

These values were used to calculate the 
contribution of the evaluating criteria into the OEC. 
The maximum and minimum values for each 
evaluating criterion were considered to represent the 
values of Wv and Tv, respectively. 

Table 9 Values of the overall evaluation criterion 

Harvesting Method OEC (%) 

Robot 80 

Manual  23.53 

Table 9 shows the overall evaluation criterion for 
CFHR and manual harvesting. The estimated values 
of OEC showed that CFHR achieved the higher value 
80% comparing with manual harvesting which 
recorded 23.53%. Looking closely at the results, it is 
clear from the OEC results that the use of robots is 
the best choice for chamomile harvesting, due to its 
higher percentage (80%) comparing with the manual 
harvesting under Egyptian conditions. The high result 
of the OEC for the robot can be explained due to the 
relative weight of both quality of harvested flowers 
and production costs, as the robot achieved high 
quality of harvested flowers and lower production 

costs. 
3.3 Flower quality parameter 

Flower quality criterion (Figure 13) indicated that 
CFHR achieved a high degree of flower quality 
during the three collection times. Flower quality 
degree was between high and medium (Figure 14) 
compared with manual collection, which included 
three degrees of flower quality. High-quality flower 
rate was (78.6%, 77.8%, and 78.5%) for the first, 
second, and third collection times, respectively, in 
chamomile robot flower samples. The extent of the 
medium quality degree of flowers were (21.4%, 
22.2%, and 21.5%) for first, second and third 
harvesting times respectively. The manual harvesting 
accomplished three degrees of flower quality amid 
the three harvesting times. Flower quality rates of 
(64.34%, 34.36%, and 1.3%) for high-, medium-, and 
low-quality flowers were recorded in the first harvest. 
The percentages of flower quality within the second 
harvest were (65.32%, 33.42%, and 1.26%) for high-, 
medium-, and low-quality flowers, respectively. For 
the third collection, the rates of flower quality were 
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66.47% for high-quality flowers, 33.17% for medium 
quality, and 1.36% for low quality. The robot 
predominance over manual collection within the 
flower quality basis is due to the precise design of the 

cutting device. The cutting distance was set to 10 mm 
of the flower stem which achieved high quality 
flowers. 

 
Figure 13 Comparison between CFHR and Manual harvesting with regards of Flower quality percentage 

 
Figure 14 CFHR harvested flowers categories  

4 Conclusion 

The findings demonstrated that the chamomile 
harvesting robot can be an effective method for 
addressing the issue of the high cost of manual 
harvesting. It is one of the viable mechanical 
solutions, but it requires further development. 
Although the results of technical performance 
indicators are acceptable given that they are in the 
experimental stage, they require further development. 
In addition to attempting to achieve higher rates of 
success in the chamomile harvest process, future 

studies must focus on achieving high productivity, 
greater accuracy, and higher time efficiency. The 
field of agricultural field robots remains one of the 
promising areas that require additional research. 
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