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ABSTRACT 
 

This paper presents a fault diagnosis method for a centrifugal pump system with 
frequency-domain symptom parameters by using the wavelet transform, rough sets and a 
fuzzy neural network to detect faults and distinguish fault types at an early stage. The wavelet 
transform is used for feature extraction across an optimum frequency region. The diagnosis 
knowledge for the training of neural network can be acquired by rough sets. A fuzzy neural 
network called “partially-linearized neural network” is proposed, by which the fault types of 
machinery can be quickly and effectively distinguished on the basis of the possibility grades 
of symptom parameters. The non-dimensional symptom parameters that can reflect the 
characteristics of signals are also described in frequency-domain. Practical examples of 
diagnosis for a centrifugal pump system are shown to verify the efficiency of the method. 
 
Keywords: Fault diagnosis, symptom parameter, frequency domain, neural network, rough 
sets, centrifugal pump, Japan 
 

1. INTRODUCTION 
 
The condition diagnosis technology of plant machinery is very important for guaranteed 
production efficiency and safety of a machine (Lin Jing and Qu Liangsheng, 2000; B. S. 
Blackmore et al., 2004). Condition diagnosis depends largely on the feature analysis of 
vibration signals measured for condition diagnosis, so it is important that the feature of the 
signal should be sensitively extracted when fault occurs at the state change of a machine. 
However, the feature extraction for the fault diagnosis is difficult since the vibration signals 
measured at a point of the machine often contains strong noise. Stronger noise than the actual 
failure signal may lead to misrecognition of the useful information for diagnosis. Therefore, it 
is important that the noise be canceled from the measured signal as far as possible for 
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sensitively identifying the failure type (Liu and Ling, 1999; Matuyama, 1991; Zhu QB. 2006). 
Furthermore, in the case of condition diagnosis of pump machinery, the knowledge for 
distinguishing failures is ambiguous because definite relationships between symptoms and 
fault types cannot be easily identified. The main reasons can be explained as follows. (1) It is 
difficult to identify the symptom parameters for diagnosis by which all fault types can be 
distinguished perfectly. (2) In the early stages of a fault, effects of noise are so strong that the 
symptoms of a fault are not evident.  
 
The Neural Network (NN) has been used for automated detection and diagnosis of machine 
conditions (Samanta and Al-Balushi, 2003; M. Diamantopoulou, 2006; R. Q. et al., 2006; V. 
Schetinin and J. Schult. 2006; Su H. and Chong KT. 2007), but the conventional neural 
network cannot reflect the possibility of ambiguous diagnosis problems. The NN will never 
converge when the first-layer symptom parameters have the same values in different states 
(Bishop, 1995). 
 

 
Figure 1. Flowchart of intelligent diagnosis method 

 
For the above reasons, we propose an intelligent diagnosis method for a pump system using 
the WT, RS and PNN with frequency domain features to detect faults and distinguish fault 
types at an early stage. The flowchart in Figure 1 shows the method of intelligent diagnosis. 
The WT performs noise cancellation for feature extraction of the vibration signal across an 
optimum frequency region. The diagnostic details for the training of the PNN are acquired by 

Measuring signals in each state 

Decomposing the signals to several frequency levels by the WT 
and obtaining power spectrums in each level respectively 

Calculating symptom parameters in each frequency level 

Acquiring knowledge of diagnosis for PNN by RS 

Learning the knowledge of diagnosis by PNN 

Deciding optimum frequency level k 

Diagnosing states for plant machinery using the learned PNN in 
the optimum frequency levels 

Signals
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···Level 1 Level 2 Level 6

···Level 1 Level 2 Level 6

···Level 1 Level 2 Level 6

Level k



 

_________________________________________________________________________ 
H.Q. Wang, and P. Chen. “Fault Diagnosis of Centrifugal Pump Using Symptom Parameters 
in Frequency Domain”. Agricultural Engineering International: the CIGR Ejournal. 
Manuscript IT 07 005. Vol. IX. November, 2007. 

3

the RS (Pawlak, 1982). The fault types of machinery can be automatically distinguished on 
the basis of the possibility grades of symptom parameters by the PNN. Practical examples of 
fault diagnosis of a pump system will verify the efficiency of the method. 

 
2. CENTRIFUGAL PUMP SYSTEM FOR CONDITION DIAGNOSIS 

 
The centrifugal pump system for condition diagnosis is shown in Figure 2. The motor is 
employed to drive the pump through a coupling, and the rotation speed can be varied through 
a speed controller. The flow rate of pump can be also adjusted by the valve control system. 
Six accelerometers are used to measure vibration signals for fault detection. The sensor 
locations are shown in Figure 3. Two sensors are put at the pump inlet; two sensors at the 
pump outlet and other two sensors are placed at the motor and the pump housing respectively. 
The sampling frequency of the vibration signals for the measurement is 50 kHz, and the 
sampling time is 10s. The vibration signals are measured at a constant rotation speed of 
3500rpm and a constant water flow rate of 19m3h-1. In this work, we divided the signal into 
100 signal parts, and the sampling number of per signal part is 5000 (the sampling time is 
0.1s (5.83 shaft rotations)).  

 

Figure 2. The experiment system of centrifugal pump in the field 
 
Cavitations phenomenon is one of the sources of instability in a centrifugal pump. Cavitations 
within a centrifugal pump can cause more undesirable effects, such as deterioration of the 
hydraulic performance, damage of the pump by pitting and erosion and structure vibration 
and resulting noise (Cudina, 2003). Other faults to be discriminated that often occur in pump 
systems are shaft misalignment between the motor and the pump, and impeller damage. 
These faults can cause serious machine accidents and bring great production losses. 
Diagnosis results of these states will be discussed in a later section. Original vibration signals 
measured in each state are shown in Figure 4.  

Motor 
Pump 

Tank 

Pipe 
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Figure 3. The location of the sensors 
 

 
Figure 4. Original signals measured in each state: (a) Normal state, (b) Cavitation state, (c) 
Impeller damage state, (d) Misalignment state 

 
3. FEATURE EXTRACTION USING WT 

 
Wavelet transform is a method of signal analysis in time-frequency domain. It has the local 
characteristic of time-domain as well as frequency domain. In the field of machinery 
diagnosis, wavelet analysis has been used in rolling bearing, gearbox and compressor 
diagnosis and detail mathematical description of WT has been previously formulated 
(Daubechie, 1990; Prabhakar et al., 2002). A brief mathematical summary of WT is provided 
in this section in relation to the proposed method.  
 
The continuous wavelet transform (CWT) of ( )f t  is a time-scale method of signal 
processing that can be defined as the sum over all time of the signal multiplied by scaled, 
shifted versions of the wavelet function ( )tψ . Mathematically, 

1CWT (a,b) = ( ) ( ) , )t bf t dt a b R
aa

ψ
+∞

−∞

−
,   ( ∈∫                   (1) 

Pump 
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where, ( )tψ denotes the mother wavelet. The parameter a represents the scale factor that is a 
reciprocal of frequency. The parameter b indicates the time shifting factor. An efficient way 
to implement this scheme using filters was developed by Mallat (Mallat, 1989). 
 
Using wavelet function a signal can be decomposed into many low frequency 
[approximations (A)] and high frequency [details (D)] signals. The decomposition process 
can be iterated, with successive approximations being decomposed in turn, so that a signal 
can be decomposed into many lower-resolution components. By using reconstruction 
function, the signal constituents at each level of the decomposition can be reconstructed in 
time-domain. 
 
In order to extract feature signals in an optimum frequency area, we used the Daubechies 
(db9) wavelet function (shown in Figure 5) to decompose the signals into six levels in 
approximations in this work. The Frequency region of each level is shown in Table 1. As an 
example, the recomposed time signals of each state in level 2 are shown in Figure 6 
respectively. 

 

Figure 5. Daubechies (db9) wavelet function 
 

Table 1. Frequency region of each level 
Original signal 0~50 kHz 

Approximations (A) Range of frequency 
Level A1 0~25 kHz 
Level A2 0~12.5 kHz 
Level A3 0~6.25 kHz 
Level A4 0~3.125 kHz 
Level A5 0~1.5625 kHz 
Level A6 0~781.25Hz 
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Figure 6. Recomposed signals in level 2 of each state: (a) Normal state, (b) Cavitation state, 
(c) Impeller damage state, (d) Misalignment state 

 
4. SYMPTOM PARAMETERS FOR CONDITION DIAGNOSIS 

 
For automatic diagnosis, symptom parameters by which the fault types can be sensitively 
distinguished are required. A large set of symptom parameters have been defined in the 
pattern recognition field (Fukunaga, 1972). Here, seven of these parameters in 
frequency-domain, commonly used for the fault diagnosis of plant machinery, are considered.  
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5. KNOWLEDGE ACQUISITION BY ROUGH SETS 

 
Rough set theory, a mathematical tool to deal with vagueness and uncertainty, has found 
many interesting applications. The rough set approach is of fundamental importance to AI 
and cognitive sciences, especially in the areas of machine learning, knowledge acquisition, 
decision analysis, and knowledge discovery from databases (R.S.Milton et al., 2004; Pawlak, 
1982). 
 
To diagnose states accurately, decrease the number of NN parameter inputs, and increase the 
efficiency of NN learning, rough sets are used to acquire diagnosis knowledge. The values of 
symptom parameters j j

ls msp p⋅ ⋅ ⋅ can be calculated by Eq. (2)-(8). Here, j=1 to J, and J is the 

total number of measurement for the acquisition of the diagnosis knowledge. The j
isp must 

be digitized as the teacher data for the PNN by the following formula. 

{ } { }{ }0 int[ / (max min ) / 1]j j j j
is pi is is is pip to A p p p N=     = − +   (9) 

where int[*] is the function which gives the integral values of *. 

{ }1 2, , , mp p p p= ⋅⋅⋅                                    (10) 

is the initial symptom parameter set (mentioned in part 4). j
SP  is the set of the symptom 

parameter values measured in the state S. 

{ }1 2, , ,j j j j
S S S mSp p p p= ⋅⋅⋅                              (11) 



 

_________________________________________________________________________ 
H.Q. Wang, and P. Chen. “Fault Diagnosis of Centrifugal Pump Using Symptom Parameters 
in Frequency Domain”. Agricultural Engineering International: the CIGR Ejournal. 
Manuscript IT 07 005. Vol. IX. November, 2007. 

8

where [jpis] is defined as follows: 
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The symptom parameters set Pij selected from P shown in Eq. (10), which can discriminate 
between ri and rj, is: 
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For distinguishing ri ( i=1 to Q) from rj ( j=1 to Q, j≠i), there may be the redundant symptom 
parameters in the initial set P. In order to remove the redundant symptom parameters the 
following algorithm is proposed. 

(a) Removing pi from P; 
(b) Calculating Pij shown in Eq. (13); 
(c) If Pij≠Φ (empty set), then pi is the redundant symptom parameter. Removing pi from P. 
Returning to (a) and repeating from (a) to (c) and from i=1 to i =Q; 
(d) After removing all of the redundant symptom parameters, the new set of the symptom 
parameters { }1 2' , , , ( )lp p p p l m= ⋅⋅⋅   ≤  is obtained and the value set of P′ of ri is： 

1 2' { , , }ri ri ri ri
s s lsp p p p= L                          (14) 

The possibility S
riβ  of state S expressed by ri can be calculated by 

%
)(
)(

j

j
S

ri
S

ycard
ycard

=β                                (15) 

where, card (y) is the element number of y. 'S ri
jy p∈  is yj obtained from state S. 

 
According to the principle above, the input data and the teacher data (diagnosis knowledge) 
for PNN are as follows: 

The input data：The value sets 'ri p  of the symptom parameters of ri, from which 
redundant symptom parameters have been removed. 
The teacher data: The possibility S

riβ  of state S. 
 

6. PARTIALLY-LINEARIZED NEURAL NETWORK (PNN) 
 
The complex relationship between faults and symptoms is difficult to establish the model of 
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condition diagnosis with traditional analysis method. PNN can learn the knowledge acquired 
by the RS, and the learned PNN automatically distinguishes each state when the value of 
symptom parameters was inputted. A back propagation (BP) neural network is only used for 
training the data, and the PNN is used for testing the learned NN.  
 
Here, we describe the principle of the PNN for the fault diagnosis. The neuron numbers of 
m-th layer of a NN is Nm. The set }{ ),1()1( j

iXX =  expresses the pattern inputted to the 1st layer 
and the set }{ ),()( kM

i
M XX =  is the trainer data to the last layer (M-th layer). 

Here, 11,1 NtojPtoi == , MNtok 1= , and, 
),1( j

iX : The value inputted to the j-th neuron in the input (1st) layer;  
),( kM

iX : The output value of k-th neuron in the output (M-th) layer; MNtok 1= . 

 
Even if the NN converges by learning )1(X  and )(MX , it cannot deal well with the ambiguous 
relationship between the new (1)*X  and ( )*MX , which had not been learned. In order to predict 

( )*MX  according to the probability distribution of (1)*X , a partially linear interpolation of the 
NN is introduced in Figure 7 as "Partially-linearized Neural Network (PNN)". 
 

 

Figure 7. The partial linearization of the sigmoid function 
 

In the NN which has converged by the data )1(X  and )(MX , the symbols are used as follows. 
),( tm

iX : The value of t-th neuron in the hidden (m-th) layer; mNtot 1=  
)( m

uvW : The weight between the u-th neuron in the m-th layer and the v-th neuron in the 
(m+1)-th layer; 11;1;1 +=== mm NtovNtouMtom . 

 
If these values are all remembered by the computer, then when new values *),1( u

jX  
( (1, ) (1, )* (1, )

1
u u u

i j iX X X +< < ) are inputted to the first layer, the predicted value of the v-th neuron (v=1 
to Nm) in the (m+1)th layer (m=1 to M-1) will be estimated by 
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By using the operation above, the sigmoid function is partially linearized, as shown in Figure 
7. If a function must be learned, the PNN will learn the points indicated by the symbols (●) 
shown in Figure 8. When new data (s1', s2') are inputted into the converged PNN, the value 
indicated by the symbols (■) corresponding to the data (s1', s2') will be quickly identified as 
Pe. Thus, the PNN can deal with ambiguous diagnosis problems 
 

P
S2

S1

a b

c d
eS2'

S1'

Pe

 
Figure 8. Interpolation by the PNN 

 
7. DIAGNOSIS AND VERIFICATION 

 
Vibration signals measured in each state are processed by the Daubechies wavelet function. 
The original vibration signals are decomposed into six levels in low frequency. The symptom 
parameters of the recomposed signals are calculated in frequency domain by Eq. (2)-(8). 
They are digitized as the training data for the PNN by Eq. (9). The redundant symptom 
parameters removed by the algorithm shown from step (a) to (d) in chapter 5. Table 2 shows 
the redundant symptom parameters in each level marked with “×”. For example, we can 
distinguish each sated by only using p2, p5 and p7 in level A1. 
 
A back propagation (BP) neural network is only used for training the data, and the PNN is 
used for testing the learned NN. Figure 9 shows the PNN built on the basis of method 
proposed in this paper, it consists of the first layer, the hidden layers and the last layer. The 
neurons in the first layer are inputted the symptom parameters processed by the rough sets. 
The number of neurons in the hidden layer is eighty. The outputs in the last layer are Nβri, Cβri, 
Mβri, and Dβri which are the possibility grades of normal state, cavitation state, misalignment 
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state and impeller damage respectively. 
 

Table 2. Redundant symptom parameters in each level 
Symptom Parameters P1 P2 P3 P4 P5 P6 P7 

Original × × O  × O × O 
Level A1 × O × × O  × O 
Level A2 × O × × O O O 
Level A3 × × × O O × × 
Level A4 × × × O O O × 
Level A5 O × × × × O O 
Level A6 × × × × O O O 

 

 

Figure 9. Paritially-linearized neural network 
 

Table 3. Examples of training data for the PNN learning 
(a) Data using original signals 

P3 P5 P7 Nβri Cβri Mβri Dβri 
13 19 2 1 0 0 0 
3 12 13 0 1 0 0 
19 2 13 0 0 1 0 
… … … … … … … 

(b) Data using the recomposed signals in level A1 
P2 P5 P7 Nβri Cβri Mβri Dβri 
6 1 4 1 0 0 0 
1 19 18 0 1 0 0 
19 9 1 0 0 1 0 
… … … … … … … 

 

N
riβ  
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M
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riβ  

First layer  Hidden layer  Last layer 
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P2 

… 

Pm 



 

_________________________________________________________________________ 
H.Q. Wang, and P. Chen. “Fault Diagnosis of Centrifugal Pump Using Symptom Parameters 
in Frequency Domain”. Agricultural Engineering International: the CIGR Ejournal. 
Manuscript IT 07 005. Vol. IX. November, 2007. 

12

The knowledge of diagnosis for PNN learning can be acquired by the RS in each level. Parts 
of the training data are shown in Table 3. The PNN are quickly convergent by learning the 
training data. We used which data measured in each state had not been learned by the PNN in 
order to verify the diagnostic capability of the PNN. When inputting the test data, the learned 
PNN can correctly and quickly diagnose those faults with the possibility grades Sβri. Figure 
10 shows a comparison between original signals and the decomposed signals for detection 
rate in each state; the detection rates are different for different levels. 
 
According to the verification results by the PNN using the original signal (in level Ao), the 
probabilities of correct judgment in normal state, cavitation state, misalignment state and 
impeller damage state are 95%, 79%, 98.8%, and 89% respectively. The different features of 
the states have appeared in different frequency levels, so we used the recomposed signals and 
obtained the highest detection rate of 99% at level A6 for distinguishing the normal state from 
abnormal states; the highest detection rate of 99% at level A6 for distinguishing the 
misalignment state from other states; the higher detection rate (more than 98%) at level A2, 
A3 or A5 for distinguishing the cavitation state from other states; the higher detection rate of 
98.8% at level Ao and A4 for distinguishing the impeller damage state from other states. 
Those results verified the efficiency of the intelligent diagnosis method for diagnosing pump 
system faults. 
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Figure 10. Detection rates in each state. N: Normal state, C: Cavitation state, D: Impeller 

damage state, M: Misalignment state. 
 

8. CONCLUSION 
 
Machinery diagnosis depends largely on the feature extraction of machinery signals, so it is 
important that the extracted features should be both sensitive to fault occurrence and reliable 
against disturbances. In order to effectively diagnose faults, this paper proposes an intelligent 
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diagnosis method with the symptom parameters in frequency domain based on the wavelet 
transform (WT), the rough sets (RS) and the partially-linearized neural network (PNN). The 
wavelet transform is used for feature extraction across an optimum frequency region. The 
diagnosis knowledge for the training of the PNN can be acquired by using the RS. The PNN, 
having acquired the diagnosis knowledge, can represent complex relationships between 
symptoms and fault types that are difficult to model with traditional physical methods. The 
PNN can quickly converge when learning, and can quickly and high-accurately distinguish 
fault types on the basis of the probability distributions of the symptom parameters when 
diagnosing. The decision method of optimum frequency area for the feature extraction of the 
signals is also discussed using real plant data. The non-dimensional symptom parameters are 
also described in frequency domain, and these parameters can reflect the characteristics of the 
signals measured for the condition diagnosis of the pump. This method is suitable for 
different rotating machinery, and has been successfully applied to the condition diagnosis of a 
centrifugal pump system. 
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