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Abstract: Climate modeling in Africa plays an essential role when it comes to assessing future climate scenarios as well 

as their potential impacts especially in view of limited data for empirical analysis.  Such modeling provides insights for 

engineers, and policymakers, thereby, aiding in informed decision-making for water resources utilization, agricultural 

production, as well as disaster preparedness.  Furthermore, they support long-term climate adaptation strategies by 

assessing the impact of climate change on ecosystems, infrastructure, and water resources, facilitating evidence-based 

policy formulation for sustainable development and resilience building in Africa.  There exist different climate models in 

the world, for example, CORDEX, GCM- CCSM4, HadGEM2-Es, RegCM4, WRF, CCLM, and CESM just to mention a 

few.  The paper focused on climate models employed in Africa more so Kenya.  Some of the identified models include, 

Climate Atlas Climate Model, Rossby Centre Regional Climate Model, CMIP5 Climate Model, CORDEX, and WRF.  

The CORDEX climate model is a regional climate model (RCM), and could be directly compared to CMIP6.  Similarly, 

climate atlas model comprises of expert tools that are used in the evaluation of crop varieties, and a tailored solution 

provided.  On the other hand, WRF uses a software architecture tool as well as a data assimilation system, which is then 

used in forecasting climate conditions.  In summary, all these models help in temperature projections, precipitation 

patterns, sea-level rise estimates, and more, providing invaluable information for climate research, policy-making, and 

adaptation strategies in the complex Kenyan region. 
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1 Introduction 

This paper employs a systematic review approach 

to delve into the intricacies of climate modelling 

within the African continent. It explores the strategies 

employed within the climatic system to foster a more 

profound interaction between matter and energy. 

While the primary focus is on the Kenyan context, 
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this study also sheds light on climate models utilized 

both on an international and regional scale. These 

models leverage advanced meteorological data and 

complex algorithms to simulate and predict local 

weather patterns, precipitation trends, and 

temperature fluctuations.  

2 Global climate models 

Climate models, as suggested by Gent (2018), 

enable scientists to understand the future climate 

system based on the past climatic conditions. It 

facilitates an ease in the prediction of the future based 

on the changes that have taken place and prevailing 

conditions. For instance, simulations are run and data 
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collected, which is then analyzed to predict and 

compare with actual climate changes. Globally, 

climate models have been used to identify futuristic 

natural events like the El Nino, and are reliable 

systems even though they may contain errors. Their 

use in agriculture is gaining momentum as its one 

way that will help in climate change adaptability. Still, 

constant improvements to the climate models are 

made to increase their validity and reliability. 

Climatic models are based on a time-step concept, 

with each developed simulation being either too 

detailed or simplified (Reichle, 2023). Scientists use a 

hind-casting process to test and verify climate models, 

which is then constantly adjusted to check its 

accuracy in making predictions. 

General circulation models (GCMs) typically 

operate at a broad horizontal scale, typically around 

200-300 kilometres. However, when it comes to 

examining climate change impacts at a regional level, 

a process called downscaling becomes crucial. 

Dynamic downscaling is accomplished through the 

use of regional climate models (RCMs), which utilize 

GCMs as boundary conditions to simulate 

atmospheric conditions within smaller regions at a 

finer grid resolution, typically ranging from 10 to 50 

kilometres. These RCMs excel at capturing local 

topography and land use variations, a level of detail 

that GCMs cannot match. This finer-grained approach 

is essential for producing accurate climate change 

projections tailored to specific regions. 

 

Figure 1 The climate model concept (Reichle, 2023) 

The earth models of intermediate complexity 

(EMICs) climate model, as described by Reichle 

(2023), captures the geographical representation of 

earth in three-dimensional vector. The model is 

detailed, and complex based on the fact that it 

presents oceans, cryosphere, land, atmosphere and 

glaciers (Reichle, 2023). However, Thokchom (2020) 

argued that EMICs can be adjusted to reflect various 

components of the climate system based on the 

different components captured in a model. For 

instance, some models can be used to only represent 

ocean basins and continents only, but as Hendry et al. 

(2021) noted, the description detail is largely based 

on the technicality of the climate model. One-

dimensional models are less sophisticated than the 

three-dimensional ones as they differentiate the 

geographical zones, including the oceans and 

atmosphere. However, some detailed EMICs may 

have a coarse numerical grid that eliminates the 

possibility of scientists understanding the impact of 

interactions between nature and human beings 

(Reichle, 2023). 

The University of Victoria earth system climate 

model (UVIc ESCM), a modern climate model as 
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developed by the University of Victoria, has gained 

global recognition due to its simplistic assessment of 

changes in climate (Mengis et al., 2020). A 

biogeochemistry ocean model, characterized with a 

soil model which captures the soil carbon processes 

as well as a permafrost carbon are captured in this 

model, allowing scientists to study and observe 

changes in historical temperature and carbon fluxes. 

The model has a detailed ocean model that allows 

scientists to evaluate constantly changing oceanic 

physical properties. Other additional features in the 

model that has allowed it to become internationally 

recognized is its observed tracer profile which 

comprise of salinity, temperature components, nitrate 

and phosphate spatial distribution characteristics. 

Kvale et al. (2021) stated that as a climate model, the 

UVIc ESCM produces a carbon cycle model that 

allows scientists to comprehend the irreversible 

carbon dioxide induced changes. Consistent 

modifications are being integrated in the UVIc ESCM 

model to offer a more realistic and complex 

representation of heat fluxes and carbon. The model 

has a two-dimensional atmospheric energy moisture 

balance as well as a wind field to offer a more-

realistic visualization of the model (Pahlow et al., 

2020). It's important to highlight that the UVIc ESCM 

model features a horizontal resolution, while its 

oceanic component is primarily defined by vertical 

layers. The thickness of these vertical layers varies, 

starting at approximately 50 meters near the surface 

and increasing to about 500 meters as you move 

deeper into the ocean.  

 

Figure 2 The UVIc ESCM climate model (Mengis et al., 2020) 

The energy balance model (EBM) is based on the 

thermodynamics and energetics components of a 

climate system, allowing scientists to estimate the 

changes in the climate system in the world based on 

the energy budget (Cael et al., 2023). Since the EBMs 

provide a simplistic and undetailed average energy 

values, they are perceived to have a zero-dimension. 

EBMs have a possibility of being extended to two 

horizontal dimension and one latitude, thus capturing 

the heat input and output. One of the comparative 

advantages associated with EBMs is their ability to 

represent the Earth-atmosphere systems by 

culminating different timescales in hours, days or 

years (Global Climate Change, 2019; Soldatenko and 

Colman, 2019). These manipulations also ease the 

understanding of energy cycles, energy transfer 
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processes in a transient process or steady state. 

Arguably, EBMs make the assumption that the 

radiative energy lost by the atmospheric system on 

Earth is equal to the solar constant (Climate Policy 

Watcher, 2023). The simplistic models have a 

capability to determine the constant temperature 

changes, but are limited in that they cannot explain 

the climatic shifts caused by the atmospheric 

temperature. On the other hand, complex models like 

(community earth system model (CESM), parallel 

ocean program (POP), geophysical fluid dynamics 

laboratory climate model (GFDL CM) etc.) have the 

ability to capture the energy-transfer processes on the 

upper layer of the ocean.  

The models’ spatial distribution dynamics are 

based on the assumption that Earth’s atmospheric 

system is a single and uniform point, which is 

reflected in the division of the atmosphere into well-

defined zones (Colman and Soldatenko, 2020). For 

instance, the one-dimension model divides the 

atmospheric system into latitude zones while the two-

dimension model divides it into longitudinal and 

latitudinal directions. 

 

Figure 3 The one-dimensional EBM model (Global Climate Change, 2019)

 

 Figure 4 A spatial distribution of the energy balance of the EBM (Lohmann, 2020) 
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The GCMs as described by Scher and Messori 

(2019), is a climatic model that captures the planetary 

oceans and atmosphere. The models use a large-scale 

representation but emphasizes on transient features 

that are detailed, yet simplify the governing physics 

and empirical calculations in atmospheric dynamics. 

Scher (2018) argued that GCMs use a 100-500 km 

spatial resolution, and the vertical layers as shown in 

Figure 5, represent oceans and the atmosphere. A 

model’s accuracy is increased based on its 

performance of the various representative aspects 

including humidity surface radiation and time step 

intervals (Penn State University, 2023). Global 

spectral models (GSMs) provide a physical and 

geographical estimate of a region’s climate change, 

and they have the ability to demonstrate the 

increasing greenhouse gas emissions and 

concentrations in the world (Fajardo et al., 2020; 

Ribeiro et al., 2021). The GSMs structure as 

suggested by Fajardo et al. (2020), is in three-

dimension, representing the interplay of the ocean, air 

and land domains, with each cell in the model 

allowing a better approximate of Earth. Technological 

advancement has contributed to the simplified climate 

model which enables scientists to demonstrate 

climatic changes on a regional scale, and can also be 

used to reflect changes in countries and states. 

 
Figure 5 The GCM climate model (Penn State University, 2023) 

Climate models with high horizontal resolution 

have smaller grid cells and can capture fine-scale 

features like local weather patterns, mountains, and 

coastlines. It has a nominal resolution of 

approximately 0.25 degrees. The medium-resolution 

configuration had a nominal resolution of 

approximately 1.4 degrees. Models with low 

horizontal resolution, on the other hand, have larger 

grid cells and are more suitable for simulating large-

scale climate phenomena. It has a configuration of 

approximately 3.75 degrees in latitude and longitude.   

The table below summarizes the various climate 

models employed globally and areas of their 

application. 
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Table 1 Summary of various climate models 

Climate model Description Area of focus Resolution 
Country of 

origin 
Application 

GCM-CCSM4 
Community climate system 

model version 4 
Global Various resolutions USA General climate projections 

HadGEM2-ES 

Hadley centre global 

environmental model 2- earth 

system 

Global Various resolutions UK Long-term climate predictions 

ACCESS-ESM1 

Australian community 

climate and earth system 

simulator-earth system model 

1 

Global Various resolutions Australia Climate variability and change 

RegCM4 
Regional climate model 

version 4 
Regional (Africa) High resolution Italy Localized climate projections 

WRF 
Weather research and 

forecasting model 

Regional 

(Various) 
Variable resolutions USA 

Short-to medium –term 

weather forecasting 

CCLM 

Cosmo-CLM (Consortium 

for small scale modeling 

climate limited area 

modeling) 

Regional 

(Europe) 
High resolution Germany Climate impact assessment 

REMO Regional climate model 
Regional 

(Europe) 
High resolution Germany 

Climate change scenarios for 

Europe 

CCSM4 
Community climate system 

model version 4 
Global Various resolutions USA Ocean-atmosphere interactions 

MIROC-ESM 

Model for interdisciplinary 

research on climate-earth 

system model 

Global Various resolutions Japan 
Carbon cycle and climate 

feedbacks 

CESM 
Community earth system 

model 
Global Various resolutions USA 

Multidisciplinary climate 

research 

3 Climate models in Africa 

According to Laux et al. (2021), GCMs have been 

generally used in the African context, but due to the 

actual temperature and boundary conditions in the 

region, (RCM simulations have been formulated and 

used in the continent. Similarly, Bush et al. (2020) 

claimed that Africa’s countries differ, with some 

being vulnerable to severe heat stress, while others 

experience extreme rainfall events with possibilities 

of flooding and agricultural activities. This justifies 

why African climate is challenging for the existing 

models, and modifications are made to customize the 

diverse weather conditions in the continent. Africa is 

prone to climate and weather variability, which 

justifies the application of RCMs. Laux et al. (2021) 

emphasized that RCMs are relevant in providing 

information used by farmers in the African context, as 

it helps them understand the changing climatic 

conditions and how their agricultural activities are 

also affected. 

3.1 The Met Office unified model (UM) in Central 

Africa 

The Met Office unified model (UM), originally 

developed in the UK, is recognized in the African 

continent due to its simple structure as it 

accommodates a horizontal grid spacing of between 

4.5 km to 25 km (James et al., 2018). Taguela et al. 

(2022) conducted a study on the Central African 

complex climatic change, using atmospheric 

formulations, and it was easy to identify and predict 

the different seasons in the region. For instance, the 

Atlantic-Congo zone experienced a simulated sinking, 

which had been caused by increased surface 

temperatures and pressure gradient as stipulated in the 

results and findings section by Taguela et al. (2022). 

The UM model increased the knowledge surrounding 

the climate conditions in the region, and it was easy 

to predict the future based on the collected data. The 

UM is managed and operated through interconnected 

supercomputers, and one of the comparative 

advantages of this model is that it has a structured 

ocean model that runs on request or on command. 

James et al. (2018) noted that the model presents 

different vertical and horizontal resolutions which can 
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be compared and analyzed and a detailed report 

provided based on the available data sets. 

The UM model is also capable of increasing 

resolutions in lower-resolution systems as that of the 

African continent, which allows periodical 

forecasting. This is despite the model requiring a high 

level of governance and control to increase the 

reliability and validity of produced results (Bush et al., 

2020). The Met Office Unified Model is most 

preferred in the African context due to its seamless 

characteristic as suggested by Crown (2023), in that it 

can be used in different spatial and temporal scales, 

and produce high quality information. For instance, 

this climatic model produces a strong convection of 

the Indian Ocean base, including the seasonal cycles 

and circulation patterns. 

 

Figure 6 Illustration of the Unified Model seamless modelling hierarchy based on Met Office configurations (Crown, 2023) 

The UM model as described by James et al. 

(2018), has an ability of broadening the hierarchy 

capabilities, and simplifying the data collected in 

planetary atmosphere. Simulations on the model 

reflect the cool and humid conditions on the boundary 

layer and on the sea surface. This is critical as it 

informs and influences the variation of crops planted 

in each region based on the specific climatic 

conditions. The complex and unpredictable African 

climate conditions become easy to understand and 

configure. Maher and Earnshaw (2022) suggested that 

the different parameterizations can be switched on 

and off, and is dependent on the use of information.  

3.1.1 The statistical downscaling model (SDSM) 

climate model in West and East Africa 

Siabi et al. (2023) stated that the statistical 

downscaling model (SDSM) is one of the most 

reliable climate models used in the African continent 

to evaluate and assess the unreliable climate changes 

in the region. Statistical models as suggested by 

Jaiswal et al. (2020) are preferred and used due to 

their ability to produce precise information and data 

about a location’s weather and climate changes. A 

statistical relationship between large-scale climate 

variables is compared with the local-scale variables, 

and a detailed report is generated. The justification 

for using the SDSM model in Africa is because its 

performance was perceived to be relatively high 

compared to the traditional weather generators and 

predictors (Keller et al., 2022). This means results 

from this model are more reliable and valid in making 

agriculture-based decisions. For instance, data 

collected from the SDSM model capture and provide 

rainfall characteristics as well as temperature changes. 
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Siabi et al. (2021) claimed the SDSM model has been 

widely used in East Africa, with a bias in Ethiopia 

and Tanzania, and has been used due to the 

vulnerable climate changes. The region can either be 

too dry or have unpredictable floods, but with climate 

data being collected and analyzed using the SDSM 

climate model, then the East African countries are 

able to make timely decisions and mitigate the 

negative impacts of negative climate changes.  

 

 

Figure 7 The SDSM climate model (Gebrechorkos et al., 2019) 

The SDSM climate model has been incorporated 

and adopted in the East African context due to its 

spatial coverage dimensions, accessibility and quality 

of information it provides. Gebrechorkos et al. (2019) 

stated that the SDSM climate model’s functionality 

can be used to reconstruct and predict relationships, 

and since it stores a large dataset, it becomes 

simplistic to retrieve historic data. The climate model 

is also used due to its adaptation planning abilities, 

which means climate changes over a period of time 

are used to predict what will happen in the future. 

Most geographical locations in Africa face the 

challenge of having minimal information related to 

data, but the SDSM model overcomes this challenge 

since it can be manipulated to adapt to the different 

locational needs (Keller et al., 2022; Siabi et al., 

2023). Comparatively, the Western part of Africa is 

characterized with dry climatic conditions, and when 

adopted to study the climate changes in the region, it 

is able to simulate information which can then be 

critically analyzed to provide unbiased results (Siabi 

et al., 2021). The SDSM climate model downscales 

information by applying a statistical downscaling (SD) 

tool. For instance, a regression model or a stochastic 

bias-correction technique can be used to increase the 

validity of results generated after the application of 

the SDSM tool. 

3.1.2 The HadGEM3-GC2 climate model  

The Hadley Centre global environmental model 

version 3 at the global coupled model 2.0 

configurations (HadGEM3-GC2) climate model is 

configured to the atmospheric changes as suggested 

by Dosio et al. (2019). This climate model, as 

suggested by James et al. (2018), uses a high-

resolution approach to evaluate the changes in the 

atmosphere, land surface, ocean and sea ice 

components. Moat et al. (2019) argued that the 

HadGEM3-GC2 climate model is an improved 

version of the UM climate model since they have 

similar dynamics and features, with the only 

difference being that the latter is more sophisticated 

and complicated. The HadGEM3-GC2 climate model, 

within the African context, provides a useful and 

detailed basis through which the analysis is done. The 
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HadGEM3-GC2 climate model collects information 

related to the long-wave and short-wave components, 

noting the significant changes that take place. At the 

global level, any change in the atmospheric resolution 

is an indicator or signal that there is a climate change 

(James et al., 2018). This is noted in the tropical 

rainfall changes or intense storms, or in some 

instances, sea ice. The climate model conserves 

energy and its configurations allows it to have a 

three-hour time average reading as opposed to a 

twenty-four-hour period. Dosio et al. (2019) noted 

that the coupling fields have a new frequency which 

is consistent with the momentum fluxes. Additionally, 

the vertical and lateral ocean heat transports in the 

HadGEM3-GC2 climate model are associated with 

the Indian Ocean resolutions and model, justifying its 

adoption in the African continent as it aligns with the 

shallow and deep ocean beds in Africa.  

The reduced precipitation levels in West Africa 

do not limit the HadGEM3-GC2 climate model from 

collecting atmospheric simulations since the model 

consist of a dry bias that enables it to constantly 

adjust to the unstable weather patterns in the region. 

Moat et al. (2019) stated that the HadGEM3-GC2 

climate model is characterized with an accurate 

simulation of clouds, which enables professionals 

collecting and analyzing climate related information 

to evaluate and understand cloud properties like its 

height and amount. The West African side of the 

continent has tropical heat and low altitude, which 

can either be a thicker or thin cirrus, but such 

limitations are eliminated through the improved 

simulation capabilities in the HadGEM3-GC2 climate 

model (Dosio et al., 2019). 

3.1.3 The climate model intercomparison project 

(CMIP)  

They are a collection of global climate models 

developed by research institutions worldwide. The 

climate model intercomparison project (CMIP) 

climate model, as suggested by Ayugi et al. (2021b), 

studies and examines the coupled atmosphere-ocean 

general circulation output. The CMIP5, also known as 

project phase 5, was an experimental climate model 

that supported atmospheric only simulations, long-

term simulations as well as hindcasts simulations. 

These components would then be used to evaluate 

and predict future climate changes using both a short-

term and a long-term time scale. The CMIP climate 

model has been adopted within the African context 

due to its ability to increase understanding of climate 

changes based on the past and present, which are as a 

result of radiative forces, natural or unforced 

variability (Choi et al., 2022; Samuel et al., 2023). 

Idealized experiments are conducted regularly which 

support the predictability of the climate system, 

taking into consideration that space and time scales 

are never constant. Data collected is analyzed and 

presented in a standardized format that is easy to 

interpret, and this is used to make decisions. Mwanthi 

et al. (2023) stated that the CMIP6 climate model, 

which is an improved version of the CMIP5 version, 

has been adopted in the East, West and Central parts 

of Africa to determine the coupling processes 

between the atmosphere and land and to evaluate soil 

moisture content. The climate model is designed to 

collect atmospheric data in both a stable and unstable 

surface, which is reflected in the soil moisture 

anomalies. According to the World Climate Research 

Programme (2022), the current CMIP climate model 

is at stage 8.  

The CMIP5 and CMIP6 climate models have 

always been characterized with idealized experiments 

that not only examine cloud-climate feedbacks, but 

climate change impacts on the availability and 

demand of water used for irrigation purposes as 

suggested by Dutta and Maity (2022) and Nkiaka et al. 

(2018). This is relevant within the African continent 

due to the arid and semi-arid climatic conditions that 

necessitate the use of irrigation based agricultural 

activities to support agriculture and subsequent food 

production. The CMIP5 climate model is also used to 

conduct a process-oriented diagnostics, including, but 

not limited to physical tendencies and high-frequency 

outputs as described by Mwanthi et al. (2023). The 

frequency outputs are customized to collect data 

regularly and within short-time periods. 
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Comparatively, Ayugi et al. (2021b) and Li et al. 

(2019) stated that the CMIP6 model has more 

accurate climate projections as constant 

improvements and adjustments are introduced to curb 

the weaknesses and limitations that existed in the 

previous models. For instance, the CMIP6 climate 

model has an assorted range of socioeconomic 

pathways, which are relevant in the African context 

understanding of climate changes due to food 

production and security, and large volumes of dataset 

can also be collected within a short-period. CMIP 

models offer a range of resolutions and complexities, 

making them valuable for assessing large-scale 

climate changes in Africa.  

 

 

Figure 8 Development and changes in the CMIP climate models (World Climate Research Programme, 2022) 

3.2 Climate models in Kenya 

Kenya, a developing economy, has been at the 

forefront in formulating policies and strategies to 

enhance its understanding of climate changes in the 

region, which are meant to improve the agricultural 

production decisions as suggested by Matsaba et al. 

(2021). Potential risks and mitigation strategies 

related to climate changes are relevant to Kenya, 

justifying the development and design of climate 

models customized for the Kenyan climate dynamics. 

The unreliable and unpredictable climate in Kenya 

become easy to manipulate and manage once enough 

data has been collected about the different 

geographical areas. 

3.2.1 The Climate Atlas climate model 

According to Patrick et al. (2020), Kenya’s Jomo 

Kenyatta University of Agriculture and Technology 

developed and designed the first customized climate 

model system, whose functionalities and features 

could be traced back to the Netherlands. With the 

climate model also being designed and operated in 

Indonesia and Bangladesh, also growing economies, 

Kenya’s developers are confident that the climate 

model will help resolve the underlying food 

insecurity issues in the region. The climate model, 

which is at its initial stages, is structured to provide 

relevant stakeholders in the economy with futuristic 

weather patterns and scenarios, which can then be 

used to make current decisions (Kogo et al., 2021: 

Matsaba et al., 2021). The justification for the 

development of the Climate Atlas model is that 

despite the world having diverse climate modelling 

systems, none had been personalized to fit the 

specific needs of the country. Additionally, the 

climate model allows users to collect and analyze 

information from different locations within the 

country, taking into consideration that some regions 

have high temperatures and rainfall, while others are 

characterized with low temperatures and rainfall in 

each year (Nunow et al., 2020). By understanding the 

changes that happen within each specific location, 

Kenya’s policymakers would localize decisions based 
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on each location as opposed to generalizing the entire 

region. 

The Climate Atlas climate model when in 

operation will enable Kenya to shift its approaches 

and policies to align with the internationally 

recognized resilient crop varieties which will be 

pertinent in improving and rectifying problems 

associated with floods and droughts (Nunow et al., 

2020). Food security in Kenya is an underlying 

problem that affects a large percentage of its 

population, but with the climate model being used to 

study and understand the climate conditions of every 

geographic location in the country, it will be easy to 

invest in a long-term and permanent climate mapping 

strategies. For instance, irrigation could be used in 

semi-arid and arid areas, and greenhouses could be 

alternative measures to increase production in regions 

that have regular rainfall. Kajiado and Kiambu 

counties in Kenya have adopted the user-oriented 

climate model, whose interactive feature allows 

farmers and other users to make climate decisions and 

plan the future based on the changing climatic 

conditions in the areas (Matsaba et al., 2021). The 

climate model comprises of expert tools that are used 

in the evaluation of crop varieties, and a tailored 

solution provided. 

3.2.2 Rossby centre regional climate model 

Ayugi et al. (2020) stated that the Rossby centre 

regional climate model, within the Kenyan context, 

could be perceived as a regional based climate model, 

which facilitates forecasting climate conditions in the 

country. Notably, Ongoma et al. (2018) claimed that 

the region climate model may be characterized with 

high margins of errors due to the limited information 

on spatial resolutions, but this limitation could be 

eliminated through the application of more than a 

single RCM. The quantile mapping bias correction 

(QMBC) is a preferred strategy to rectify the 

underlying problems as described by Ayugi et al. 

(2018), justifying the adoption and use of the Rossby 

centre climate model in Kenya. 

Mugo et al. (2020) stated that with the existing 

challenges associated with RCMs, bias-correcting 

models are necessary to help eliminate subjective 

opinions, and instead, increase the validity and 

reliability of results and findings. For instance, Kenya 

experiences long and short rains, respectively, in the 

periods between March and May, and October and 

December, and this allows professionals and 

stakeholders involved in studying and interpreting the 

weather to collect data during those specific months. 

The decrease or increase in rainfall levels could then 

be explained using other existing phenomenon like 

global warming, but this would be dependent on the 

rainfall spatial extent (Ayugi et al., 2018; Mugo et al., 

2020). Additionally, in the event that rainfall patterns, 

when comparing the past and present, are noted, then 

policymakers have a responsibility of sensitizing and 

creating awareness amongst farmers on adjusting 

their planting seasons. 

3.2.3 The CMIP5 climate model 

Tan et al. (2020) argued that the CMIP5 climate 

model framework is internationally recognized, but 

through the RCM approach, could be localized to the 

Kenyan context, increasing the understanding and 

dynamics of the climatic conditions in the region. 

Mumo and Yu (2020) stated that a simulation of the 

CMIP5 climate model to initiate consistent patterns 

was used to study the rainfall datasets in Kenya, and 

to understand how the Indian ocean influences the 

short and long-rain periods in the region. With the 

global circulation models (GCMs) acting as 

background knowledge through which rainfall could 

be studied, the adoption of the CMIP5 model was 

simplistic, and it was easy to not only collect, but 

analyze information related to the climate aspects in 

Kenya. Ayugi et al. (2021a) argued that with the 

CMIP climate models undergoing constant changes 

and modifications, their ability to simulate climate 

patterns becomes simplified, and the algorithms can 

be explained correctly. Teleconnection links are not 

permanent, as they change based on climatic 

conditions, and this could be perceived as one of the 

driving factors towards rainfall changes in Kenya 

(Mumo and Yu, 2020). The CMIP5 model made it 

easy for the researchers to not only identify but 
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explain how variations in the sea temperature in the 

Indian ocean have directly influenced the changes in 

rainfall seasons in the country.  

Kenya’s climate change vulnerability as 

suggested by King and Washington (2021) is 

evidenced by its irregular rainfall patterns which has 

an effect on food production abilities in the region. 

The absence of proper climate models in the country 

has resulted in uncertainty in rainfall change and 

management. However, this could be eliminated 

through the Coupled Model Intercomparison Project 

Phase 5 (CMIP5) climate model, which, as described 

by King and Washington (2021), could be used in the 

examination of the changes in the Indian ocean 

currents, and how this affects rainfall in Kenya. The 

country has two major rainfall seasons occurring 

twice per year, but despite this knowledge in climatic 

changes in Kenya, the region has faced severe 

drought and famine. The CMIP5 model systematic 

bias on Kenya’s rainfall could be explained through 

the estimations made on the amount of rainfall 

expected in the last quarter of the year (Muhati et al., 

2018). Additionally, the climate model presents 

detailed information related to how the rate of 

precipitation affects the spatial patterns in the zones. 

3.2.4 The coordinated regional climate downscaling 

experiment (CORDEX) 

The coordinated regional climate downscaling 

experiment (CORDEX) is an RCM, whose main 

objective in the Kenyan context is to simulate rainfall 

patterns and possibly trigger a pattern (Luhunga et al., 

2018; Mukhala et al., 2017). CORDEX, initiated and 

supported by the World Climate Research Program, 

creates an enabling environment through which 

regional climate and rainfall projections could be 

made with ease. With steady and regular rainfall, it 

was possible to eliminate and stabilize the negative 

impact of low rainfall levels on crop production and 

food security. Conflicts associated with food scarcity 

also end. However, Jacob et al. (2020) stated that the 

probability of the CORDEX climate model to be used 

and viable in the Kenyan context could be evaluated 

to ensure that it can be successfully used to generate 

downscaled projections. 

The CORDEX climate model as suggested by 

Sørland et al. (2021), is a RCM, and could be directly 

compared to CMIP6. The justification for this is that 

CORDEX assesses any form of uncertainty as it acts 

as a diagnostic tool. For instance, in Kenya, the Tana 

River County which is highly vulnerable to climate 

variability and changes, could be properly be 

evaluated through the CORDEX RCM, which is 

made possible through the adjustments and 

modifications to cater for the exact climatic 

conditions in the region (Ouédraogo et al., 2019). For 

instance, validation tests and assessments are 

conducted to verify the past climatic conditions in the 

region, and this is compared against the agricultural 

production capabilities. An informed decision is made 

after the statistical downscaling approach which 

reveals whether or not the short and long rains in the 

region are reliable, and which crops are sustainable 

based on the prevailing conditions. 

3.2.5 The weather research and forecasting model 

(WRF) 

Kerandi et al. (2018) described the weather 

research and forecasting model (WRF) as a numerical 

weather prediction tool whose design allows it to 

capture atmospheric information. As a climate model 

within the Kenyan context, the WRF uses a software 

architecture tool as well as a data assimilation system, 

which is then used in forecasting climate conditions. 

This model is flexible, making it efficient and 

relevant for the Kenyan weather conditions based on 

the observations and analyses conducted. Kenya is 

geographically located within the Equator, and this 

makes it have a dry climatic condition compared to 

other equatorial regions across the world (Messmer et 

al., 2021; Njuki et al., 2022). The precipitation 

patterns in Kenya are heterogeneous, which could be 

explained by the surrounding natural resources 

including the lakes, the Indian ocean, topographical 

design and the tropical circulation. For instance, in 

Kenya, the dry Turkana region has a low precipitation 

rate, which is responsible for the suppressed rainy 
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seasons in the area. The unreliable rainfall makes it 

almost impossible for the locals residing in such areas 

to plant sustainable crops. However, through the 

WRF climate model, professionals in matters related 

to weather and climate are able to evaluate the 

content of moisture in the soil, and make better 

predictions about the prevailing conditions.  

The WRF simplifies the observation and 

interpretation of weather patterns in the complex 

Kenyan region as suggested by Njuki et al. (2022). 

There is no dominant climatic condition in Kenya, 

and simulations done through the MRF model 

provide a detailed solution and approach through 

which predictions can be made about the weather. 

This is done through modifications to fit the region’s 

precipitation and distribution dynamics. Kerandi et al. 

(2018) stated that through the WRF climate model, an 

estimated precipitation and spatial pattern could be 

captured of the Lake Victoria basin region in Kenya. 

This is done over a 50 km horizontal resolution, but 

this could be reduced to around 25 km to increase the 

validity of the generated findings. The WRF climate 

model has also been applied in other regions in 

Kenyan, including the Mount Kenya region, whose 

weather patterns and topography is different from that 

of the Lake Victoria basin (Njuki et al., 2022). The 

WRF model downscales boundary and initial 

conditions. 

4 Conclusion 

The various arrays of climate models tend to play 

an essential role when it comes to understanding of 

diverse climatic systems. The various models 

covering both global and regional scales offer 

valuable insights into the potential impacts of climate 

change and helps in formulating informed strategies 

for adaptation as well as mitigation. With the help of 

advanced simulations, these models enable engineers 

and policymakers to explore various scenarios and 

identify optimal pathways for sustainable 

development. From the Kenyan context, five models 

were identified, namely; Climate Atlas climate model, 

Rossby Centre Regional climate model, CMIP5 

climate model, CORDEX, and WRF. Climate Atlas 

climate model is structured to provide relevant 

stakeholders in the economy with futuristic weather 

patterns and scenarios, which can then be used to 

make current decisions. Similarly, Rossby Centre 

climate model is useful when it comes to increasing 

the understanding and dynamics of the climatic 

conditions in the region.  

CORDEX models provide high spatial resolution 

compared to GCMs, which is important for Kenya 

due to its significant climatic variations over short 

distances caused by diverse topography and 

geographical features. They can capture 

topographical variations more effectively, considering 

Kenya's varied landscape, encompassing highlands, 

lowlands, and coastal areas. These models also 

incorporate regional climate drivers like the Indian 

Ocean Dipole (IOD) and El Niño Southern 

Oscillation (ENSO), impacting Kenya's climate with 

variations in rainfall patterns, droughts, and floods. 

Furthermore, CORDEX models contribute to 

assessing localized impacts such as water scarcity, 

food security, and disease outbreaks, supporting 

informed decisions and adaptation strategies by 

engineers, policymakers, and stakeholders. While 

crucial for research, it's imperative to rigorously 

validate CORDEX models against historical climate 

data to ensure accuracy and reliability for the Kenyan 

region. 
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