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Abstract: This study's main goal was to thoroughly assess the performance and vibration of a six-cylinder engine 

utilizing diesel-bioethanol fuel mixtures.  These blends incorporated bioethanol in ratios below 15% and were created by 

combining anhydrous ethanol (C2H5OH) with standard diesel fuel in varying proportions.  The study employed seven 

distinct blends to assess engine performance and vibration levels thoroughly.  Multi-layered perception (MLP) neural 

networks were applied namely a feedforward back-propagation neural system.  The chosen training algorithm was the 

Levenberg-Marquardt, while activation functions employed were logsig, tansig, and purelin transferring functions.  The 

study findings revealed that the optimal neural network model consisted of two hidden layers comprising 15 neurons.  

The recommended transfer functions for the first and second hidden layers were logsig and logsig, respectively.  Overall, 

this study demonstrated the neural system model's remarkable efficacy in accurately predicting the performance and 

vibration levels of engines operating on blends of diesel and bioethanol fuels, commonly known as diesohol fuel blends. 
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1 Introduction 

Most energy needed is consumed by combusting 

fossil-based fuels, which also generate 98% of all 

carbon emissions (Taghizadeh-Alisaraei et al., 2017; 

Hosseini et al., 2017a). Diesel engines are often used, 

hence it has been determined that their emissions are 

a substantial contributor to air pollution (Chen et al., 

                                                           
Received date: 2023-06-30     Accepted date: 2023-10-19 

*Corresponding author: Seyyed Hassan Hosseini., Ph.D., 

Department of Physics and Energy Engineering, University of 

Science and Technology of Mazandaran, Behshahr, Iran. 

Email: Ho3eini1991@gmail.com. Tel: +981134150000, Fax: 

+981134556004. 

2019; Hosseini et al., 2022; 2023). Therefore, 

researchers have focused on clean and renewable 

fuels in light of the greater need for energy, the 

negative environmental impact of carbon-based fuel 

usage, and the need to reduce emissions (Uslu and 

Celik 2018; Hosseini et al., 2017b; Taghizadeh-

Alisaraei et al., 2017). Studies have shown that 

biofuels, including biodiesel and bioethanol, can 

potentially serve as a practical addition or substitute 

for fossil fuel-derived gasoline or diesel fuel 

(Ghobadian, 2012; Hassan et al., 2017; Taghizadeh-

Alisaraei et al., 2017; Taghizadeh-Alisaraei et al., 

2022). Due to its low viscosity, favorable cold-flow 
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properties, and higher oxygen content, bioethanol 

exhibits a potential for achieving higher compression 

ratios and shorter burn times, thereby making it a 

promising alternative fuel (Silitonga et al., 2018; Wei 

et al., 2018). In this context, a blend of diesel and 

bioethanol with a bioethanol ratio of less than 15% is 

a prospective alternative fuel, namely diesohol fuel 

(Shadidi et al., 2014). The flexibility, accuracy, and 

rapid response capabilities of artificial neural 

networks (ANNs) have recently made them a highly 

appealing and effective approach for simulating and 

resolving complicated issues (Mohammadhassani et 

al., 2015). 

ANNs is a computational machine that can 

generate, develop, and uncover new knowledge 

autonomously without requiring assistance like the 

human brain (Oǧuz et al., 2010). ANNs is utilized in 

scientific and engineering applications to address 

diverse problems, particularly those that cannot be 

solved using conventional modeling methods (Oǧuz 

et al., 2010). ANN is a robust and non-linear 

technique that enables the prediction of multiple 

output variables by utilizing multiple input variables 

(Alt et al., 2018). In the following, a review of 

various studies that have employed ANNs to analyze 

performance and air pollution features of biofuelled 

engines and the results of each study are discussed in 

detail. In this regard, Rao et al. (2017) employed an 

ANN to analyze a diesel engine's performance and 

exhaust pollution diesel engine running on biodiesel. 

They found that the back-propagation technique was 

optimal for training the network. The results showed 

a high correlation coefficient for engine performance 

and emissions prediction for exhaust gas temperature 

(EGT), brake specific fuel consumption (BSFC), 

brake thermal efficiency (BTE), HC, O2, CO2, CO, 

NOX, and smoke, respectively. In a separate study, 

Oǧuz et al. (2010) assessed the ANN to predict diesel 

engine performance using different biofuels. They 

applied various fuel types such as diesel, biodiesel, 

and biodiesel-bioethanol mixtures to create the ANN 

framework. The model could accurately anticipate 

power, torque, hourly fuel consumption, and SFC, 

leading the researchers to conclude that the developed 

model is suitable for predicting engine performance 

with different biofuels. Ghobadian et al. (2009) 

analyzed diesel engine features using biodiesel fuel 

with an ANN. They employed a normal Back-

Propagation technique for the engine and an MLP for 

non-linear mapping between input/output components. 

The ANN model predicted engine performance and 

exhaust emissions well, with correlation coefficients 

(R) higher than 0.92 for engine torque, specific fuel 

consumption (SFC), CO, and HC emissions. The 

model's simulated and measured values showed good 

agreement with a predicted mean square error (MSE) 

of 0.0004. Karonis et al. (2003) utilized a neural 

network methodology to establish a correlation 

between diesel fuel quality and the exhaust pollution 

of a diesel engine, and their findings demonstrated 

that the model achieved very well predictions for CO, 

HC, NOx, and PM.  

Balamurugan et al. (2017) developed an ANN 

model to anticipate the performance and emission 

features of an adjustable compression ratio (VCR) 

engine using blends of biodiesel extracted from 

orange oil. They determined the Levenberg–

Marquardt algorithm with logsig/tansig transfer 

function to generate the most accurate results. The 

ANN model was a reliable predictive tool for 

analyzing VCR engines' performance and emission 

characteristics using biodiesel blends, including BTE, 

BSFC, CO, NOx, and HC emissions. Parlak et al., 

(2006) investigated using an ANN for predicting SFC 

and EGT in a diesel engine. They proposed a back-

propagation neural network model with a 3–7–2 

(input/hidden/output layer nodes) structure, which 

was the best model for the task. The results showed 

that the ANN model could predict SFC and EGT in 

diesel engines with a median percentage error of 

fewer than 2%, which agreed with the experimental 

results. Kiani et al., (2010) utilized an ANN model to 

predict an SI engine's engine brake power and 

exhaust emissions using gasoline-ethanol blends. 

Researchers found that the proposed algorithm 

provided a desirable emission model with a 
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coefficient of correlation (R2) of 0.98, 0.96, 0.90, and 

0.71 for CO, CO2, HC, and NOx, respectively. 

Moreover, the ANN model accurately predicted the 

torque and brake power with a correlation coefficient 

of 0.99 and 0.96. Rezaei et al., (2015) performed a 

similar study utilizing homogeneous charge 

compression ignition (HCCI) engines using ethanol-

butanol blends. The analysis demonstrated that the 

suggested simulations could accurately forecast HCCI 

engine performance parameters.  

Literature reviews have shown that using ANNs 

for predicting engine performance and vibration 

parameters has gained significant attention in recent 

years. However, no research hasn't been conducted on 

using ANNs to anticipate the performance, root-

mean-square (RMS), and Kurtosis of six-cylinder 

diesel engine vibration by diesohol blended fuels. 

Therefore, this study aimed to set out an ANN model 

for predicting the engine performance, RMS, and 

Kurtosis of a six-cylinder diesel engine's vibration 

using diesohol blended fuels. Developing such a 

model could provide valuable insights into the impact 

of diesohol mixtures on an engine's performance and 

vibration characteristics and aid in developing more 

efficient and sustainable engines. 

2 Materials and methods 

2.1 Experimental set-up  

This study utilized a six-cylinder diesel engine. 

The engine has a governor system for controlling and 

stabilizing the rotational speed. The cylinder firing 

order of the engine follows the sequence of 4-2-6-3-

5-1, and the valve timings are as follows: intake valve 

opening (IVO) 25 degrees before bottom dead center 

(BDC), exhaust valve closing (EVC) 28 degrees after 

top dead center (TDC), intake valve closing (IVC) 55 

degrees after BDC, and exhaust valve opening (EVO) 

120 degrees after TDC. To measure the engine's 

brake power and torque under different operating 

conditions, an eddy current dynamometer model 

WE400 was adopted. The engine's signals generated 

by vibration were obtained using triple 

accelerometers installed vertically, laterally, and 

longitudinally (x, y, and z) directions. The 

acceleration-time signals utilized for transforming to 

an analog/digital converter for storage on a computer 

(Figure 1).  

2.2 Fuel preparation  

In this study, the mixture of anhydrous ethanol 

(C2H5OH) and straight diesel (D100) were prepared 

by volume using a homogenizer. Fuel mixtures of 

straight diesel, D98E2 (98% straight diesel and 2% 

ethanol), and diesel inclusion ethanol up to 10% were 

utilized. The fuel blends' properties can be seen in our 

previous paper, cited in reference (Taghizadeh-

Alisaraei and Rezaei-Asl 2016), for additional details 

on the properties of the fuel mixtures.  

 2.3 Experimental methods 

The tests in this study were conducted under 

maximum load conditions and at five engine rotations 

(1600-2000 by 100 rpm intervals) with a fixed 

pressure at the injectors (35 MPa) for all fuel 

mixtures. Please note that the information used in this 

study adopted from our previous research cited in 

reference (Taghizadeh-Alisaraei and Rezaei-Asl, 

2016). Performance factors such as torque, power, 

BSFC, and EGT were recorded during each test, 

along with the RMS of vibrations. After the engine 

stabilized, the data acquisition period was 1 minute 

for each test, with a frequency of 50 kHz. 

Acceleration data were stored during several working 

cycles of the engine, starting from the TDC of the 

piston's No.1. Figure 1 depicts the experiments of 

vibration data acquiring; also, the set-up and test 

method illustrate the same figure.  

 

2.4 Vibration analyses 

This section describes the RMS and kurtosis 

features of the diesel engine signals to analyze engine 

vibration. 

2.4.1 RMS of vibration signal 

The RMS and kurtosis parameters were utilized to 

analyze the engine vibration and evaluate its 

performance. These parameters can be defined using 

the following equations. The RMS is calculated based 

on Equation 1, which takes into account the number 
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of data within a given time period (N) and the 

acceleration data at time tk (x(tk)) (Hosseini et al., 

2020): 

1/2
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RMS k

k
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Figure 1 The devices and data collection set-up schematic for experiments 

The root mean square (RMS) is a parameter that 

compares vibrations under different situations. RMS 

is directly related to the energy of the vibration 

signals, a function of its amplitude. It is determined 

by calculating the square of vibration data, which 

assigns higher emphasis to sudden peaks or shocks 

(Taghizadeh-Alisaraei and Rezaei-Asl, 2016). The 

total vibration acceleration (atotal), which is a 

combination of acceleration in three axes, can be 

expressed as the following Equation 2: 

      
1/2

total vertical lateral longitudinal                      (2) 

2.4.2 Kurtosis of vibration signal 

The kurtosis parameter is highly susceptible to 

noise and requires preliminary signal treatment, such 

as band-pass filtering and envelope detection, to 

utilize its performance (Pachaud et al., 1997; Wang et 

al., 2015; Lorenzo and Calabro, 2007) entirely. 

Kurtosis characterizes the peakedness and thickness 

of the signal's distribution around the mean. A higher 

kurtosis value indicates that the peaks in the signal 

are taller and sharper. Thus, kurtosis can better 

distinguish between two signals. 

For comparison of results with other common 

methods, the criterion of kurtosis was employed to 

assess the engine's performance based on the 

vibration signal, as described by Equation 3 (Hosseini 

et al., 2020): 
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           (3)  

The total kurtosis of the acceleration signal 

(Kurttotal) can be defined as the combination of the 

kurtosis values of the three axes of acceleration 

signals, and it can be calculated using Equation 4:  

 
1/2

total vertical lateral longitudinalKurt Kurt Kurt Kurt          (4) 

3 ANN modeling 
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In this study, the primary objective is to utilize an 

ANN for the prediction of performance, RMS, and 

Kurtosis of a six-cylinder diesel engine's vibration. 

This was accomplished by creating a computer 

technique in Matlab software to anticipate the 

parameters mentioned above under various operation 

situations. One of the advantages of the ANN model 

is that it can learn about the system without prior 

knowledge of the process relationships. This makes it 

significantly faster than traditional simulation 

programs or mathematical models. Furthermore, the 

ANN model's input and output variables can be 

modified per the requirements (Oǧuz et al., 2010). An 

ANN network comprises three essential elements: the 

input/one or more hidden/output layer. The input 

layer gets the values of the input variables, which are 

then analyzed by the hidden layer(s). The output layer 

calculates the final output. The various neural 

network models vary based on the types of nodes in 

the hidden layer, which are responsible for learning 

the underlying relationships between the input and 

output variables (Karonis et al., 2003; Aghbashlo et 

al., 2021). To develop an ANN model, two training 

and testing processes are needed by training network 

output values estimated based on input data. The 

testing step involves testing the network to determine 

the time to stop training or to store training data, 

which can later be used to estimate an output (Oǧuz 

et al., 2010).  

3.1 Input and output parameters  

In this paper, the input layer of the ANNs 

consisted of five parameters: engine speed, ethanol 

percentage, lower heating value (LHV), fuel density, 

and fuel consumption. The output layer included 

eight parameters: engine power, BTE, RMS, and 

kurtosis of the engine's vibration in three axes, 

namely vertically, laterally, and longitudinally. Figure 

2 displays the neural network architectural diagram. 

All of the data in the data sets were arranged prior to 

training the network, and the input parameters were 

normalized using an equation since the activation 

function of the output layer was linear (purelin) in all 

networks. Therefore, only the input parameters were 

normalized using Equation 5: 

min

max min

norm

I I
I

I I





             (5) 

Equation 5 is used to normalize the input 

parameters before feeding them into the ANN model. 

In this equation, Inorm represents the data with 

normalization, I is the experimental or input data, Imin 

represents the lowest value of the exprimental data, 

and Imax represents the greatest value of the measured 

data. By this equation, the input parameters are scaled 

to the range of 0 to 1, which is required for the proper 

functioning of the ANN model with linear activation 

function in the output layer. 

3.2 Selection of dataset and activation function 

An ANN model is employed to predict the 

outcome variable. 100% of the dataset was available 

for analysis, including 70%, 15%, and 15% for train, 

valid, and test. An MLP with a feed-forward back-

propagation neural network model was used for 

analysis. The levenberg-marquardt (trainlm) 

technique employed as the training algorithm. In this 

research, three different transfer functions were 

applied as activation functions, namely logsig, tansig, 

and purelin, and the corresponding equations are 

presented in Equations 6 and 7, where x denotes the 

input data. 
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3.3 Statistical analysis of output variables 

In this research, the network was trained by 

different numbers of hidden layers and neurons to 

determine the best network. For comparison, mean 

squared error (MSE) and correlation coefficient (R-

values) statistical techniques were used. The best 



June, 2024                   An assessment of six-cylinder diesel engine performance and vibration features                Vol. 26, No.2      158 

network was determined based on the higher value of 

R and the lower value of MSE, as computed by 

Equations 8 and 9, respectively. 

Equations 5 and 6 involve the following variables:  

n denotes the number of sampling tested; Ti 

represents the results obtained from the 

measurements (target); Oi corresponds to the values 

that were anticipated (output); and Ō denotes the 

mean of the expected values. 

 
Figure 2 Topology of a neural network 

4 Results and discussion  

Figure 3a displays the BTE with regard to the fuel 

blend and engine speed. The graph indicates that the 

BTE increases as the engine speed increases from 

1600 to 1800 rpm and then decreases from 1800 to 

2000 rpm. Typically, the BTE decreases at higher 

speeds due to reduced engine volumetric efficiency. 

The D98E2 and D90E10 fuels exhibit the lowest 

values of BTE with regard to fuel consumption, while 

the maximum value of BTE is obtained for D100 and 

D94E6 fuels. For fuel blends of D92E8, D90E10, and 

D88E12, the BTE value is reduced due to the lower 

quality of the fuel blends. For D88E12 fuel blend, the 

combustion quality decreases due to heterogeneous 

fuel. The mixing of ethanol with diesel fuel depends 

on its temperature, it increases with increasing 

temperature, but with decreasing temperature, it 

becomes biphasic, and the fuel quality decreases 

(Mccormick and Parish, 2001; Sathiyamoorthi and 

Sankaranarayanan, 2017).  

The SFC is maximum at the speed of 1600 rpm 

due to the lower produced engine power. The 

minimum SFC is for a speed of 1800 rpm due to 

higher produced power and lower fuel consumption. 

It is worth noting that the trend of SFC diagrams 

contrasts with the BTE diagrams (Figure 3b).  

Decreased ethanol's heating value is important in 

increasing SFC. Although the use of oxygenate fuels 

like ethanol increases the oxygen content of the fuel 

and results in an ideal stoichiometric ratio, it also 

increases the air-fuel ratio, which can affect the 

combustion and emissions of the engine, ultimately 

leading to increased fuel consumption. As the dose of 

ethanol in fuel blends increases from 0% to 12%, the 

engine power also increases, but fuel consumption 

also rises, particularly for the three fuel blends of 

D92E8, D90E10, and D88E12. Among the D98E2, 

D96E4, D94E6, D92E8, D90E10, and D88E12 fuel 

blends, the minimum SFC is related to the D94E6 
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fuel blend due to its good balance between fuel 

consumption, combustion efficiency, and fuel quality. 

However, increasing the amount of ethanol to more 

than 6% reduces fuel quality, which is the main factor 

in the rise of SFC and the drop of BTE. 

The RMS acceleration resultant, RMSTotal, was 

calculated for the vertical, lateral, and longitudinal 

directions using Equation 2. The RMS of vibration 

has a rising trend with increasing bioethanol dose in 

D100 fuel, leading to enhanced engine vibration 

(Figure 3c). Additionally, for all fuel blends, the 

kurtosis increases with ethanol dose in D100 fuel 

(Figure 3d). A sudden increase in kurtosis is observed 

for D94E6 fuel, indicating some irregularities in 

engine performance, and it operates in a more non-

uniform manner and increases power. 

 
(a) BTE                                                                                                  (b) SFC 

       
(c) total RMS                                                                       (d) kurtosis  

Figure 3 values of  BTE, SFC, total RMS, and kurtosis for all fuel blends 

An ANN model was employed to analyze the 

performance, RMS, and Kurtosis of a diesel engine's 

vibration with diesohol fuel blends. All input 

parameters used in the ANN model impact the 

engine's performance, RMS of vibrations, and 

Kurtosis. Table 1 summarizes the impact of each 

input parameter on the output variables.  
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Table 1 The impact of each input parameter 

Parameter Range Description 

Engine speed 1600-2000 rpm 1600 to 1800 rpm, BTE ↑; 1800 to 2000 rpm, BTE ↓; 1600 to 2000 rpm, engine power ↑. 

LHV 39.64-41.6 (MJ kg-1) Bioethanol↑ from D100 to D88E12, LHV↓. 

Fuel consumption 10.21-16.26 (kg h-1) Adding bioethanol to D100, from 1600 to 2000 rpm, fuel consumption ↑. 

Ethanol percent 0-12 Bioethanol↑ from D100 to D94E6, brake power↑; from D94E6 to D88E12, brake power ↓. 

fuel density 0.8136-0.8201 (g cm-3) Bioethanol↑ from D100 to D88E12, fuel density ↓. 

Note:↑: indicating an increasing trend, ↓: indicating a decreasing trend.  

The impact of each input parameter on the 

performance, RMS, and Kurtosis of the diesel 

engine's vibration has been thoroughly examined and 

discussed in our previous study (Taghizadeh-

Alisaraei and Rezaei-Asl, 2016). The results and 

comprehensive analysis are presented in reference, 

and the changes in the output parameters in various 

conditions are summarized in Table 2, which has 

been elaborated in our previous research 

(Taghizadeh-Alisaraei and Rezaei-Asl, 2016). 

Table 2 Range of variations in output parameters like performance, RMS, and Kurtosis of engine's vibration 

Parameter Range Description 

Power 39.5-57.9 
Bioethanol↑ from D100 to D94E6, brake power↑; from D94E6 to D88E12, brake power ↓. Reason: 

adverse blending of ethanol-diesel fuel at high doses of ethanol and non-heterogeneous fuel blend. 

BTE 30.82-35.47 
1600 to 1800 rpm, BTE ↑; 1800 to 2000 rpm, BTE ↓; BTE decreases at high speeds due to lower engine 

volumetric efficiency. 

RMS 44.154-106.5 Bioethanol↑ from D100 to D88E12, the RMS of vibration ↑. 

Kurtosis 5.248-13.719 Bioethanol↑ from D100 to D88E12, the kurtosis of vibration ↑. 

Note: ↑: indicating an increasing trend, ↓: indicating a decreasing trend.  

 
Figure 4 Performance of the optimum network 
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Figure 5 Overall R values of optimal ANN model 

                       

Figure 6 Displays the experimental results and predicted values of the Performance parameter 

Multiple network models were employed to 

obtain the most accurate prediction by the ANN 

model. The outcomes and evaluations of various 

network models are presented in Table 3. The ANN 

model was evaluated using multiple network models 

to select the optimum anticipated. The trainlm 

algorithm was used with the purelin transfer function 

for the output layer and the transfer functions of 

tansig and logsig for the two hidden layers. Two 

hidden layers with 15–15 neurons each and the 

transfer functions of logsig–logsig for the first and 

second hidden layers were found to be the ideal 

network architecture. Figures 4 and 5 illustrate the 

performance and overall R-values of the optimum 

ANN network. The R-values of the optimum 

structure for training, validation, and testing were 

0.999, 0.999, and 0.998, respectively. For train, valid, 

and test, the MSE values of the optimum network 

were 0, 2.062, and 2.448, respectively. 

An analysis of regression was employed between 

the output and related targets to assess the network's 

response. The finding of this analysis indicated that 

the constructed model could anticipate the 

performance, RMS of vibrations, and Kurtosis of 

compression ignition (CI) diesel engine with 

sufficient accuracy. The expected outputs of the ANN 

were compared to the experimental data for 

performance, vibrations, and Kurtosis, presented in 

Figures 6 and 7. 

The performance regression coefficients for 

power and BTE using the ANN were 0.991 and 0.973, 

respectively. The RMS of vibrations and Kurtosis 

regression coefficients for RMSx, RMSy, RMSz, 

Kurtosisx, Kurtosisy, and Kurtosisz using the ANN 

were 0.989, 0.992, 0.994, 0.903, 0.962, and 0.963, 

correspondingly. These results indicate that the 

optimal ANN model strongly correlated with the 

predicted model and experimental data.  
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       (a) RMS-Vertical                                                                                                  (b)RMS-Lateral        

            
(c) RMS-Longitudinal, kurtosis of the engine                                                  (d) Kurtosis-Vertical

                            

                    (e)Kurtosis-Lateral                                                                                   (f) Kurtosis-Longitudinal 

Figure 7 Displays the experimental results and predicted values of the vibrations and Kurtosis of the engine  

vibrations of the engine 

Based on the regression analysis results, it can be 

concluded that the ANN is a powerful tool for 

predicting the performance, RMS of vibrations, and 

Kurtosis of engines with reasonable regression 

coefficients. The high regression coefficients 

obtained for the various parameters indicate that the 

ANN model could capture the underlying patterns 

and relationships between the input and output 

variables in the dataset, leading to accurate 

predictions. Therefore, the ANN model can be useful 
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in predicting the behavior and performance of engines, 

which can have significant practical implications for 

industries such as automotive and transportation. It is 

worth mentioning that, due to the widespread 

practical use of compression combustion engines in 

various agricultural engineering sectors, this 

research's results can be used in developing and 

adjusting engines with different practical conditions 

in agricultural engineering. 

Table 3 Brief of various networks evaluated to yield the criteria of network performance 

Networks 

number 

Activation 

function 

Neurons in hidden layers  MSE  R 

Layer 1 Layer 2  Training Validation Testing  Training Validation Testing 

1 a/b 5 -  0.5551 2.6503 3.3427  0.99969 0.99866 0.99759 

2 a/b 10 -  0.1229 8.2202 5.1181  0.99962 0.99702 0.99752 

3 a/b 20 -  0.0029 6.8496 3.0467  0.99963 0.999777 0.99895 

4 a/b 30 -  0.0004 2.4587 4.9500  0.99996 0.99912 0.99767 

5 c/b 5 -  0.4286 5.3832 4.3969  0.99926 0.99721 0.99727 

6 c/b 10 -  0.0996 5.1054 8.9605  0.9999 0.99768 0.99476 

7 c/b 20 -  0.0098 7.8996 9.6203  0.99984 0.99602 0.99606 

8 c/b 30 -  0.0000 7.0798 8.3383  0.9996 0.99596 0.99626 

9 c/c/b 10 10  0.0926 8.2989 2.8820  0.9994 0.99652 0.99775 

10 c/c/b 15 15  0.0000 2.0624 2.4481  0.99985 0.99904 0.99791 

11 c/c/b 20 20  0.0000 8.0083 7.0152  0.99963 0.99547 0.99631 

12 c/c/b 20 25  0.0044 8.3046 6.6949  0.99858 0.99492 0.99609 

13 c/c/b 25 20  0.0000 9.2814 4.9946  0.99979 0.99551 0.99721 

14 c/c/b 25 25  0.0000 13.1199 10.7911  0.99956 0.99396 0.99505 

15 c/c/b 20 30  0.0000 12.3391 5.0176  0.99938 0.99568 0.99764 

16 c/c/b 25 30  0.0000 22.5487 14.9324  1 0.98749 0.98475 

17 c/c/b 30 30  0.0003 6.0896 11.7499  0.99986 0.99679 0.9919 

18 a/a/b 10 10  0.0317 4.8273 9.9892  0.99985 0.99737 0.99463 

19 a/a/b 15 15  0.0118 11.7747 7.7339  0.99717 0.99685 0.99593 

20 a/a/b 20 20  0.0000 13.3989 7.4388  0.99992 0.99375 0.99641 

21 a/a/b 20 25  0.0000 8.5352 5.5769  0.99821 0.99558 0.99627 

22 a/a/b 25 20  0.0000 7.4846 9.3666  1 0.99783 0.99576 

23 a/a/b 25 25  0.0000 10.6364 12.8336  0.99693 0.99027 0.98548 

24 a/a/b 20 30  0.0000 7.1790 4.3499  1 0.99762 0.99735 

25 a/a/b 25 30  0.0000 11.8147 16.9473  1 0.99397 0.98768 

26 a/a/b 30 30  0.0000 14.8898 13.4523  1 0.99271 0.99365 

27 a/c/b 10 10  0.1351 9.0990 7.0104  0.9981 0.996 0.99596 

28 a/c/b 15 15  0.0039 15.9094 4.0175  0.99229 0.99668 0.99296 

29 a/c/b 20 20  0.0000 14.3756 12.4895  0.99699 0.99313 0.99399 

30 a/c/b 20 25  0.0016 5.8147 19.6947  0.99692 0.9964 0.9863 

31 a/c/b 25 20  0.0000 11.9491 8.0112  1 0.99494 0.99611 

32 a/c/b 25 25  0.0000 5.9878 6.9302  0.99959 0.99728 0.99625 

33 a/c/b 20 30  0.0000 2.1248 3.3423  0.99978 0.99895 0.99842 

34 a/c/b 25 30  0.0000 8.2412 9.7932  0.99934 0.99576 0.99618 

35 a/c/b 30 30  0.0000 4.7512 5.6869  1 0.99741 0.99698 

36 c/a/b 10 10  0.1194 4.5388 8.3300  0.99871 0.99841 0.99641 

37 c/a/b 15 15  0.0021 9.4714 8.9846  0.9998 0.99545 0.99507 

38 c/a/b 20 20  0.0000 7.7820 13.0252  1 0.99683 0.97407 

39 c/a/b 20 25  0.0000 3.6960 8.1147  1 0.99762 0.9954 

40 c/a/b 25 20  0.0000 10.1197 6.3902  0.99998 0.99496 0.997 

41 c/a/b 25 25  0.0000 3.2329 6.9756  1 0.99817 0.99806 

42 c/a/b 20 30  0.0000 18.6084 20.1389  0.999457 0.99154 0.9904 

43 c/a/b 25 30  0.0000 5.2361 4.4124  0.99961 0.99757 0.99733 

44 c/a/b 30 30  0.0000 6.7297 5.4205  0.99929 0.99716 0.999 

Diesel engine performance and vibration 

characteristics are highly dependent on engine 

controlling factors, including fuel type, qualities of 

fuel, engine rotation, intake temperature, and 

environmental factors affecting the engine. As a result, 

utilizing ANN can be a valuable approach to lessen 

the time and financing required for extensive test-bed 

research, especially when particular variables need to 

be checked (Mohamed et al., 2012). The use of a 

proposed ANN model can minimize the need for vast 

amounts of training data, in contrast to the common 

approach of employing a look-up table in the ECU of 
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the IC engines, which typically necessitates 

experimental data to anticipate or modify engine 

performance, manage pollution, and mitigate 

knocking phenomena utilizing engine vibration 

signals (Rezaei et al., 2015). The present study 

demonstrates the ability of the proposed artificial 

neural network model to cut back on the cost and 

time of ECU calibration. In contrast to the 

conventional approach, which requires an extensive 

collection of data sets for predicting and calibrating 

engine performance, emissions control, and engine 

knocking reduction using engine vibration signals, the 

proposed ANN model requires less data for training 

of the network. Therefore, the presented ANN model 

can offer significant time and cost savings for engine 

control strategies involving large variations (Hosseini 

et al., 2020). 

5 Conclusion 

The object of the present research was to use a 

neural network technique that could predict the 

performance, RMS, and Kurtosis of the body 

vibration of a six-cylinder diesel engine using a 

blended fuel called diesohol (diesel-ethanol). The 

dataset used for training, validation, and testing the 

ANN model was divided into 70%, 15%, and 15%, 

respectively. An MLP neural network with a feed-

forward back-propagation model was used, 

employing the Levenberg-Marquardt (trainlm) 

technique as the training algorithm, and logsig, tansig, 

and purelin transfer functions as activation functions. 

The optimal network architecture was found to have 

two hidden layers, with 15 neurons each, and a 

transfer function of logsig-logsig for the first and 

second hidden layers, respectively. The correlation 

coefficient for the best structure for train, valid, and 

test were 0.99985, 0.99904, and 0.99791, respectively. 

The MSE values of train, valid, and test of the best 

model were 0, 2.062, and 2.448, respectively. The 

regression coefficient values for RMS and Kurtosis of 

the engine's vibration using ANN were found to be 

0.989, 0.992, 0.994, 0.903, 0.962308, and 0.963 for 

RMSx, RMSy, RMSz, Kurtosisx, Kurtosisy, and 

Kurtosisz, respectively. The findings of this study 

indicate that ANNs are a potent instrument for 

forecasting engine performance and body vibration. 

The predicted model shows a strong correlation with 

measured data, emphasizing the accuracy of the ANN 

as a predictive tool in this field. Future studies can be 

done with different renewable fuels to investigate the 

six-cylinder diesel engine's performance, emissions, 

and vibrations and analyze exergy, environmental 

exergy, and economic exergy with an evolutionary 

developed algorithm. 
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