
December, 2024          AgricEngInt: CIGR Journal Open access at http://www.cigrjournal.org        Vol. 26, No.4     217 

 
Optimization of sequence-dependent harvesting time at 

sugarcane farms using meta-heuristic methods 
 

Negar Hafezi1*, Mohammad Javad Sheikhdavood1, Houshang Bahrami1, Seyed 
Enayatallah Alavi2 

 
 (1. Department of Biosystems Engineering, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, 61357-83151, Iran; 
2. Department of Computer Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, 61357-83151, Iran) 

 
Abstract: The framework of the present problem is based on predicting the recoverable sugar percentage, which has a 
fundamental role in sugarcane harvesting time.  After forecasting this parameter, two objectives are pursued one tries to 
maximize the sugar production quantity according to the proper sugarcane age and variety, and the other tries to mini-
mize the completion time of harvesting operations in a specified sequence of sugarcane farms.  To estimate the recov-
erable sugar percentage parameter was used an Elman Neural Network (ENN).Then, the sequence-dependent harvesting 
time problem was formulated by a hybrid model called the Travelling Thief Problem (TTP).  To solve this bi-objective 
problem has been used two meta-heuristic algorithms, called NSGA-II and SPEA2.  Results indicate that the 
bi-objective optimization problem can be increased the sugar production quantity by 32.93% and be decreased the com-
pletion time of harvesting operations via finding optimal routes by 57.7% compared to the actual harvesting sequence.  
The statistical testing results show that the NSGA-II is superior to the SPEA2 in terms of achieving better convergence, 
generating more non-dominated solutions, improving the distribution of solutions, and shortening the running time. 
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 1 Introduction 

Sugarcane (Saccharum officinarum L.) is a tropi-
cal perennial grass of the Gramineae family that is 
used for sugar production. The plant is also grown for 
biofuel production. In Iran, sugarcane is a valuable 
commodity. Recently, due to the increasing popula-
tion growth rate and sugar consumption, plenty of 
sugar has been imported from abroad (Kaab et al., 
2019). In 2020, sugarcane production in Iran was 7.83 
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million tons. Sugarcane production of Iran increased 
from 578,000 tons in 1971 to 7.83 million tons in 
2020 and with an average annual growth rate of 7.66% 
(Knoema, 2022). In harvest planning, sugarcane 
should be cropped at the appropriate time and ma-
turity to maximize sugar recovery from a specific 
variety and prevent cane deterioration and quality 
problems (Junqueira and Morabito, 2017). The har-
vesting date of a farm is not usually decided upon 
very far ahead, but many thumb rules are currently 
used to make scheduling decisions (Stray, 2010). 
Sugarcane harvesting at farms is usually done with 
regard to variety and crop age. The purpose of the 
operational planning of sugarcane harvesting is to 
determine the best harvest time and route so that the 
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total cost of harvesting and transportation operations 
decreases, and sugar yield is maximized (Kittilertpai-
san and Pathumnakul, 2015). Knowledge of opera-
tions research, which is one of the sub-branches of 
applied mathematics, is intended to facilitate deci-
sion-making based on scientific standards due to the 
limitations. In the agricultural sector, there are vari-
ous constraints such as weather conditions, economic 
and social issues, so benefiting from this knowledge 
can help to solve problems and make the right deci-
sions. Glen (1987) was the first to use the decision 
support tools in the agricultural sector (Glen, 1987; 
Jena and Aragão, 2011). In recent studies, the use of 
operations research has played a significant role in 
the scheduling problem of sugarcane harvesting 
(Munoz and Lee, 2019).  

One of the issues of operations research in sugar-
cane scope can be referred to as value chain optimi-
zation, cutting and transportation crew scheduling, 
and prediction of sugarcane yield indicators (Jena and 
Poggi, 2013). For example, Lopez Milan et al. (2006) 
presented a mixed-integer programming (MIP) model 
to solve the problem of cost minimization of sugar-
cane transportation from fields to the mill for a 
working day. Florentino and Pato (2014) presented a 
bi-objective genetic heuristic for minimizing collec-
tion and transportation costs and maximizing energy 
balance obtained from residues of the sugarcane har-
vesting. The authors concluded that the heuristic ap-
proach could increase solution quality and improve 
computing time. Additionally, Sungnul et al. (2017) 
studied a multi-objective optimization model to find 
the optimal harvest time for maximizing revenue and 
minimizing gathering cost. Many problems in re-
al-world include the optimization of several objec-
tives simultaneously.  

To obtain the optimum solution there will be a set 
of optimal trade-offs between the conflicting objec-
tives where these optimum solutions are called Pare-
to-optimal solutions (Abido and Bakhashwain, 2005). 
The proper time to harvest each farm is at maturity 
peak of the sugarcane (Jena and Poggi, 2013). Sugar-
cane has a certain age to harvest and can only be 

cropped at the interval of its age (Jena and Poggi, 
2013). While harvesting, the manager must provide 
the sequence of sugarcane farms to be cropped. Gen-
erally, sequencing refers to a scheduling problem, so 
determining the harvest sequence of sugarcane farms 
is commonly seen as a general type of scheduling 
problem as well (Jena and Aragão, 2011).  

The present study proposes a different method for 
harvest scheduling that deals with the sequencing 
problem of sugarcane farms by creating a bi-objective 
optimization model. In this study, there are two ob-
jective functions in which one tries to maximize the 
sugar production quantity according to the proper 
sugarcane age and variety, but the other tries to min-
imize the completion time of harvesting operations in 
a specified sequence of sugarcane farms. Hence, to 
solve this bi-objective problem whose complexity is 
NP-hard, has been employed two meta-heuristic algo-
rithms, called NSGA-II and SPEA2. The proposed 
model has been formulated as a Travelling Thief 
Problem (TTP). The TTP was created in 2013 by 
Bonyadi et al. (2013).  

TTP consists of two sub-problems, namely, the 
Travelling Salesman Problem (TSP) and Knapsack 
Problem (KP), both of which are among the most 
well-known issues of operations research and com-
bined optimization (Mei et al., 2015). In TTP, there 
are a number of cities and items, a thief must visit 
each city once and pick some items from the cities to 
place in a rental knapsack. Each item includes a cer-
tain weight and profit. The knapsack has a certain 
weight and should not be the total weight of the 
picked items more than the knapsack weight (Mei et 
al., 2014). In the end, the cost of renting the knapsack 
is taken into account to estimate the total profit. The 
goal of TTP is to maximize profit from items picked 
and to minimize travel time or rent paid for the knap-
sack (Mei et al., 2014). In TTP, the travel speed of the 
thief depends on the current weight of the knapsack, 
so the heavier the knapsack, the slower the thief’s 
speed and more time is needed to complete the tour 
(Bonyadi et al., 2013). 
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2 Materials and methods 

2.1 Study location 
In Iran, the sugarcane harvest performs mechani-

cally, based on the scheduling of the harvest fleet that 
is allocated to farms. The harvest fleet includes crew 
and harvesting equipment, including mechanical har-
vesters, tractors, transportation means, and other ser-
vice tools that are transferred from one farm to an-
other when performing operations. In this country, the 
harvesting time horizon is split into a six-month pe-
riod from November to April. The best month for 
sugarcane harvesting is in February when the sugar 
content of cane is at the highest level. This study is 
executed in the Debal Khazaei Agro-Industry Com-
pany. This site is located 20 kilometers south of Ah-
vaz city and east of the Karun River in the Khuzestan 
province of Iran, which is at 48º 35ʹ 08ʺ E and 31º 08ʹ 
07ʺ N.  

Figure 1 shows the location of the studied area. 
Over the past 50 years, the average temperature and 
annual precipitation have been 25°C and 213 mm in 
this area. The total area of this company is about 
13,557 hectares, which is 11,956 hectares, and the 
rest of the canal, road, building, and a sugar factory. 
The size of each farm is 25 hectares. For simplifying 
harvest fleet relocation, the farming lands of the 

Company are divided into two sites, namely first 
production (right) and second production (left), so 
that the farms’ ID is named accordingly.  

This Company has about 390 green farms in each 
harvesting season that must be harvested within six 
months. General data was collected from the offices 
of Agriculture and Applied studies of the Company. 
The collected data included the farm sizes in hectares, 
amount of sugarcane cut from each farm in ton, re-
coverable sugar percentage (RS %) at each farm, 
sugarcane yield in ton per hectare, sugarcane variety 
(early, medium, and late-maturing), harvesting age 
(which is usually 10-13 months in ratoon crop and 
14-18 months in plant crop), and distance between 
farms in kilometer.  

In this paper, the harvesting sequence optimiza-
tion of sugarcane farms has been proposed for a set of 
62 farms around the sugar factory with four harvest 
fleets that each fleet consists of 6 harvesting ma-
chines. In addition, a hybrid binary integer program-
ming model was used to formulate the present prob-
lem. Then, the model was solved by two approxima-
tion methods, including NSGA-II and SPEA2. 
MATLAB (R2017b) software was used to test and 
evaluate the proposed algorithms, which was installed 
on a personal computer with 4 GB RAM and 2.5 GHz 
processor speed. 

 

Figure 1 A view of the studied area in the south of Khuzestan province, Iran 
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2.2 Elman neural network 

Elman neural network (ENN) is a type of recur-
rent neural network (RNN) and subcategory of neural 
networks (NNs), which are formed by a significant 
number of neuronal cell models according to certain 
rules (Ren et al., 2018). The ENN possesses an input 
layer, a hidden layer, and an output layer which are 
connected in a feed-forward manner (Cruse, 2006). 
Elman networks often have two layers with one 
feedback of the output layer to the hidden layer en-
trance. This connection helps the network to detect 
and generate momentary and time-dependent patterns. 
The main difference between these networks and or-
dinary two-layer networks is its feedback, which the 
delay in this feedback provides information about the 
previous step in the current step. We have tried a sin-
gle-hidden layer of 20 neurons in the proposed net-
work. The number of epochs and the goal value of 
network training error are set to 2000 and 0.00001, 
respectively. The learning rate value is set to 0.05, the 
maximum value of validation failure is set to 10, and 
the amount of the network training time is set to 100 

seconds. The network training was performed with 
back-propagation algorithm which updates the 
weights and bias of the network based on Leven-
berg-Marquardt optimization method. In hidden and 
output layers are used transfer functions of the hy-
perbolic tangent sigmoid and linear to transmit neu-
rons' information, respectively. The mathematical 
definition of the tansig transfer function expressed in 
Equation 1:  

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) = 2
(1 + 𝑒𝑒−2𝑛𝑛)� − 1       (1) 

Where, n is the number of net input elements. 
The input layer is made up of three quality indi-

cators, namely cane fiber, cane moisture, and Brix. 
Brix is the total soluble solids content in syrup. Usu-
ally, before actual harvesting, twenty sugarcane stalks 
are cut from five locations within a farm representing 
the whole farm’s crop and transferred to the labora-
tory to determine the qualitative properties. The out-
put layer comprises one unit representing recoverable 
sugar percentage as the dependent variable. Figure 2 
illustrates a two-layer ENN. 

 
Figure 2 The layout of the ENN 

The data spanned over the period 2011–2019 
came from the sum of 2671 farms in the studied area 
which was used for four important sugarcane varieties 
CP57-614 (early maturing), SP70-1143 (early matur-
ing), CP69-1062 (medium maturing), and CP48-103 
(late maturing) in five classes, including plant crop 
and first to fourth ratoons. For supervised training of 
the NNs, the input and output samples are divided 
into training (60%), test (20%), and validation (20%) 
sets. In general, the data used in the proposed network 

needed normalization processing (Ren et al., 2018). 
In this model, the input data has been normalized into 
0 and 1. The mathematical equation of normalization 
is expressed as follows: 

X𝑛𝑛 = (𝑥𝑥 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑛𝑛)
(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑛𝑛)�         (2) 

Where, x is the original data; Xn is the normalized 
data; xmin and xmax are the respective values of mini-
mum and maximum original data. MATLAB 
(R2017b) software has been used to design and test 
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the ENN model.  
Two statistical metrics, namely, mean square er-

ror (MSE) and coefficient of determination (R2) are 
used to assess proposed network performance. These 
statistical parameters are presented in Equations 3 and 
4: 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁� × ∑ (𝑦𝑦�𝑚𝑚 − 𝑦𝑦𝑚𝑚)2𝑁𝑁

𝑚𝑚=1        (3) 

𝑅𝑅2 = 1 − ∑ (𝑦𝑦�𝑚𝑚 − 𝑦𝑦𝑚𝑚)2𝑁𝑁
𝑚𝑚=1

∑ (ȳ − 𝑦𝑦𝑚𝑚)2𝑁𝑁
𝑚𝑚=1

�     (4) 

Where, ŷi is the i-th forecasted output, yi is the i-th 
observed data, ȳ is the mean of the observed data, and 
N is the number of observations. The R2 is between 0 
and 1. The “0” value indicates that the variables are 
incapable of predicting the dependent value, while the 
“1” value indicates the perfect prediction of the de-
pendent variable by the independent variables 
(Nagelkerke, 1992). 

2.3 Assumptions 
To optimize the harvesting sequence problem the 

primary assumptions are taken into account, including 
all selected farms should be harvested at a given time 
horizon instance; One working day is equal to 14 
hours, and time to use harvesters should not over-
come the allowable working hours in a day; On the 
same variety, according to cane age, at first younger 
farms (plant crop) should be harvested, then older 
farms which are included first ratoon, second ratoon 
and so on; Crop harvesting priority belongs to the 
early maturing variety with high sugar content and 
then medium maturing and late maturing, respectively; 
For the sugarcane harvest, each farm is assigned only 
to one day and should not be harvested only part of it; 
The mechanical harvester is available when entering 
the farm until the harvesting operation is be complet-
ed at that farm; Weather and external disruptors are 
ignored at a given time horizon. 

2.4 Mathematical model 
The harvesting sequence problem was carried out 

to optimize the harvesting of 62 sugarcane farms 
within two weeks on February 5-19, 2020, when the 
farms’ recoverable sugar percentage has reached 
maximum value according to harvesting age and sug-

arcane variety. The predicted amount of RS % is used 
as the main parameter in the sugarcane harvesting 
sequence problem. To optimize the farms harvesting 
sequence, we applied a bi-objective model that was 
formulated as a hybrid binary programming problem. 
The details of the mathematical model of the present 
problem are presented in Table 1. The model is ex-
pressed in Equations 5 - 10: 

1
( ) , ( 1, )p

lk lki lk
Maximize g y RS Q y k q

=
= ⋅ ⋅ =∑     (5) 

1 1

1
, ,1

( , ) ( / ) ( / )
i i i n n

n
x x x x x xi

Minimize f x y d v d v
+

−

=
= +∑  (6) 

Subject to 
 

∑ 𝑄𝑄𝑙𝑙𝑙𝑙 .𝑦𝑦𝑙𝑙𝑙𝑙 ≤ 𝐶𝐶.𝑇𝑇.𝐻𝐻 , (𝑘𝑘 = 1, … , 𝑞𝑞)𝑝𝑝
𝑙𝑙=1    (7) 

𝑦𝑦𝑙𝑙𝑙𝑙 ∈ {0, 1} , (𝑙𝑙 = 1, … , 𝑝𝑝) , (𝑘𝑘 = 1, … , 𝑞𝑞)   (8) 

𝑥𝑥 ∈ 𝑃𝑃𝑛𝑛 , 𝑤𝑤𝑡𝑡𝑡𝑡ℎ   𝑥𝑥1 = 1          (9) 

𝑣𝑣𝑚𝑚𝑖𝑖 = 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 − �
∑ �∑ 𝑦𝑦𝑙𝑙𝑙𝑙�𝑥𝑥𝑗𝑗�

𝑝𝑝
𝑙𝑙=1 .𝑄𝑄𝑙𝑙𝑙𝑙�𝑚𝑚

𝑗𝑗=1
𝐶𝐶.𝑇𝑇.𝐻𝐻
� � . (𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 −

𝑉𝑉𝑚𝑚𝑚𝑚𝑛𝑛), (𝑘𝑘 = 1, … , 𝑞𝑞)                           (10) 
Where, Equation 5 represents the first objective 

function which maximizes the sugar production (in 
ton) according to harvesting age and sugarcane vari-
ety. Equation 6 implies the second objective function, 
which minimizes the total completion time of sugar-
cane harvesting operations (in hour) at specified 
farms within a given time horizon. Constraint 7 en-
sures that the amount of sugarcane cut must not ex-
ceed the accumulated cutting capacity of harvesters 
on the same day. In Equation 8, ylk(xj) is defined for 
harvesting each farm at the proper age, which returns 
“1” if the farm xj having variety k can be cropped at 
age l and “0” otherwise. Equation 9 refers to all per-
mutations of n farms in a specified variety for finding 
the harvesting sequence, which contains all farms 
exactly once are needed to calculate the second ob-
jective function. Finally, Equation 10 indicates that 
the harvesting operation speed is different, and it de-
pends on sugarcane quantity, cutting capacity, and 
travel speed of the mechanical harvester. 

Where, Equation 5 represents the first objective 
function which maximizes the sugar production (in 
ton) according to harvesting age and sugarcane vari-
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ety. Equation 6 implies the second objective function, 
which minimizes the total completion time of sugar-
cane harvesting operations (in hour) at specified 
farms within a given time horizon. Constraint 7 en-
sures that the amount of sugarcane cut must not ex-
ceed the accumulated cutting capacity of harvesters 
on the same day. In Equation 8, ylk(xj) is defined for 
harvesting each farm at the proper age, which returns 
“1” if the farm xj having variety k can be cropped at 

age l and “0” otherwise. Equation 9 refers to all per-
mutations of n farms in a specified variety for finding 
the harvesting sequence, which contains all farms 
exactly once are needed to calculate the second ob-
jective function. Finally, Equation 10 indicates that 
the harvesting operation speed is different, and it de-
pends on sugarcane quantity, cutting capacity, and 
travel speed of the mechanical harvester. 

Table 1 Indices, parameters, and decision variables in the harvesting sequence problem 

Description Type Notation 
Set of farms Index i={1,…,n} 

Set of harvesting ages Index l={1,…,p} 
Set of sugarcane varieties Index k={1,…,q} 

Recoverable sugar predicted amount (in %) at farm i 
at age l for variety k 

Parameter RSlk 

Amount of sugarcane cut from farm i at age l for 
variety k (in ton) 

Parameter Qlk 

Cutting capacity of harvester (in ton/h) Parameter C 
Working hours of harvesting machine per day (in 

h/day) 
Parameter T 

Total number of harvesters available 1 Parameter H 
The minimum speed of harvester during cutting 

operation (in km h-1) 
Parameter Vmin 

The maximum speed of harvester when moving 
between farms (in km h-1) 

Parameter Vmax 

Euclidean distance (in km) between farms (i,i+1) Parameter dxi,xi+1  
Decision vector: the farm is located in position i. Real variable xi 
Decision vector: if sugarcane variety k, at age l is 

proper for harvesting to take the value 1 and 0 
otherwise. 

Binary variable ylk 

Decision variable: if farm xj having variety k be 
harvested at the age l to take the value 1 and 0 

otherwise. 
Binary variable ylk(xj) 

Note: 1 The company has 24 active sugarcane harvesters of the Austoft 7000 series. 

2.5 NSGA‑II methodology 
The non-dominated sorting genetic algorithm 

(NSGA) was presented by Srinivas and Deb (1994) in 
1994. The NSGA has become a multi-objective algo-
rithm by adding two essential operators to the simple 
genetic algorithm, which offers a set of the best solu-
tions, known as the Pareto-optimal front, instead of 
finding the best solution. This algorithm is an effi-
cient method for solving problems with several ob-
jective functions, but in order to select non-dominated 
individuals and computational complexity, it has 
some weaknesses. Hence, the second version of the 
NSGA algorithm called NSGA-II was introduced by 
Deb et al. (2000) in 2000. Generally, the steps of this 
algorithm include: (1) generating the initial popula-

tion based on objectives and constraints of the prob-
lem, (2) evaluating the generated population accord-
ing to the objective functions, (3) applying the 
non-dominated sorting method, (4) calculating the 
control parameter called crowding distance, (5) se-
lecting the parent population for reproduction, (6) 
performing the recombination and mutation operators. 
Diagram of the NSGA-II is illustrated in Figure 3 
(Left-side). The Pt and Qt are parent and offspring 
populations at generation t, respectively. Both popu-
lations merge into a larger population called Rt with 
size 2N. The F1 is a set of the best non-dominated 
solutions from Rt. The F2 is the second set of the best 
non-dominated solutions and so forth. As seen in this 
figure, the number of Pt+1 from Pt ∪ Qt members be 
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selected based on their ranking, and the rest of them 
be removed to keep the number of the original popu-
lation steady. The NSGA-II uses crowding distance to 
obtain a more uniform Pareto front than other algo-
rithms and estimate the density of solutions enclosing 
a special solution i. The value of crowding distance 
for the solution Ij is calculated as follows: 

d𝐼𝐼𝑗𝑗𝑚𝑚 = d𝐼𝐼𝑗𝑗𝑚𝑚 + (𝑓𝑓𝑚𝑚
(𝐼𝐼𝑗𝑗+1
𝑚𝑚 )

− 𝑓𝑓𝑚𝑚
(𝐼𝐼𝑗𝑗−1
𝑚𝑚 )

)
(𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛)
�  (11) 

Where, firstly, a solution is specified (i), then the 
difference in the objective function value of the next 
solution (i+1) from the previous solution (i-1) is di-
vided by the difference of the maximum (𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) and 

minimum (𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛) values of the objective function 

(Figure 3 (right-side)); this obtained ratio indicates 

the crowding distance (di). The m and j are the num-
ber of objective functions and objective function in-
dex, respectively (Deb, 2001). 

 
Figure 3 Schema of the NSGA-II method (left) and the crowding distance calculation (right) (Deb, 2001) 

First, the solutions should be sorted using the rank 
and then by the crowding distance. Afterward, two 
parents are selected (Psychas et al., 2015). The parent 
solution is randomly selected in two ways. First, if the 
ranks are unequal, the solution is chosen that has a 
lower rank (ri<rj), then if the ranks are equal, the so-
lution is chosen that has a greater crowding distance 
(di>dj). The adjustable parameters of population size, 
number of generations, recombination and mutation 
probability, and mutation rate are tuned at 60, 100, 
0.7, 0.3, and 0.02, respectively, to design the 
NSGA-II. This algorithm uses the binary tournament 
selection method, single-point recombination, and 
swap mutation operators. 
2.6 SPEA2 methodology 

The strength pareto evolutionary algorithm 
(SPEA) was introduced by Zitzler and Thiele (1999) 
in 1999. There is also a revised version of SPEA 
called SPEA2 (Zitzler et al., 2001). The main differ-
ence between SPEA and SPEA2 is population selec-
tion, which in SPEA is the choice based on individu-
als, while in SPEA2 the choice is based on region 
crowdedness. Basically, in SPEA2, there is a criterion 

to control the order of solutions, which is done by 
creating hyper-rectangle and hyper-grid in the objec-
tive function space. In the SPEA2 structure, a new 
approach is used to define fitness in which both the 
set of dominated solutions and non-dominated solu-
tions have an effect, which implements the secondary 
factor, namely, the nearest neighbor approach to con-
trol the distribution and density estimation. In fact, it 
is a data distribution-based approach to remove addi-
tional solutions. The main loop of SPEA2 includes 
the number of populations, archive size, and the 
maximum number of generations as input and the set 
of non-dominated solutions as the output. Methods of 
the binary tournament, single-point, and normal dis-
tribution are used for selection, recombination, and 
mutation operators, respectively. The parameters of 
population size, number of generations, archive size, 
k-nearest neighbors, and recombination and mutation 
probability are adjusted 60, 100, 40, 10, 0.7, and 0.3, 
respectively, to design SPEA2. 

2.7 Performance metrics 
As regards, meta-heuristic approaches are ap-
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proximate algorithms to solve optimization problems 
and have a random nature. Solving a problem in dif-
ferent ways may lead to various solutions, so evalu-
ating algorithms and selecting the appropriate algo-
rithm using various metrics are considered by re-
searchers. But the convergence of Pareto solutions 
and providing density and diversity among the set of 
solutions are two distinct goals and somewhat con-
flicting in multi-objective evolutionary algorithms 
(Javid, 2021). Hence, there is no absolute criterion 
that measures the performance of algorithms. Thus, in 
this study, the following five metrics have been in-
troduced as metrics of algorithms’ performance eval-
uation. These metrics consist of the number of pareto 
solutions (NOP), generational distance (GD), spacing 
(S), maximum spread (MS), and the time index for 
running time of algorithms. 

2.7.1 Number of pareto solutions metric 
The NOP counts the number of non-dominated 

solutions by the algorithm, and the higher the number, 
the better the algorithm’s performance. 

2.7.2 Generational distance metric 
The GD metric finds a mean distance of the solu-

tions of Q from P*. It is assumed that P* is a known 
Pareto-optimal set (Van Veldhuizen, 1999; Gao et al., 
2010). The GD metric can be calculated by Equation 
12: 

𝐺𝐺𝐺𝐺 =
�∑ 𝑑𝑑𝑚𝑚2

|𝑄𝑄|
𝑚𝑚=1

|𝑄𝑄|
�                (12) 

For two objective problems, the parameter di is 
the minimum Euclidean distance between the solution 
i∈Q and the nearest member of P* (Gao et al., 2010), 
as follows: 

𝑑𝑑𝑚𝑚 = min𝑙𝑙=1
|𝑃𝑃∗| �∑ �𝑓𝑓𝑚𝑚𝑚𝑚 − 𝑓𝑓𝑚𝑚

∗(𝑙𝑙)�
2

𝑀𝑀
𝑚𝑚=1    (13) 

Where, 𝑓𝑓𝑚𝑚
∗(𝑙𝑙) is the value of m-th objective func-

tion of the k-th member of P* (Gao et al., 2010). In 
general, an algorithm with a smaller GD value is bet-
ter. 

2.7.3 Spacing metric 
Schott (1995) proposed a metric for calculating 

the relative distance between successive points in set 
of the Pareto solutions (Gao et al., 2010; Schott, 1995) 
as follows: 

𝑀𝑀 = �1
|𝑄𝑄|� × �(𝑑𝑑𝑚𝑚 − �̅�𝑑)2

|𝑄𝑄|

𝑚𝑚=1

 

𝑑𝑑𝑚𝑚 = 𝑚𝑚𝑡𝑡𝑡𝑡𝑙𝑙∈𝑄𝑄⋀𝑙𝑙≠𝑚𝑚 ��𝑓𝑓𝑚𝑚𝑚𝑚 − 𝑓𝑓𝑚𝑚𝑙𝑙�
𝑀𝑀

𝑚𝑚=1

 

�̅�𝑑 = ∑ 𝑑𝑑𝑚𝑚
|𝑄𝑄|
𝑚𝑚=1

|𝑄𝑄|�           (14) 

Where, di is the value of the minimum sum of the 
absolute difference between i-th solution and other 
solutions of the objective function in set of the Pareto 

solutions. The �̅�𝑑 is the average value of the parame-
ter di. Thus, an algorithm with a smaller spacing (S) is 
better efficient. 

2.7.4 Maximum spread metric 
The MS metric measures the diagonal length of 

the hyper-box made with the values of the furthest 
points of the objective function in set of the Pareto 
solutions (Zitzler, 1999; Sankararao and Gupta, 2006), 
as follows: 

𝑀𝑀𝑀𝑀 = �∑ (𝑚𝑚𝑡𝑡𝑥𝑥𝑚𝑚=1:|𝑄𝑄|𝑓𝑓𝑚𝑚𝑚𝑚 − 𝑚𝑚𝑡𝑡𝑡𝑡𝑚𝑚=1:|𝑄𝑄|𝑓𝑓𝑚𝑚𝑚𝑚 )2𝑀𝑀
𝑚𝑚=1   (15) 

The higher MS shows the larger area of the true 
Pareto front, which is covered by the obtained ap-
proximation front (Yen and He, 2014). 

2.7.5 Algorithm running time metric 
Running time is one of the most important metrics 

in evaluating algorithm efficiency. An algorithm that 
achieves the optimal solution in less time is more ef-
ficient (Salmasnia et al., 2018). To evaluate proposed 
algorithms' performance, we used statistical testing 
called independent sample t-test, which is done using 
statistical software of IBM SPSS 24. 

3 Results and discussion 

Figure 4 can be seen the network training process. 
This figure shows that the MSE diagram has the same 
behavior in all three data sets of the network. The best 
network’s performance has been obtained at repeti-
tion 4 with error values 0.0025, 0.0023, and 0.0047 
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for training, validation, and test data sets, respectively. 
Besides, the network training has been stopped after 

ten consecutive increases in validation error and 
against 14 epochs. 

 

Figure 4 The training process of the designed ENN 
Figure 5 (left side) shows the regression scatter 

plot in 3-20-1 topology for the network test data set. 
The network output, which is the percentage of re-
coverable sugar, is well matched on the target vector. 
The regression value is equal to 0.9995 in test data set 
which shows a desirable fitness between the actual 
data and predicted values by the network. The ENN 
model can well predict the output value with its target. 
Figure 5 (right side) illustrates that the predicted val-
ue of RS % for all three data sets of the designed 
network is approximately 10.6%. In addition, the 
minimum value is about 8%, and the maximum value 
is about 12.8%. Besides, results showed that the esti-
mated values of RS % for the variety CP57-614 were 
10.6% (PC), 10.7% (R01), 11% (R02), 10.7% (R03) 
and 10.4% (R04). For the variety SP70-1143, the 
values were 10% (PC), 10.3% (R01), 10.6% (R02), 
10.8% (R03) and 10.9% (R04). Moreover, for the 
variety CP69-1062, recoverable sugar respective val-
ues were 10.2% (PC), 10.9% (R01), 10.5% (R02), 
10.5% (R03) and 10.4% (R04). In relation to 
CP48-103, the obtained values were 10.4% (PC), 10.9% 

(R01), 10.8% (R02), 10.7% (R03) and 10.6% (R04). 
PC is termed as a plant crop that harvested for the 
first time; R01 is termed a crop harvested for the 
second time and so on. 

Figure 6 demonstrates the optimal harvest routes 
of the selected farms in terms of the highest RS% in 
each sugarcane variety. The traveled distance be-
tween farms with the same variety in the actual har-
vesting sequence was equal to 43.23 km (CP57-614), 
55.08 km (SP70-1143), 165.54 km (CP69-1062), and 
53.15 km (CP48-103). While using the proposed op-
timization model, the traveled distance values for the 
above four varieties will be 23.21, 25.39, 49.86, and 
28.10 km, respectively. This result shows, on average, 
a 60% reduction (47.60 km) in the traveled distance 
by mechanical harvesters. As seen in Figure 6, each 
farm has been harvested only once and completely at 
a 14-day time horizon instance. In this figure, “R” is 
an abbreviation of “Right” which means the first 
production, and “L” is an abbreviation of “Left” 
which means the second production that used to cre-
ate the farm’s ID. 
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Figure 5 Showing of scatter plot (left) and box plot (right) of 

regression and predicted values of RS% by the ENN 

Table 2 shows the optimal harvesting age in vari-
ous crop classes of sugarcane varieties. As shown in 
this table, the proper age to harvest the variety 
CP57-614 in plant crop class is 14 months after 
planting which has the highest RS%. Then for the 
first to third ratoons is 11 months, and the fourth ra-
toon is 12 months after the previous harvest date. Af-
terward, in the variety SP70-1143, the proper age to 
harvest the farms is 15 months in plant crop class, and 
also ideal age for respective ratoon crops is 13 and 12 
months. Also, for two varieties CP69-1062 and 
CP48-103, the proper harvesting age is obtained at 12 
months in their different crop classes. Khan et al. 
(2017) found that the highest RS% in three genotypes 
early (CP69 1059), mid-early (B 4906, B 60267), and 
medium (B59 212) maturity were seen at 12 months 

of age. Furthermore, Hagos et al. (2014) found that 
the highest amount of sugar yield was obtained at 
harvest ages of 12 and 14 months for mid, mid-late 
and late-maturing cane varieties. However, the opti-
mal sugar yield at the age of 12 months had the high-
est return rate. 

Figure 7 illustrates the Pareto fronts of the objec-
tive functions in the present problem using NSGA-II 
and SPEA2 algorithms. Since these objectives are 
conflicting, thus improvement of one objective func-
tion comes at the expense of another objective func-
tion. According to this figure, the dominated solutions 
space of the problem is located in the down part of 
the Pareto fronts; and the ideal point of the 
non-dominated solutions is located in the top-left 
corner of the Pareto fronts, too. Both algorithms have 
performed well in terms of conflicting objectives to 
optimize the harvesting sequence problem. These 
objectives included decreasing the completion time of 
harvesting operations due to a reduction in the trav-
eled distance between sugarcane farms for mechani-
cal harvesters and increasing the production of white 
sugar within a given time horizon. As seen in Figure 
7, the NSGA-II algorithm is more efficient than the 
SPEA2 algorithm in terms of improving convergence 
towards true Pareto solutions, uniform distribution of 
solutions on the Pareto front, and producing more 
non-dominated solutions. The amount of sugar pro-
duced in the variety CP69-1062 was obtained 3997.6 
tons by both algorithms. This variety possesses area 
coverage of 45.3% in the Debal Khazaei 
Agro-Industry Company. Moreover, variety 
CP48-103 (equal to 3718.6 tons by NSGA-II and 
3670.9 tons by SPEA2) with 19.5% area coverage 
and variety CP57-614 (equal to 3620.9 tons by 
NSGA-II and 3540.4 tons by SPEA2) with 13.4% 
area coverage have had the maximum amount of sug-
ar production. The last two varieties have the highest 
sugar yield compared to their low area coverage. Fi-
nally, the sugar production quantity in variety 
SP70-1143 with 19.1% area coverage obtained 
2969.2, and 2415.3 tons using NSGA-II and SPEA2, 
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respectively. Moreover, by NSGA-II, the shortest 
completion time of harvesting operations lasted 6, 

10.41, 64.75, and 7 hours for the above four varieties, 
which equals 6.3 working days. 

 
     (a) CP57-614                                     (b) SP70-1143 

 
    (c) CP69-1062                                           (d) CP48-103 
Figure 6 The optimal harvesting routes and obtained distances for the studied varieties  

Table 2 The proper harvesting age according to the highest RS% in each sugarcane variety and crop class 

 CP57-614 SP70-1143 
Harvesting age 

(months) 
PC R01 R02 R03 R04 PC R01 R02 R03 R04 

11  10.8 10.3 10.4   10.3 10.3 10.5 10.1 
12  10.7 10.3 10 10.2  10.2 10.4 10.8 10.7 
13  10.1     10.7 10.7   
14 10.6          
15 10.4     9.9     
16      9.7     
17      9.4     
18           

 CP69-1062 CP48-103 

Harvesting age 
(months) 

PC R01 R02 R03 R04 PC R01 R02 R03 R04 

11  10.6 10.6 10.6 10.6  10.3 10.3 10.4  
12  10.9 10.8 10.7 11.1  10.7 10.9 10.6 10.3 
13       10.5  10.5 10.5 
14 10.1          
15 10.5          
16           
17 10.3     10.3     
18 9.7     10     
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Figure 7 Pareto solutions of NSGA-II and SPEA2 for the studied varieties 
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Figure 8 Algorithms comparison in terms of the proposed metrics 

Table 3 shows the results of the bi-objective 
problem for variety CP69-1062 having 11 and 18 
solutions by proposed algorithms. This table illus-
trates non-dominated solutions belonging to the Pa-
reto rank “1”. For statistical comparison, both algo-
rithms were tested 20 times and their results can be 
seen in Figure 8. 

Figure 8 shows that the NOP by NSGA-II is 
higher than SPEA2, so this algorithm is more effi-
cient. Also, this figure demonstrates that the obtained 
values of the GD by NSGA-II are less than SPEA2; 
the GD metric is used for convergence measurement 
towards the true Pareto front. As shown in Figure 8, 
the obtained values of the MS by NSGA-II are 
slightly more, but not able to show a significantly 

better result than SPEA2. Finally, this figure shows 
that the spacing (S) values by NSGA-II are less than 
SPEA2; accordingly, this algorithm produces a better 
result than another. This metric can create a uniform 
distribution between Pareto solutions. In addition, the 
running time on average for the NSGA-II was 16.66 
seconds and for the SPEA2 was 23.94 seconds. Being 
less this metric is important for decision-makers. 

Table 4 shows the results of sensitivity analysis of 
the proposed algorithms’ performance. It is assumed 
that the results compared to the T-test have a normal 
distribution. In Table 4, there are two P-values which 
the first one implies homogeneity of variances and 
the second one indicates the difference between vari-
ances. According to Table 4, if Levene's test shows 
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that two algorithms have homogeneous variance, we 
can use the first row of the results. But if Levene's 
test rejects the homogeneity of variance hypothesis, 
the second row of results is used. According to the 
Sig column of Table 4, since the significance values 
of all metrics except running time metric are more 
than our considered significant level (α=0.05), the 
hypothesis about equality of variances of the two al-
gorithms is not rejected. It is assumed that two algo-
rithms have a significant difference in performance. 
As seen from Table 4, the P-values of the spacing (S), 
GD, NOP, and running time metrics are less than sig-
nificant level, so the null hypothesis (i.e., equality of 
means) can be rejected. Therefore, it can be conclud-

ed that the two algorithms are different. Then by test-
ing the average of metrics which is presented in Mean 
column of Table 4, it can be expressed that NSGA-II 
performs better than SPEA2 in terms of GD, spacing 
(S), NOP, and the running time metrics. Regarding 
the MS metric, the null hypothesis cannot be rejected, 
so two algorithms have been aligned in this case. 
However, NSGA-II performs slightly better com-
pared to SPEA2. This result conforms to Bandyo-
padhyay and Bhattacharya (2013), which used 
NSGA-II for a parallel machine scheduling problem. 
Also, it agrees with Zhang et al. (2019), which opti-
mized routing and sequencing synchronously for job 
shop scheduling problems in dynamic environment. 

Table 3 The Pareto solutions obtained for variety CP69-1062 by NSGA-II and SPEA2 
 NSGA-II algorithm SPEA2 algorithm 

Solution no. 
Sugar 

production 
quantity (tons) 

Completion time 
of harvesting 

operations (hours) 
Solution no. 

Sugar 
production 

quantity (tons) 

Completion time 
of harvesting 

operations (hours) 
Solution no. 

Sugar 
production 

quantity (tons) 

Completion time 
of harvesting 

operations (hours) 
1 55.15 64.75 12 257.01 68.73 1 150.35 62.24 
2 3997.57 117.72 13 3412.60 96.77 2 1273.08 62.50 
3 3890.15 106.03 14 2810.03 88.73 3 3997.57 109.78 
4 1548.15 73.10 15 2973.33 91.58 4 1715.29 70.01 
5 2632.09 85.47 16 63.60 68.57 5 1899.26 71.39 
6 752.64 69.50 17 2881.35 90.51 6 2264.02 77.28 
7 3413.95 100.65 18 2199.88 79.30 7 3306.53 96.65 
8 2076.64 77.81 - - - 8 2646.18 86.58 
9 1308.85 70.59 - - - 9 2680.31 89.73 

10 2264.02 79.67 - - - 10 2389.70 83.60 
11 3186.11 94.63 - - - 11 2813.95 95.13 

Table 4 Statistical assumption test results for comparing algorithms 

  
Levene's test 
for Equality 
of Variances 

T-test for Equality of Means    

Metric Assumption Sig. P-value 
95% Confidence Interval of the 

Difference Algorithm N Mean 
Lower Upper 

S 
Variances are equal 0.275 0.008 -81.18 -13.19 NSGA-II 20 138.4 

Variances are unequal  0.008 -81.33 -13.04 SPEA2 20 185.6 

GD 
Variances are equal 0.738 0.001 -35.02 -10.32 NSGA-II 20 61.4 

Variances are unequal  0.001 -35.02 -10.31 SPEA2 20 84.1 

MS 
Variances are equal 0.353 0.471 -730.32 1550.4 NSGA-II 20 11082 

Variances are unequal  0.471 -731.03 1551.1 SPEA2 20 10672 

NOP 
Variances are equal 0.109 0.001 0.90 3.39 NSGA-II 20 14.6 

Variances are unequal  0.001 0.90 3.40 SPEA2 20 11.4 

Time 
Variances are equal 0.048 0.000 -7.86 -6.72 NSGA-II 20 16.7 

Variances are unequal  0.000 -7.86 -6.72 SPEA2 20 23.9 

4 Conclusions 

To optimize the sugarcane farms harvesting se-
quence, we needed to determine the proper harvesting 
age for different sugarcane varieties and find the op-
timal harvest routes for mechanical harvesters. Sub-

sequently, the model was solved by two mul-
ti-objective algorithms, called NSGA-II and SPEA2. 
The algorithms’ performance was tested in terms of 
the studied metrics. Results showed that the features 
of NSGA-II were more than SPEA2. These features 
include the highest NOP and the lowest values of 



December, 2024      Optimization of sequence-dependent harvesting time at sugarcane farms           Vol. 26, No.4     232 

spacing (S), GD, and running time. It can be ex-
pressed that NSGA-II efficiency was proved for 62 
large-scale sugarcane farms in the present problem. 
Moreover, results indicated that the maximum 
amount of sugar production according to area cover-
age belonged to variety CP57-614, which is the type 
of early maturing variety. The shortest time lasted 
approximately 88 hours to perform harvesting opera-
tions. The proper age to harvest the ratoon crops in 
variety CP57-614 was 11 months when recoverable 
sugar percent reaches its maximum value. Moreover, 
for ratoon crops of variety SP70-1143, it was 12-13 
months. And finally, for ratoon crops in varieties 
CP69-1062 and CP48-103, it was 12 months. 
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