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Abstract: The study aimed to model the drying kinetics (drying time (DT), effective moisture diffusivity (Deff), and specific energy 

consumption (SEC) of tomato slices dry with a convective hot-air dryer using artificial neural networks (ANN) and neuro-fuzzy 

inference system (ANFIS).  The tomatoes were pretreated with water blanching (WBP), ascorbic acid (AAP) and sodium 

metabisulphite (SBP); sliced into 4, 6, and 8 mm thickness and dried at 40oC, 50oC, and 60oC air temperatures.  The experimental 

drying data were fitted to ANN and ANFIS models, while the best topology was obtained.  The model's predictive performance was 

determined using the coefficient of determination (R2), means squared error (MSE), root means squared error (RMSE), and mean 

absolute error (MAE) between predicted and experimental results.  The DT ranged between 11.5 and 22.5 h, Deff (0.98 × 10-10 to 6.36 

× 10-10 m2 s-1) and SEC (0.6247 to 1.9514 kWh kg-1). Higher R2 (0.9056–0.9834) with lower MSE (0.0014–2.2044), RMSE (0.00035 

– 1.49 × 10-13) and MAE (0.00026 – 1.08 × 10-13) for ANFIS compared to ANN showed that ANFIS methodology could precisely 

predict experimental data.  This study found that ANFIS is highly accurate in predicting the drying kinetic, thereby demonstrating its 

ability to find a meaningful relationship between drying kinetic and drying conditions.  Therefore, the model developed in this study 

can be a valuable tool in accurately predicting drying kinetic in dried tomatoes.    
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
1 Introduction  

Tomatoes are a seasonal crop that provides 

consumers with many health benefits and nutrients (Oke 
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et al., 2017a). They are produced in surplus amounts 

during harvesting, but their physiological nature, 

including high moisture content, increased respiration 

rate, and soft texture, make them more vulnerable to 

spoilage and challenging to transport. Since tomatoes are 

highly perishable and seasonal, drying can be used to 

preserve them. At the same time, the acceptability of the 

final product depends on the method and processing 

variables used for the drying (Hussein et al., 2016a). 
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Many studies have been conducted in the field of tomato 

drying. However, the complex nature of the drying 

system led to the use of drying mathematical models in 

estimating the drying kinetics, the behavior, and the 

energy needed to dry tomatoes. Many mathematical 

models, empirical and semi-empirical, have been 

proposed to estimate the drying characteristics of 

tomatoes. But these models are generally solutions of 

simultaneous heat and mass transfer differential 

equations, and the final result may be very complicated 

and difficult to use in actual drying systems (Oke et al., 

2017b). Therefore, it is inevitable to consider different 

models like artificial neural networks (ANN) and 

adaptive neuro-fuzzy inference system (ANFIS) for 

precise simulation of the drying process.  

As a data processing system inspired by biological 

neural systems, ANN is a generalized mathematical 

model for human perception and an adequate tool for 

solving complex and nonlinear problems like drying 

systems (Oke et al., 2017b). ANN has been used to 

model the complex nonlinear relationships that occur in 

the drying process due to its high learning ability and 

capability to identify a system's input and output. ANN 

also permits adequate and precise drying process control 

in industrial applications. ANN has advantages over 

mathematical modeling, including its ability to handle 

large amounts of noisy data from dynamic and nonlinear 

systems, especially when the underlying physical 

relationship is not fully understood (Aghbashlo et al., 

2015). An ANN model was created by Nadian et al. 

(2015) to forecast the color changes that occur when 

apple slices are dried using hot air. The ANN topology 

was shown to have a good ability to predict the network 

outputs with a minor error because there was a good 

agreement between experimental and estimated values. 

In order to predict changes in the moisture ratio of green 

bell peppers during hot air fluidized bed drying, Jafari et 

al. (2016) found that the ANN model was more effective 

and precise than the mathematical modeling method. The 

moisture ratio and color parameters of Ginkgo Biloba 

seeds during the microwave drying process were 

predicted by Bai et al. (2018) using ANN. The 

experimental data were successfully predicted with high 

accuracy using the ANN methodology with a high 

correlation coefficient (0.9056-0.9834) and a small mean 

square error (0.0014-2.2044). ANN was used to model 

the bael pulp's drying kinetics during microwave vacuum 

drying (Dash et al., 2020). The ANN that used a 3-6-1 

topology, a tansig transfer function, and the Levenberg-

Marquardt training algorithm performed the best in terms 

of minimum mean square error. By using ANN, 

Choudhary et al. (2022) investigated the simulation and 

modeling aspects of the hot air-drying kinetics of ginger. 

The 3-5-1 ANN architecture was selected as the top 

candidate for simulating the drying behavior of ginger 

slices. 

ANFIS is an integrated modeling technique that 

combines the strength of ANN and fuzzy inference 

system (FIS) (Oke et al., 2018a). ANFIS employed the 

benefits from both methods to solve complex and 

nonlinear problems and achieve optimum results. Many 

researchers have applied the ANFIS method to explain 

the drying properties of many agricultural products. 

Bagheri et al. (2015) reported the ability of ANFIS 

models to predict the energy efficiency of a forced-

convection solar dryer adequately. This study confirmed 

the ability of the developed model to determine and 

predict the drying behavior of leafy vegetables. Al-

Mahasneh et al. (2016) compared ANFIS modeling with 

the conventional thin-layer drying models to predict 

roasted green wheat's moisture ratio in an open sun 

drying. The ANFIS model showed superior performance 

in comparison with two-term exponential mode with R
2
 = 

0.999, RMSE = 1.2 × 10
-6

 and R
2
 = 0.988, RMSE = 

0.038, respectively. The application of ANFIS and ANN 

models in predicting moisture diffusivity and specific 

energy consumption (SEC) of potato, garlic, and 

cantaloupe drying under a convective hot-air drier was 

compared by Kaveh et al. (2018); ANFIS had the best 

prediction ability. 
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Notwithstanding the good reports of ANN and 

ANFIS in modeling the drying characteristics of a 

various agricultural materials, there was a dearth of 

information on the ANN and ANFIS models to predict 

the drying kinetic of dried tomatoes. The study, 

therefore, aims to develop ANN and ANFIS models to 

predict the drying kinetics of tomatoes during drying in a 

convective hot-air dryer. 

2 Materials and methods 

2.1 Materials 

The UTC varieties of tomatoes used in this study 

were obtained from the Teaching and Research Farm of 

the Modibbo Adama University of Technology, Yola, 

Adamawa State, Nigeria (latitude 9ᵒ 13′ – 9ᵒ 37′ N, 

longitude 12ᵒ 16′ – 12ᵒ 42′ E). The appearance, firmness, 

and size uniformity served as the basis for selection from 

the lot.  

2.2 Methods 

2.2.1 Sample preparation 

Tomatoes were thoroughly cleaned by washing them 

under tap water. After that, it was rinsed with distilled 

water and wiped with a tissue towel, as described by 

Hussein et al. (2016b). Twelve (12) kg of tomatoes were 

subjected to each water blanching pretreatment (WBP) 

for 1 minute, 5% w/v of ascorbic acid pretreatment 

(AAP), and 5% w/v of sodium metabisulphite 

pretreatment (SMP) for 5 minutes. The ratio of 1:10 

(w/v) for tomatoes to dipping solution, as used by 

Hussein et al. (2021), was adopted. After the 

pretreatment process, each portion was sliced into 4, 6, 

and 8 mm thick, respectively, with the aid of a Tomato 

Slicer (NEMCO 56610-13/16” Roma).  

2.2.2 Taguchi experimental plan and drying procedure  

The Taguchi experimental plan was designed with 

Minitab 16 (Minitab, Inc. Coventry, UK) software for 

three factors at three levels, having an array of L9 (3×3). 

The outline that gave nine experimental runs (Table 1) 

was obtained and used to evaluate the responses of the 

drying kinetics with the interactions between 

pretreatment, slice thickness, and drying temperature. 

The drying was carried out in a convective hot-air dryer 

(Model: TO008GA-34, AKAI-Tokoyo, Japan) following 

the procedure used by Hussein et al. (2021). The drying 

time, moisture ratio, and effective moisture diffusivities 

of the dried tomato slice were evaluated as described by 

Hussein et al. (2021). The SEC consumed for drying a 

kilogram of tomato slices is calculated using Equation 1 

below, as described by Motevali et al. (2011) and Samadi 

and Loghmanieh (2013). 

Table 1 Outline of Taguchi experimental design L9 (3×3) for conventional hot-air oven drying 

Experimental runs 
Independent variables in coded form 

Experimental variables in their natural 

units 

A B C Pretreatment Thickness (mm) Temperature (
o
C) 

1 1.0 1.0 1.0 WBP 4.0 40.0 

2 1.0 2.0 2.0 WBP 6.0 50.0 

3 1.0 3.0 3.0 WBP 8.0 60.0 

4 2.0 1.0 2.0 AAP 4.0 50.0 

5 2.0 2.0 3.0 AAP 6.0 60.0 

6 2.0 3.0 1.0 AAP 8.0 40.0 

7 3.0 1.0 3.0 SMP 4.0 60.0 

8 3.0 2.0 1.0 SMP 6.0 40.0 

9 3.0 3.0 2.0 SMP 8.0 50.0 

Note: WBP = Water blanched pretreated sample 

AAP = Ascorbic acid pretreated sample 

SMP = Sodium metabisulphite pretreated sample. 
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             (1) 

Where, 

SEC = specific energy consumption (kWh kg
-1

 water),  

ρa = density of air at a temperature (kgm
-3

) 

A = the cross-sectional area of the channel that 

samples are placed (m
2
) 

v = the air velocity (ms
-1

) 

Cpa = heat capacity of air at constant pressure (kJkg
-

1
°C

-1
), 

t = total drying time (h),  

Mw = mass of water evaporated (kg) 

∆T = change in temperature [i.e. between inlet and 

ambient air temperature] (ᵒC). 

2.2.3 ANN modelling design 

The Neural Network Toolbox 8.0 of MATLAB 

software was used for the modeling. In designing the 

ANN, three significant stages are involved. The 

organization of the initial model to be developed is the 

first stage. In this first stage, the input, hidden, and 

output neurons, the initial numbers of hidden layers, and 

the learning methods were selected based trial and error 

method reported by Witek-Krowiak et al. (2014). The 

second stage was optimizing the ANN model's initial 

values to produce stable and accurate outputs. Thus, the 

most widely used ANN learning algorithm, back-

propagation, which attempts to minimize the error at 

each iteration reported by Turan et al. (2011), was used. 

The last stage was evaluating the prediction performance 

of the optimized ANN model. This was done by 

comparing the predicted values with the numerically 

simulated ones. This work’s input variable is; 

pretreatment, drying air temperature, and slice thickness. 

The corresponding outputs were drying time, effective 

moisture diffusivities, and SEC, as shown in Figure 1. 

 

Figure 1 Schematic diagram developed ANN model 

The experimental data obtained were divided 

randomly into three groups, 70% for training, 15% for 

validation, and the residual 15% for the testing set. The 

training data was used to train the neural network's 

weights to produce the desired outcome. The validation 

data find the best ANN configuration, training 

parameters, and monitor the network error during the 

training process. The testing data sets confirmed the 

actual predictive power of the developed neural network. 

The regression plots of the validation data set and that 
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comparing the ANN's output and its target values were 

used as the stopping criterion for the training process. 

The input and output variables or responses were 

normalized between 0 and 1 to achieve fast convergence 

to minimal mean square error. The normalization was 

carried out using Equation 2 as described by Abdalla et 

al. (2014). 

   
       

         
                   (2) 

where;   ,  𝑎,   in, and   ax are normalized, 

actual, minimum, and maximum values, respectively. 

The network predicted values, which were in the 

range of (0 – 1), were then transformed into real-world 

values using Equation 3 as described by Abdalla et al. 

(2014). 

                               (3) 

2.2.4 ANFIS modelling design 

The Takagi–Sugeno ANFIS in MATLAB (The 

MathWorks Inc., Natick, Massachusetts, USA) software 

was used to develop the model for the drying 

characteristics and changes in the qualities of dried 

tomatoes. The ‘exhsrch’ function in the MATLAB 

software environment was used for an exhaustive search 

within the available inputs to select the most influential 

inputs that affect the drying kinetics. Exhaustive search is 

a combinatorial function that determines the required 

number of inputs combination that has an optimal effect 

on the output performance (Aremu et al., 2014). The 

ANFIS model was developed by combining the least 

square method and back-propagation, as Oke et al. 

(2018b) described. The back-propagation was used for 

the input membership function parameters, while least-

squares estimation was used for the output membership 

function parameters. The developed model was 

optimized with different types and numbers of 

membership functions to detect the optimized functions 

and their quantities. The effectiveness of ANFIS models 

in prediction depends on the number and type of 

membership functions and the number of training epochs  

(Tao et al., 2016).  

Therefore, in the ANFIS model’s construction, 2 

membership functions were assigned to each input 

variable to reduce divergence between experimental and 

predicted results. Three input parameters applied were 

pretreatment, slice thickness, and drying temperature, 

while the drying kinetics were set as output parameters. 

The output parameters were changing, while the input 

parameters were kept constant. Figure 2 shows the 

ANFIS model structure using the set parameters. The 

ANFIS modeling was launched, and the input and output 

data points were set. The data order was first randomized 

and divided into three groups: 70% for training, 15% for 

validating, while the residual 15% was used for testing. 

The triangular, trapezoidal, and Gaussian membership 

functions were used in line with the model's bivariate 

input alongside 2 membership functions to detect the 

optimized model, as Farzaneh et al. (2017) and Tao et al. 

(2016) described. A preliminary simulation study was 

first conducted to obtain the optimum epoch needed for 

the ANFIS setting, and 500 to 1000 epoch values were 

chosen as the best epoch value, thus used for the 

subsequent simulation. 

2.2.5 Model performance  

The performance and effectiveness of the models 

were calculated using the following criteria, namely; 

correlation coefficient (R), coefficient of determination 

(R
2
), mean square error (MSE), root mean square error 

(RMSE), and mean absolute error (MAE) which are 

defined in Equations 4, 5, 6, 7 and 8. R and R
2
 inform the 

correctness of model fitting. R and R
2
 closer to 1 are 

counted as reliable. The values of MSE and RMSE 

indicate the difference between the predicted and 

experimental values. The network was considered 

satisfactory when the values of MSE and RMSE were 

closer to 0. MAE indicates the predictions' closeness to 

the final outcomes (Nazghelichi et al., 2011; Hussein et 

al., 2022).  
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Figure 2 Schematic diagram developed for ANFIS model 
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Where, 

n = the number of experiments used for developing 

the model, 

yo = the predicted value of the model, 

yo
1
 = the average value of the predicted model, 

ye = the actual or experimental value and  

ye
1
 = the average of actual values.  

3 Results and discussion  

3.1 Drying kinetics of the pretreated tomato slices 

The total drying time required to dry the pretreated 

tomato slice to the equilibrium moisture content of 

15.67% to 0.12% (dry basis) ranged from 11.5 to 22.5 h, 

with the experimental run (WBP, 4 mm, 40
o
C) having 

the highest value. In contrast, the experimental run 

(SMP, 4 mm, 60
o
C) had the lowest value. The result 

showed an accelerated rate in the drying process as the 

drying temperatures increased. This showed that the 

higher the drying air temperature, the shorter the drying 

time for a given thickness. The ease of this moisture 

migration was due to higher temperature gradients 

created by higher air temperature, which eased water 

migration from the tomato's inner part to the surface to 

evaporate (Hussein et al., 2016b). The values of the Deff 

of the pretreated tomato samples varied between 0.98 × 

10
-10

 to 6.36 × 10
-10

 m
2
s

-1
. These values are within range 

of 10
-12

 to 10
-8

 m
2
s

-1
 for drying agricultural materials 

(Doymaz, 2010). 

The SEC in the drying of pretreated tomato slices 

ranges from 0.6247 to 1.9514 kWh kg
-1

, with the 

experimental run (WBP, 8 mm, 60
o
C) having the highest 

value while the experimental run (SMP, 6 mm, 40
o
C) had 

the lowest value. This showed that the SEC increases 

with increasing the slice thickness and drying 

temperature. In other words, each factor causing an 

increase in input energy rate also causes the SEC to 

increase. A similar result was reported by Chayjan 

(2012) for potato slices and Pillai et al. (2010) for plaster 
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of paris. The highest SEC was obtained for WBP and the 

thickest sample. This was probably due to the high 

energy utilized in transferring heat to the internal regions 

of the slice and the heat transfer distance. Similar results 

have been observed for ginger slices by Afolabi et al. 

(2014).  

 

(a) ANN training performance 

 

(b) Regression analysis 

Figure 3 The ANN training performance and regression analysis for training and validation datasets for hot-air drying time 
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3.2 Modeling the effect of drying conditions on the 

drying time of hot-air dried tomato slices using ANN 

The optimum topology and transfer function for 

predicting drying time was achieved after repeated trials 

of different topologies and transfer functions. The neural 

network architecture with 3-11-1 topology was observed 

to produce the best performance model. That is, three (3) 

inputs (pretreatment, slice thickness, and drying 

temperature), one hidden layer consisting of 11 neurons, 

and tangent sigmoid function (tansig) at both the hidden 

and output layer. The generated ANN model was used to 

simulate the effect of input data on the output data. The 

best optimal architecture was terminated at a high R and 

low MSE. Figure 3 shows the ANN training performance 

and regression analysis for training and validation 

datasets for drying time. The training was stopped after 

74 epochs, as shown in Figure 3a, to prevent overfitting 

the network. The best ANN network was identified at 68 

epochs after stopping the training. The regression 

analysis between ANN outputs and the experimental data 

for drying time gave a precise and effective prediction at 

R of 0.99991, 0.99914, 0.99704, and 0.99925 for training, 

validation, testing, and all data, respectively (Figure 3b). 

The MSE value was found to be 0.02101 at 68 epochs for 

the optimal architecture. 

The simulated result was plotted to show the fitness 

between experimental values and predicted drying time 

to verify the model. The simulated regression plot's R
2
 

was 0.99810. The RMSE and MAE were 0.13090 and 

0.07719, respectively. Zaibunnisa et al. (2009) and 

Hussein et al. (2022) reported that when R
2
 is closer to 

unity, the better will the empirical model fits the 

experimental data. The obtained R
2
, RMSE, and MAE 

values for the drying time showed a good correlation 

between the actual and predicted drying time. Thus, the 

ANN model fits well for predicting the drying time. 

Comparable results were reported for dehydration of 

other fruits such as carrot (Erenturk and Erenturk, 2007), 

pumpkin (Zenoozian et al., 2007), and ginger 

(Choudhary et al., 2022). 

 

(a) ANN training performance 
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(b) Regression analysis 

Figure 4 The ANN training performance and regression analysis for training and validation datasets for effective moisture diffusivity of hot-air 

drying  

3.3 Modeling the effect of drying conditions on the 

effective moisture diffusivity of hot-air dried tomato 

slices using ANN 

Different topologies and the number of neurons in the 

hidden layer were tried to determine the optimum 

number. It was observed that neural network architecture 

with a 3-9-1 topology produced the best performance 

model. Three (3) inputs (pretreatment, slice thickness, 

and temperature), one hidden layer consisting of 9 

neurons, and tangent sigmoid function at both hidden and 

output layers. The generated ANN model was used to 

simulate the effect of input data on the output data. The 

best optimal architecture was terminated at high R and 

MSE. Figure 4 shows the ANN training performance and 

regression analysis for training and validation datasets 

for effective moisture diffusivity. The training was 

stopped after 189 epochs, as shown in Figure 4a, to 

prevent overfitting the network. After stopping the 

training process, the best ANN network was identified at 

183 epochs. The regression analysis between ANN 

outputs and the experimental data of the effective 

moisture diffusivity gave a precise and useful prediction 

of the ANN model with R of 1.00000, 1.00000, 0.99993, 

and 0.99998 for training, validation, testing, and all data, 

respectively (Figure 4b). The MSE value was 0.00001 at 

183 training epochs for the optimal architecture. 

The fitness between experimental and predicted 

moisture diffusivity was verified. The R
2
 of the 

simulated regression plot was 1.0. The RMSE and MAE 

were 0.00743 and 0.00337, respectively. The R
2
, RMSE, 

and MAE values of the effective moisture diffusivity 

gave a good correlation between the actual and predicted 

values. Thus, the ANN model fits well for predicting the 

effective moisture diffusivity of the pretreated tomato 

slice. A similar result was reported by Zhang et al. (2002) 

for the moisture and drying rate of rough rice predicted 

with the ANN model. This result also corroborated ANN 

modeling of moisture diffusivity of carrot (Aghbashlo et 

al., 2011), pomegranate seed (Chayjan et al., 2012), and 
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terebinth fruit (Kaveh and Chayjan, 2015). 

3.4 Modeling the effect of drying conditions on the 

SEC of hot-air dried tomato slices using ANN 

The optimum topology and transfer function for 

predicting the energy consumption during convective 

hot-air drying of pretreated tomato slices was achieved 

after repeated trials of different topology and transfer 

functions. It was observed that the ANN architecture 

with 7 neurons at the hidden layer and one neuron at the 

hidden layer produced the best performance model. The 

optimal architecture of the developed ANN model for 

SEC was three (3) inputs (pretreatment, slice thickness, 

and temperature), one hidden layer with 7 neurons, and a 

logarithmic sigmoid function at the hidden layer and 

tangent sigmoid function at the output layer. Beigi et al. 

(2017) applied a similar ANN with a 3-6-1 topology to 

predict the SEC of rough rice in a laboratory-scale 

convective dryer. They reported that the Levenberg-

Marquardt training algorithm with the sigmoid transfer 

function gave the most accurate network.  

The generated ANN model was simulated, and the 

best optimal architecture was terminated at low MSE, and 

high R. Figure 5 shows the ANN training performance 

and regression analysis for training and validation 

datasets for SEC. The training was stopped after 198 

epochs (Figure 5a), and the best ANN network was 

identified at 192 epochs after stopping training. The 

regression analysis between ANN outputs and the 

experimental data gave a precise and effective prediction 

of the ANN model with a R of 0.99996, 0.99997, 

0.99998, and 0.99996 for training, validation, testing, and 

all data, respectively (Figure 5b). The MSE value was 

0.00003 at 192 epochs for the optimal architecture.

 

(a) ANN training performance 



June, 2023                                     AgricEngInt: CIGR Journal Open access at http://www.cigrjournal.org                          Vol. 25, No.2          273 

 

(b) Regression analysis 

Figure 5 The ANN training performance and regression analysis for training and validation datasets for SEC of hot-air drying 

The experimental versus predicted values for the 

simulated SEC for hot-air drying of pretreated tomato 

slices was plotted. The R
2
 of the simulated regression 

plot was 0.9999. The RMSE and MAE were 0.00309 and 

0.00220, respectively. The obtained R
2
, RMSE, and MAE 

values for the SEC showed that the model simulated the 

experiments satisfactorily. The developed ANN model 

had an excellent generalization in predicting the SEC in 

tomato slices' drying. Furthermore, the result gave good 

agreement between the predicted and the experimental 

values of SEC. This result corroborated with what was 

reported by Beigi et al. (2017) and Kaveh et al. (2018) 

for the SEC of rough rice, potato, garlic, and cantaloupe 

dried in a convective hot-air dryer. 

3.5 Modeling the effect of drying conditions on drying 

time of hot-air dried tomato slices using ANFIS 

An exhaustive search was performed on the 

experimental results to get the optimal effect of different 

input variable combinations on the drying time. Figure 6 

shows an exhaustive search of the ANFIS model for one 

and two variables, respectively. For one input variable, 

the air temperature was found to have the lowest training 

error of 2.1654 and a checking error of 2.2236. This 

indicated that this input variable was the most relevant 

variable concerning the pretreated tomato slice's drying 

time in the hot-air drying. For two input variables, the 

combination of slice thickness and the air temperature 

was found to have the lowest training error of 1.3227 and 

a checking error of 1.4893. Thus, the most significant 

input variables controlling the output performance. This 

result corroborated with Kulanthaisami et al. (2010) and 

Hussein et al. (2016b), which stated that the drying time 

decreased significantly as the slice thickness decreased. 

This is because the resistance to moisture migration is 

relatively higher in thicker slices than in thinner ones. 

Also, pretreatment reduces the resistance to moisture 

migration, thereby increasing the drying rate, as Doymaz 

and Ozdemir (2014) reported. 
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(a) One input variable 

 
(b) Two input variables combination 

Figure 6 ANFIS exhaustive search for one and two input variables and their influence on the hot-air drying time 

The three input parameters, pretreatment, slice 

thickness, and air temperature, were used for the ANFIS 

predictive technique to predict the drying time. The 

effects of different input membership functions (IMF), 

such as tri, trap, gbell, gauss, gauss2, pi, psig, and dsig, 

with high epoch numbers (1000) were tested and verified 

to determine the best input MF and training number for 

ANFIS model for the prediction of drying time. The 

effects of the two output membership functions (OMF), 

linear and constant, were evaluated. It was observed that 

the ANFIS architecture with 2 type membership 

functions (MFs), gauss IMF and linear OMF, had the 

highest predictive accuracy. The regression analysis of 

the ANFIS outputs and the experimental data gave a 

prediction with a R
2
 of 1 (Figure 7a). The regression plot 

observed that the data bound around the ideal trend line 

indicating the model adequacy for predicting the test 

data. The RMSE for both the training (0.00878) and 

testing (0.00987) of ANFIS are very small, reflecting the 

ability of ANFIS to capture the essential components of 

underlying dynamics governing the relationships 

between the input and the output variables. 

The simulation accuracy of the developed ANFIS 

model was performed to validate the reliability of the 

network. The predicted and experimental value of the 

drying time was plotted in Figure 7b. The R
2
 of the 

simulated regression plot was 1. The RMSE and MAE 

were 0.00879 and 0.00670, respectively. Chong et al. 

(2015) and Tao et al. (2016) reported that R
2
 value of an 

ANFIS model should be more than 0.8 to have a 

satisfactory agreement between experimental and 

predicted data. This high value of R
2
 and relatively low 
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RMSE and MAE values implies that the developed 

ANFIS model could simulate the drying time of the 

pretreated tomato slice dried in the hot-air dryer. 

 
(a) ANFIS model correlation coefficient 

 
(b) Coefficient of determination 

Figures 7 Regression between the experimental and predicted drying time in hot-air drying using ANFIS model 

The ANFIS decision surface plot for the effect of the 

pretreatment, slice thickness, and air temperature on the 

drying time is shown in Figure 8. It was observed from 

the plot that increasing the drying air temperature 

reduced the drying time. While increasing the slice 

thickness increased the drying time. This could be due to 

high-temperature gradients created by higher air 

temperature, which ease water migration from the inner 

part to the surface to evaporate. The ease of this 

migration could depend on the samples' porosity, drying 

air temperatures, and the surface area available, as 

Hussein et al. (2016b) reported. 
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Figure 8 The ANFIS decision surface plot for the effect of pretreatment, slice thickness and air temperature on the value of drying time 

3.6 Modeling the effect of drying conditions on the 

effective moisture diffusivity of hot-air dried tomato 

slices using ANFIS 

An exhaustive search was performed on the 

experimental results to know the optimal effect of 

different input variable combinations on the hot-air 

effective moisture diffusivity. Figure 9 shows the results 

of the exhaustive search ANFIS model for one and two 

variables, respectively. For one input variable, the slice 

thickness was found to have the least training error of 

0.4018 and a checking error of 0.3807. This indicated 

that this input variable was the most relevant variable 

concerning moisture diffusivity of pretreated tomato 

slices with hot-air drying. For two input variables, the 

slice thickness and the air temperature combination were 

found to have the least training error of 0.1760 and the 

checking error of 0.1836. Thus, the most significant input 

variables to the output performance. This supported the 

results of Touil et al. (2014), Afolabi et al. (2014), and 

Onu et al. (2016) that the effective moisture diffusivity 

content of a material is significantly affected by the 

shorter distance the moisture needs to travel before it 

evaporates to the surroundings. However, there was a 

high difference between the training and checking errors, 

as shown in Figure 9. Aremu et al. (2014) and Oke et al. 

(2018a) reported that a high difference between the 

training and checking errors implied overfitting during 

the exhaustive search. 

 
(a) One input variable 
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(b) Two input variables combination 

Figure 9 ANFIS exhaustive search for one and two input variables and their influence on the hot-air moisture diffusivity 

 
(a) ANFIS model correlation coefficient 
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(b) Coefficient of determination 

Figure 10 Regression between the experimental and predicted moisture diffusivity in hot-air drying using ANFIS model 

The 3 input parameters, including pretreatment, slice 

thickness, and air temperature, were used for ANFIS 

predictive technique to predict the moisture diffusivity. 

Different IMF effects such as tri, trap, gbell, gauss, 

gauss2, pi, psig, and dsig, with high epoch number (500), 

were tested and verified to determine the best input MFs 

and training number for the ANFIS model for the 

prediction of moisture diffusivity. The training's epoch 

value of 500 was used to minimize the error measure. 

Also, the effects of the two OMF, linear and constant, 

were evaluated. It was observed that the ANFIS 

architecture with 2 type MFs, gbell IMF and linear OMF 

had the highest predictive accuracy. A similar ANFIS 

structure was reported by Tao et al. (2016) for ANFIS 

modeling of dried cherry tomatoes' water activity.  

The regression analysis of the ANFIS outputs and the 

experimental data gave a prediction with a R
2
 of 1 

(Figure 10a). The regression plot observed that the data 

bounded around the ideal trend line explaining the model 

adequacy in predicting the test data. The RMSE for both 

the training (1.49 × 10
-13

) and testing (1.55 × 10
-13

) of 

ANFIS are very small, reflecting the capacity of ANFIS 

to capture the essential components of underlying 

dynamics governing the relationships between the input 

and output variables. The simulation accuracy of the 

developed ANFIS model was performed to validate the 

reliability of the network. The predicted and 

experimental value of the moisture diffusivity was 

plotted in Figure 10b. The R
2
 of the simulated regression 

plot was 1. The RMSE and MAE were 1.49 × 10
-13

 and 

1.08 × 10
-13

, respectively. Nazghelichi et al. (2011) and 

Hussein et al. (2022) reported that the closer the R
2
 to 

unity, the better the empirical model would fit the 

experimental data. Based on this high value of R
2
 and 

low RMSE and MAE values, the developed ANFIS model 

could simulate the moisture diffusivity of the dried 

pretreated tomato slice in the convective hot-air dryer. 

The ANFIS decision surface plot for the effect of 

pretreatment, thickness, and air temperature on the value 

of moisture diffusivity is shown in Figure 11. From the 

plot, it was observed that increasing the air temperature 

reduced the moisture diffusivity. Likewise, increasing the 

slice thickness also decreased the moisture diffusivity. 

This is probably because the water needs to migrate a 

long thickness from the inside to the surface of the 

product before it evaporates, as Hussein et al. (2016b) 

reported. The SMP pretreatment showed a higher 

increase in moisture diffusivity compared to others. This 



June, 2023                                     AgricEngInt: CIGR Journal Open access at http://www.cigrjournal.org                          Vol. 25, No.2          279 

could be due to the SMP reducing the tomato surface's 

hardening by destroying the cell membrane stability and 

changing the resistance to internal moisture diffusion by 

altering of the microstructure the tomato samples under 

processing. 

 
Figure 11 The ANFIS decision surface plot for the effect of pretreatment, slice thickness and air temperature on the value of moisture diffusivity 

 
(a) One input variable 

 

(b) Two input variables combination 

Figure 12 ANFIS exhaustive search for one and two input variables and their influence on the hot-air SEC 
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3.7 Modeling the effect of drying conditions on the 

SEC of hot-air dried tomato slices using ANFIS 

An exhaustive search was performed on the 

experimental results to get the optimum effect of the 

different input variable combinations on the hot-air SEC. 

Figure 12 shows the exhaustive search ANFIS model 

results for one and two variables, respectively. For one 

input variable, the air temperature was found to have the 

lowest training error of 0.1515 and a checking error of 

0.1455. This indicated that this input variable was the 

most relevant variable concerning SEC of pretreated 

tomato slices with hot-air drying. For two input variables, 

the slice thickness and the air temperature combination 

was found to have the lowest training error of 0.0759 and 

a checking error of 0.0790. Thus, the most significant 

input variables to the output performance. As indicated in 

the figure, the training and checking errors were slightly 

different, implying overfitting during the exhaustive 

search. Aremu et al. (2014) and Oke et al. (2018a) 

reported that the low difference between training and 

checking errors implied less overfitting during the 

exhaustive search. 

The 3 input parameters, including pretreatment, slice 

thickness, and air temperature, were used for the ANFIS 

predictive technique to predict the SEC. Different IMF 

effects such as tri, trap, gbell, gauss, gauss2, pi, psig, and 

dsig, with high epoch number (500) were tested and 

verified to determine the best input MFs and training 

number for the ANFIS model for the prediction of SEC. 

Also, the effects of the two OMF, linear and constant, 

were evaluated. It was observed that the ANFIS 

architecture with 2 type MFs, gbell, gauss, and gauss2 

IMF with linear OMF, had the highest predictive 

accuracy. A similar ANFIS structure was reported by 

Kaveh et al. (2018) for the ANFIS modeling of SEC of 

dried garlic, potato, and cantaloupe. 

The regression analysis of the ANFIS outputs and the 

experimental data gave a prediction with a R
2
 of 1 

(Figure 13a). It was observed from the regression plot 

that the data bounded around the ideal trend line 

satisfying the model adequacy in predicting the test data. 

The RMSE for the training (0.00035) and testing 

(0.00028) of the ANFIS model is very small, showing the 

model's ability to capture the essential components 

underlying the dynamics governing the relationships 

between the input and output variables. The developed 

ANFIS model's simulation accuracy was performed to 

validate the network’s reliability. The predicted and 

experimental value of the SEC was plotted in Figure 13b. 

The R
2
 of the simulated regression plot was 1. The RMSE 

and MAE were 0.00035 and 0.00026, respectively. 

Chong et al. (2015) and Tao et al. (2016) reported that 

the R
2
 values of an ANFIS model greater than 0.8 have a 

satisfactory agreement between the actual and predicted 

data. Thus, based on this high value of R
2
 and low values 

of RMSE and MAE, it implies that the developed ANFIS 

model is reliable for simulating the SEC of the pretreated 

tomato slice dried in the hot-air dryer. 

The ANFIS decision surface plot for the effect of 

pretreatment, thickness, and air temperature on the value 

of SEC is depicted in Figure 14. It was observed from the 

plot that increasing the air temperature increases the SEC. 

Also, increasing the slice thickness increased the SEC. 

This is probably because the water needs to move a long 

thickness from the inside to the product's surface before 

evaporating, thereby increasing the energy taken. A 

similar observation was reported by Afolabi et al. (2014) 

for the ginger slice SEC. It was also observed that the 

highest SEC was obtained for WBP samples, followed by 

AAP and SMP pretreatment. This shows that each factor 

responsible for an increase in the input energy rate also 

aids the SEC increase. This result corroborates with what 

was reported by Pillai et al. (2010) for plaster of Paris, 

Chayjan (2012) for potato slice, Tunde-Akintunde et al. 

(2014) for bell pepper, and Kaveh et al. (2018) for 

ANFIS modeling of the SEC of the dried potato, garlic, 

and cantaloupe. Tunde-Akintunde et al. (2014) also 

reported that pretreatment before drying bell pepper 

could be used to optimize energy utilization, especially in 

areas where the cost of energy usage is high. 
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(a) ANFIS model correlation coefficient 

 
(b) Coefficient of determination 

Figure 13 Regression between the experimental and predicted specific energy consumption in hot-air drying using ANFIS model 

 
Figure 14 The ANFIS decision surface plot for the effect of pretreatment, slice thickness and air temperature on the value of specific energy 

consumption 

4 Conclusions  

This study investigated the drying kinetics of 

pretreated tomato slices at three drying temperatures and 

thicknesses in a hot-air dryer. Like most agricultural 

materials, drying time reduced with increasing drying 
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temperature, while the effective moisture diffusivity 

increased. The SEC was within the range of 0.6247 to 

1.9514 kWh kg
-1

 over the experimental domains. A 

comparison of the constructed models indicated that the 

ANFIS model exhibited better performance with high 

accuracy for predicting the drying kinetics compared to 

ANN, although the performance was similar to each 

other. Therefore, the model developed in this study has 

an acceptable generalization capability and accuracy. It is 

concluded that ANFIS provides an effective analyzing 

and generalizing model to understand and simulate the 

non-linear behavior of drying tomatoes. 
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