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Abstract: The Campos Gerais region, located in the Subtropical Zone in Southern Brazil, stands out for presenting 

agricultural yields above the national average, especially for soybean.  This study aimed to calibrate and validate the 

AquaCrop model for soybean crop in the edaphoclimatic conditions of Campos Gerais region.  The data used were from 

the experimental stations of ABC Foundation in Arapoti, Castro and Ponta Grossa, Parana State, and Itaberá, São Paulo 

State.  The input data (climate, crop, soil and soil management) from the 2006/07 to 2015/16 harvests were collected at 

the respective experimental stations and entered in the AquaCrop model for yield simulations.  The data for model 

calibration were different from those used in the validation.  The observed and simulated productivities were evaluated 

by simple linear regression analysis, mean absolute and relative errors, Pearson correlation coefficient (r), agreement (d) 

and performance (c) indexes.  The model calibration was satisfactory in the studied localities, with agreement indices 

ranging from 0.87 < d < 0.99.  In the validation, the model performance index ranged from “Terrible” to “Excellent”, 

with agreement ranging from 0.59 < d < 1.00.  The results showed a good relationship between the observed and 

simulated yields, indicating that the AquaCrop model is an option to plan and investigate alternatives that improve 

soybean crop productivity in the Campos Gerais region. 
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 1 Introduction 

The Campos Gerais region, located in Parana and 

São Paulo States, stands out for presenting 

agricultural yields above the national average, 

especially for soybean. According to the IBGE 

(2020), at 2017 harvest, the cities that being part of 

the region had a soybean average yield of 4060 kg 
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ha–1, while national agricultural production in the 

same period remained at 3772 kg ha–1. 

Technology innovation in the Campos Gerais 

region enables high agricultural productivity. In this 

perspective, the use of simulation models are 

interesting tools to be tested in the region, as they can 

contribute to further increase yields (Souza et al., 

2020). 

Crop simulation models are commonly used to 

simulate growth, development, final grain yield and 

other characteristics of field crops (Kostková et al., 

2021), being a tool to guide decision-making in the 

field (Souza et al., 2020). Depending on the structure, 
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this system allow the estimation of plant response to 

interactions with edaphoclimatic factors, aiding on 

crop management, harvest monitoring and yield 

forecasting (Martín et al., 2014; Morell et al., 2014; 

Franke et al., 2020), as well as assessing the impact 

of climate change on agricultural production (Zhao et 

al., 2019; Huynh et al., 2020). 

It is appropriate to use models that are complex 

and precise enough to describe what happens in the 

field (Amiri, 2016). Among the established systems 

presented in the literature (APSIM, CROPSYST, 

DSSAT-CSM, STICS, among others), the model 

developed by the Food and Agriculture Organization 

of the United Nations (FAO), termed AquaCrop has 

stood out (FAO, 2022). 

AquaCrop is a precise, simple, and robust model 

that requires a relatively small number of parameters, 

which are mostly intuitive (Foster et al., 2017; FAO, 

2022). Their routines allow estimating biomass and 

crop yield using water as a determining factor for the 

simulation of rainfed and irrigated production 

systems (FAO, 2022). 

In general, agricultural simulation models are 

developed basically for specific study conditions. The 

models applicability under different cultivation sites 

and water regimes only becomes viable after 

adjusting their parameters through the calibration 

process, since the variability of production depends 

on climatic conditions, soil, and genetic 

characteristics of the plant used (Yin et al., 2018; 

Lecerf et al., 2019; Olanrewaju et al., 2021). 

AquaCrop consists of two-parameter groups: 

conservative and non-conservative. Conservative 

parameters are those that do not change over time, 

such as management practices and geographical 

location, which were previously calibrated with data 

from crops grown under favorable and non-limiting 

conditions for growth and development. Non-

conservative parameters are affected by planting, 

field management, soil, and climate conditions, might 

require adjustments for the environmental conditions 

of the inserted cultivar (Raes et al., 2018a). 

The calibration is an important step before 

applying a model (Nguyen et al., 2022) and aims to 

minimize the errors between observed data in the 

field and simulated data in the program. The process 

is necessary as many parameters are difficult to 

measure directly in the field land (He et al., 2017; 

Rackl and Hanley, 2017; Shen et al., 2022). After 

careful calibration, the model should be validated to 

verify its robustness in the studied environment. The 

data used in model validation should be distinct from 

those previously used in calibration to represent the 

complete array of environments and crops to which 

the model will be applied (Jones et al., 2003; Souza 

et al., 2020).  

Given the context presented, the present study 

aimed to calibrate and validate the AquaCrop model 

for soybean crop under Campos Gerais region 

edaphoclimatic conditions in the Parana and São 

Paulo States. 

2 Material and methods 

2.1 Study site 

The present study was carried out in the Campos 

Gerais region, in the Subtropical Zone of Southern 

Brazil. The data were collected at the ABC 

Foundation Experimental Stations, located in Arapoti, 

Castro and Ponta Grossa cities, in Parana State, and 

in Itaberá, São Paulo State. The relief of the region 

varies from flat to gently undulating. The tillage 

system is no-tillage with homogeneous vegetation 

mulching, with crop rotation in winter (wheat and 

black oats) and summer (soybean and maize). 

According to Köppen’s climate classification for 

Brazil (Alvares et al., 2013), Cfa is classified as a 

humid subtropical, oceanic climate without dry 

season with hot summer and Cfb is humid subtropical, 

oceanic climate without dry season with temperate 

summer. Table 1 shows the soil and climate 

classification, geographic coordinates, and altitude of 

the evaluated sites. 

The model used in the analysis was AquaCrop, 

version 5.0, developed by the Food and Agriculture 

Organization of the United Nations (FAO, 2016). 

The input data inserted in the AquaCrop model, 
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required in both calibration and validation process, 

consider aspects of climate, crop, soil, and soil 

management (Raes et al., 2009; Raes et al., 2018b). 

Data were entered regarding: 

a) Climate: Maximum, minimum, and medium air 

temperatures of the day (°C); precipitation (mm day–

1); incident solar radiation (MJ m–2 day–1); relative 

humidity (%); and wind speed (km h–1). Available 

data from ABC Foundation, obtained from a 10-year 

historical series (September/2006 to April/2016), 

measured at the automatic agrometeorological 

stations installed in each experimental station 

analyzed. Reference evapotranspiration (ETo; mm 

day−1) was estimated with the Penman-Monteith 

method (Allen et al., 1998) for the same historical 

series. Average atmospheric CO2 concentration (ppm) 

values were provided by the AquaCrop, based on 

data obtained from the Mauna Loa Observatory, 

Hawaii (Raes et al., 2009; Raes et al., 2018b); 

b) Crop: Sowing and harvest dates, duration of 

crop phenological cycle (day; emergence, beginning 

and duration of flowering, senescence and 

physiological maturity), and plant population (plants 

ha–1), obtained from experiments realized at ABC 

Foundation stations in 2006/07 to 2015/16 harvests. 

The following parameters were calibrated in the 

model: canopy decline coefficient (CDC); water 

productivity index (WP*); reference harvest index 

(HIo); and the proportional factor of crop 

transpiration coefficient (KcTR,x). The other 

parameters values required in the model were 

obtained from Raes et al. (2018c). Salinity was not 

considered; 

c) Soil management: The soil fertility was 

considered near optimal and the soil cover by 

mulches was fixed in 100% of unincorporated plant 

residues in all plots. Phytosanitary control and 

fertilization were carried out as required by the crop. 

Irrigation was not considered since there was no 

adoption of the practice at the sites; 

d) Soil: Soil data entered in AquaCrop were soil 

texture, volumetric water content at permanent 

wilting point (PMP; m3 m−3), field capacity (FC; m3 

m−3), saturation (SAT; m3 m−3), and saturated 

hydraulic conductivity (KSAT; mm day−1). Three soil 

layers (0-0.10 m; 0.10-0.25 m and 0.25-0.40 m depth) 

were considered for physical-water attributes 

insertion. 

Table 1 Edaphoclimatic characteristics of ABC Foundation experimental stations in Arapoti, Castro, Itaberá, and Ponta 

Grossa(1) 

Site Soil  
Climate  

classification(2) 

Latitude Longitude Altitude 

------ (degrees) ------ (m) 

Arapoti Oxisol  Cfa/Cfb(3) 24.18° S 49.85° W 902 

Castro Inceptisol Cfb 24.85° S 49.93° W 1001 

Itaberá Alfisol  Cfa 24.07° S 49.15° W 735 

Ponta Grossa Oxisol  Cfb 25.01° S 50.15° W 1000 

Note: (1)Adapted from Souza et al. (2017); (2)Adapted from Alvares et al. (2013); (3)Climate transition site. 

2.2 Model calibration and validation  

The AquaCrop calibration process for soybean 

crop was carried out for the four evaluated localities, 

totaling 19 experiments. Once calibrated, the model 

is no longer adjusted to suit changes in environmental 

conditions, so the validation process is responsible 

for identifying how the adjustment is reflected in the 

final productivity of the model.  

Conservative and non-conservative crop 

parameters used as a starting point in the AquaCrop 

calibration process for soybean were entered into 

each experiment, as presented by the AquaCrop 

Reference Manual (Table 2; Raes et al., 2018c). 

After entering values of the parameters in the 

AquaCrop, the productivities simulations were 

performed. The parameters were modified in the 

calibration until the absolute and relative errors of the 

observed yield concerning the simulated yield were 

minimal and the “d” indexes of each experiment were 

high. 

The AquaCrop validation process for soybean 

was performed after the calibration of the model 

parameters. The harvests used in the validation 

process were different from those used in the 
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calibration process, totaling 26 experiments. Table 3 

shows the localities, cultivars used, planting and 

harvesting dates, plant population, and the number of 

experiments used for each locality in the model 

calibration and validation processes. 

Table 2 Conservative and non-conservative crop parameters used as a starting point in the AquaCrop calibration process for 

soybean in the Campos Gerais region, Subtropical Zone of Southern Brazil 

Symbol Description Type (1), (2), (3), (4) Values/ranges 

------------------------------------------------------- Crop phenology ------------------------------------------------------- 

Threshold air temperatures 

Tbase Base temperature (°C) Conservative (1) 5.0 

Tupper Upper temperature (°C) Conservative (1) 30 

Development of green canopy cover 

CCo Soil surface covered by seedling at 90% emergence (cm2 plant–1) Conservative (2) 5.0 

 Number of plants per hectare Management (3) 250– 450 

 Time from sowing to emergence (GDD, growing degree days) Management (3) 150 – 300 

CGC Canopy growth coefficient (fraction per GDD) Conservative (1) 0.004 – 0.005 

CCx Maximum canopy cover (%) Management (3) Almost entirely covered 

 Time from sowing to start senescence (GDD) Cultivar (4) Time to emergence + 1600 – 2400 

CDC Canopy decline coefficient (fraction per GDD) Conservative (1) 0.015 

 Time from sowing to maturity (GDD) Cultivar (4) Time to emergence + 2000 – 3000 

Flowering 

 Time from sowing to flowering (GDD) Cultivar (4) Time to emergence + 1000 – 1500 

 Length of the flowering stage (GDD) Cultivar (4) 400 – 800 

 Crop determinacy linked with flowering Conservative (1) Yes 

Development of root zone 

Zn Minimum effective rooting depth (m) Management (3) 0.30 

Zx Maximum effective rooting depth (m) Management (3) Up to 2.40 

 Shape factor describing root zone expansion Conservative (1) 1.50 

------------------------------------------------------- Crop transpiration ------------------------------------------------------- 

KcTR,x Crop coefficient when canopy is complete Conservative (1) 1.10 

 Decline of crop coefficient (% day–1) Conservative (1) 0.30 

 Effect of canopy cover on reducing soil evaporation in late season stage Conservative (1) 25 

------------------------------------------ Biomass production and yield formation ------------------------------------------ 

Crop water productivity 

WP* Water productivity normalized for ETo and CO2 Conservative (1) 15.0 

 
Water productivity normalized for ETo and CO2 during yield formation (as 

percent WP* before yield formation) 
Conservative (1) 60 

Harvest Index 

 Reference harvest index (%) Cultivar (4) 40 

 Possible increase (%) of HI due to water stress before flowering Conservative (1) Small 

 Excess of potential fruits (%) Conservative (2) Medium 

 
Coefficient describing positive impact of restricted vegetative growth during 

yield formation on HI 
Conservative (1) None 

 
Coefficient describing negative impact of stomatal closure during yield 

formation on HI 
Conservative (1) Strong 

 Allowable maximum increase (%) of specified HI Conservative (1) 10 

-------------------------------------------------------------- Stresses -------------------------------------------------------------- 

Soil water stresses 

pexp,lower Soil water depletion for canopy expansion - Upper threshold Conservative (1) 0.15 

pexp,upper Soil water depletion for canopy expansion - Lower threshold Conservative (1) 0.65 

 Shape factor for Water stress coefficient for canopy expansion Conservative (1) 3.0 

psto Soil water depletion for stomatal control - Upper threshold Conservative (1) 0.50 
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Symbol Description Type (1), (2), (3), (4) Values/ranges 

 Shape factor for Water stress coefficient for stomatal control Conservative (1) 3.0 

psen Soil water depletion for canopy senescence - Upper threshold Conservative (1) 0.70 

 Shape factor for Water stress coefficient for canopy senescence Conservative (1) 3.0 

Ppol Soil water depletion for failure of pollination - Upper threshold Conservative (1) 0.85 (Estimate) 

 Vol% at anaerobiotic point (with reference to saturation) 
Cultivar(4) 

Environment (3) 
Moderately tolerant to water logging 

Air temperature stress 

Minimum air temperature below which pollination starts to fail (cold stress) Conservative (1) 8.0 (Estimate) 

Maximum air temperature above which pollination starts to fail (heat stress)  Conservative (1) 40.0 (Estimate) 

Minimum GDD required for full biomass production (°C - day) Conservative (1) 10.0 (Estimate) 

Note: (1) Conservative generally applicable; (2) Conservative for a given specie but can or may be cultivar specific; (3) Dependent on environment and/or 

management; (4) Cultivar specific 

Table 3 Harvests used in the AquaCrop calibration and validation process for soybean crop, considering the ABC 

Foundation experiments localities, cultivars, planting and harvesting dates, plant population (p; plants ha−1), and the number 

of experiments (n) 

Locality Cultivar Planting date Harvesting date p n 

--------------------------------------------------- Calibration --------------------------------------------------- 

Arapoti 

NK3363 Oct 21, 2010 Mar 21, 2011 307031 

3 M5917IPRO Oct 15, 2015 Mar 11, 2016 301562 

NA5909RG Oct 15, 2015 Mar 11, 2016 296875 

Castro 

NK3363 Nov 13, 2007 Apr 08, 2008 309998 

9 

NK3363 Nov 25, 2010 Apr 06, 2011 303926 

NA5909RG Nov 21, 2011 Apr 23, 2012 309998 

NA5909RG Dec 03, 2011 Apr 30, 2012 297855 

NA5909RG Nov 26, 2012 Apr 05, 2013 271875 

NA5909RG Nov 21, 2012 Apr 23, 2013 309998 

BMX Apolo RR D.Mario 5.8 Nov 06, 2014 Mar 23, 2015 291406 

M5917IPRO Oct 21, 2015 Mar 11, 2016 286718 

M5917IPRO Nov 19, 2015 Mar 28, 2016 230469 

Itaberá 

NA5909RG Nov 05, 2012 Mar 19, 2013 239063 

3 NA5909RG Nov 19, 2013 Mar 04, 2014 194531 

BMX Apolo RR D.Mario 5.8 Oct 27, 2014 Feb 27, 2015 311719 

Ponta Grossa 

NK3363 Nov 16, 2006 Mar 21, 2007 406250 

4 
NA5909RG Nov 28, 2012 Apr 03, 2013 314062 

NA5909RG Nov 13, 2014 Mar 24, 2015 313281 

M5917IPRO Oct 16, 2015 Mar 17, 2016 286718 

--------------------------------------------------- Validation --------------------------------------------------- 

Arapoti 

NK3363 Nov 03, 2010 Mar 25, 2011 321093 

3 NA5909RG Nov 10, 2015 Mar 24, 2016 297656 

M5917IPRO Nov 10, 2015 Mar 24, 2016 340625 

Castro 

NK3363 Nov 25, 2010 Apr 06, 2011 291037 

14 

NK3363 Nov 25, 2010 Apr 06, 2011 296817 

NK3363 Nov 27, 2010 May 02, 2011 286427 

NA5909RG Dec 03, 2012 Apr 17, 2013 306561 

NA5909RG Dec 03, 2012 Apr 30, 2013 303125 

NA5909RG Nov 06, 2014 Mar 23, 2015 276562 

NA5909RG Nov 27, 2014 Mar 27, 2015 326562 

BMX Apolo RR D.Mario 5.8 Nov 27, 2014 Mar 27, 2015 328906 

NA5909RG Oct 21, 2015 Mar 11, 2016 300000 

M5917IPRO Nov 09, 2015 Mar 21, 2016 208593 

NA5909RG Nov 09, 2015 Mar 21, 2016 277344 

NA5909RG Nov 19, 2015 Mar 28, 2016 284375 

M5917IPRO Dec 08, 2015 Apr 05, 2016 237500 

NA5909RG Dec 08, 2015 Apr 05, 2016 275000 
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Locality Cultivar Planting date Harvesting date p n 

Itaberá 

NA5909RG Nov 18, 2013 Mar 04, 2014 291406 

4 
NA5909RG Dec 12, 2013 Mar 14, 2014 259375 

NA5909RG Nov 25, 2014 May 23, 2015 274219 

BMX Apolo RR D.Mario 5.8 Oct 27, 2014 Feb 27, 2015 311719 

Ponta Grossa 

NK3363 Oct 17, 2010 Mar 29, 2011 317968 

5 

NA5909RG Nov 13, 2014 Mar 24, 2015 313281 

NA5909RG Dec 02, 2014 Apr 02, 2015 313281 

M5917IPRO Nov 20, 2015 Mar 31, 2016 261718 

NA5909RG Nov 20, 2015 Mar 31, 2016 328906 

In the validation process, it was used the same 

series of ABC Foundation climate and management 

data, and soil data performed by Souza et al. (2017). 

Initially, data related to the crop were modified, such 

as planting date (days), plant population (plants ha−1), 

and duration of phenological cycles, being this latter 

dependent on the plant and cultivation condition. 

Subsequently, the calibrated parameters were inserted 

and the simulations were performed. 

In the AquaCrop calibration and validation 

process, the simulated yields in the model (Ys, kg ha–

1) were compared with the real yields observed in the 

field (Yr, kg ha–1) in simple linear regression analysis. 

The mean absolute (MAE; Equation 1) and relative 

errors (MRE; Equation 2), root mean square error 

(RMSE; Equation 3; Jacovides and Kontoyiannis, 

1995), Pearson correlation coefficient (r; Equation 4), 

and “d” index concordance (Equation 5; Willmott, 

1982) were also used to compare simulated to real 

data. The model validation process had the 

performance calculated with the “c” index (Equation 

6; Camargo and Sentelhas, 1997). The interpretation 

criteria of “c” performance was classified by 

“Excellent” (“c” > 0.85); “Very good” (0.75 < “c”  

0.85); “Good” (0.65 < “c”  0.75); “Medium” (0.60 < 

“c”  0.65); “Tolerable” (0.50 < “c”  0.60); “Bad” 

(0.40 < “c”  0.50); and, “Terrible” (“c”  0.40). The 

statistical analyzes were generated in an electronic 

spreadsheet and the p-value in the software RStudio, 

with ggplot2 package (Wickham et al., 2022).  

𝑀𝐴𝐸 =  
∑ |𝑌𝑟𝑖−𝑌𝑠𝑖|𝑛

𝑖=1

𝑛
                  (1) 

𝑀𝑅𝐸 =  
∑ |𝑌𝑟𝑖−𝑌𝑠𝑖|𝑛

𝑖=1

∑ 𝑌𝑠𝑖
𝑛
𝑖=1

× 100             (2) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∙ ∑ (𝑌𝑟𝑖 − 𝑌𝑠𝑖)2 𝑛

𝑖=1              (3) 

𝑟 =
∑ [(𝑌𝑟𝑖−𝑌̅𝑟)∙(𝑌𝑠𝑖−𝑌̅𝑠)]𝑛

𝑖=1

√∑ (𝑌𝑟𝑖−𝑌̅𝑟)2∙𝑛
𝑖=1 ∑ (𝑌𝑠𝑖−𝑌̅𝑠)2𝑛

𝑖=1

             (4) 

𝑑 = 1 −
∑ (𝑌𝑠𝑖−𝑌𝑟𝑖)2𝑛

𝑖=1

√∑ (|𝑌𝑠𝑖−𝑌̅𝑟|∙|𝑌𝑟𝑖−𝑌̅𝑟|)2𝑛
𝑖=1

           (5) 

 𝑐 = d ∙ r                            (6) 

Where: MAE is the mean absolute error (kg ha–1); 

MRE is the mean relative error (%); RMSE is the root 

mean square error (kg ha–1); r is the Pearson 

correlation coefficient (unitless); d is the “d” index 

(unitless); Yri is the real yield observed in the field at 

each i-experiment (kg ha–1);  𝑌̅𝑟  is the real average 

yield from all cultivars observed in the field (kg ha–1); 

Ysi is the estimated yield observed in the model at 

each i-experiment (kg ha–1);  𝑌̅𝑠  is the observed 

average yields from all cultivars estimated in the 

model (kg ha–1); n is the number of harvests in the 

localities (unitless); c is the “c” index (unitless). 

 3 Results and discussion 

3.1 AquaCrop model calibration 

The stability of the model concerning 

conservative and non-conservative parameters is 

assessed in the sensitivity analysis. Considering the 

values recommended in the AquaCrop Reference 

Manual (Raes et al., 2018c), sensitivity analysis was 

performed to identify the parameters that are most 

sensitive to the potential crop productivity. In the 

sensitivity analysis of all model parameters (Raes et 

al., 2018b; Raes et al., 2018c), it was observed that 

AquaCrop did not show significant sensitivity to the 

cultivation practices and water regime in the region, 

which are related to soil management and the total 

water available in the soil, respectively. Thus, it was 

identified as more sensitive, and consequently 

calibrated (Table 4): the CDC; KcTR,x; WP* and HIo. 
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Table 4 Final calibrated parameters considering 19 experiments with soybean crop, in the Campos Gerais region, Parana and 

São Paulo States 

Symbol Description Values 

WP* Water productivity normalized for ETo and CO2 (g m−2) 16 to 20 

KcTR,x Crop coefficient when canopy is complete but prior to senescence  1.10 to 1.15 

CDC Canopy decline coefficient (% GDD−1) 4.8 to 14.5 

HIo Reference harvest index (%) 26 to 47 

During the calibration of the parameters, it was 

observed limiting aspects in the process. It was not 

possible to calibrate the parameters for each cultivar 

due to the low number of experiments with the same 

cultivar in each locality. The use of more than one 

cultivar in the calibration process caused difficulties, 

such as the different degree-days required by the 

cultivars at each phenological stage, different plant 

populations throughout the cycles, and climatic 

conditions that resulted in low productivity observed 

in the field. 

The sensitivity of CDC, WP*, KcTR,x, and HIo 

parameters is directly related to its participation in 

two main equations that compose AquaCrop. Rosa et 

al. (2020) also observed sensitivity of these 

parameters for the wheat crop in the same region. 

Equation 7 determines the above-ground dry matter, 

which includes WP* and KcTR,x, the latter being part 

of the crop transpiration equation (Tr). CDC is very 

sensitive in the program as it describes the declining 

phase due to leaf senescence. HIo is part of Equation 

8 and also showed high sensitivity as it determines 

the final yield. 

𝐵 = WP ∙ ∑ 𝑇𝑟𝑖
𝑛
𝑖=1                 (7) 

𝑌 =B ∙ 𝐻𝐼                             (8) 

Where: B is the dry above-ground biomass (kg 

ha−1); WP is the water productivity parameter (kg 

m−2); Tri is the crop transpiration at each i-period 

range (mm); n is the period considered (unit); Y is 

the crop productivity (kg ha–1); HI is the crop harvest 

index (dimensionless) (Raes et al., 2018a). 

The WP* water productivity parameter varied 

according to the range recommended for C3 crops 

cycle, between 15 and 20 g m–2 (Raes et al., 2018a). 

Silva et al. (2018) analyzing two soybean cultivars, 

MSOY 9144 and TMG 1244, in Matopiba region, 

Tocantins State in Brazil, observed good AquaCrop 

calibration results for soybean crop, considering WP* 

= 15.5 g m–2. Adeboye et al. (2017) calibrating and 

validating the AquaCrop model for soybean under 

different water regimes in Nigeria, found high 

variability of the results analyzed. Considering WP* 

= 17.6 g m–2 for the five treatments evaluated, the 

authors observed errors between 18.2% and 24.5% in 

calibration and between 0% and 135% in the 

validation. Lievens (2014) evaluating soybean 

cultivation scenarios in northeastern Thailand 

obtained low crop productivity under rainfed 

conditions (0.44 ± 0.16 ton ha–1) when compared to 

the irrigated scenario (2.59 ± 0.03 ton ha–1) while 

considering WP* = 15 g m–2 in calibration. 

The maximum KcTR,x varied between 1.10 and 

1.15. The values obtained are close to those adopted 

by Adeboye et al. (2017) and suggested by Raes et al. 

(2018c). Adeboye et al. (2017) comment that the 

KcTR,x = 1.10 showed a tendency to underestimate the 

canopy cover, with high estimation error (NRMSE > 

43%). Lievens (2014) obtained KcTR,x = 1.05 in 

calibration, and with this value, the result was not 

compatible for different simulation scenarios (rainfed 

and irrigated) since in the dry condition the author 

observed much lower yield than in the irrigated 

condition. Paredes et al. (2015) evaluating the 

Zhonghuang N°.13 soybean variety, cultivated in a 

conventional planting system, for 4 years in Daxin, 

China, obtained good simulation results considering 

KcTR,x = 1.12. 

The CDC had considerable variation in the 

calibration analysis of the present study (Table 4). 

The CDC controls the time required for the canopy to 
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mature until the end of the crop cycle (Abedinpour et 

al., 2012), depending fundamentally on the duration 

of each phenological stage. The longer the interval 

between onset of senescence and physiological 

maturity, the longer the AquaCrop accounts for the 

influence of CDC on final crop yield. Thus, as the 

CDC was calibrated for different genotypes, values 

varied. Lievens (2014) observed moderate CDC 

sensitivity to soybean cultivation, with yield 

estimates influenced by up to 10%. Adeboye et al. 

(2017) performed several iterations with the trial and 

error method in adjusting the CDC value to obtain a 

good simulation. The authors adjusted values ranging 

from 12.0 to 29.1 (% GDD−1). 

The HIo may vary between genotypes, also 

depending on the edaphoclimatic condition in which 

the plant is inserted. Therefore, there was a large 

variation of values (26% to 47%; Table 4). Battisti et 

al. (2017) obtained HIo = 45% for soybean in similar 

climatic conditions as the present study. Paredes et al. 

(2015) observed errors of approximately 302 kg ha–1 

in final yield considering HIo = 38%. The authors 

comment that the good results observed were due to 

the good WP* calibration, fixed at WP* = 17, with 

the trial and error procedure. Lievens (2014) obtained 

HIo = 38% in calibration and, according to the author, 

as the HIo is cultivar specific (Raes et al., 2018c), the 

validation of its value is necessary for the crop 

development condition. The author points out that 

comparing the parameter value with other studies 

involving AquaCrop would only be useful if the same 

cultivar were used. 

In general, the errors obtained in the calibration 

analysis for soybean were small, with the highest 

value observed in Ponta Grossa (Table 5). The mean 

absolute (MAE) and relative errors (MRE) observed 

for Arapoti, Castro, Itaberá and Ponta Grossa were 

very similar. On average, considering all harvests, 

MAE = 97.21 kg ha−1 and MRE = 2.52% were 

obtained. Silva et al. (2018) obtained MAE ranging 

from 100 to 330 kg ha−1. Paredes et al. (2015) found 

higher MRE, which ranged from 7.2% to 10.2% in 

the calibration process, over the four harvests 

analyzed. 

Table 5 MAE and MRE, RMSE, Pearson correlation coefficient (r), “d” index and yield averages (𝒀̅𝒓 and 𝒀̅𝒔) obtained in the 

calibration process between observed (Yr) and simulated (Ys) yields in the AquaCrop model 

Localitie 
MAE MRE RMSE r “d” 𝑌̅𝑟 𝑌̅𝑠 n* 

kg ha–1 % kg ha–1 --- unitless --- ---- kg ha–1 ---- 

Arapoti 126.33 2.54 128.04 0.88 0.87 4974 5000 3 

Castro 82.44 2.34 98.53 1.00 0.99 3662 3626 9 

Itaberá 92.33 2.35 103.80 0.99 0.98 3890 3815 3 

Ponta Grossa 112.25 3.06 137.96 1.00 0.99 4003 4031 4 

All localities 97.21 2.52 113.56 0.99 0.99 3977 3958 19 

Note: n* – Total number of harvests (Yr and Ys) evaluated in the calibration process; 𝑌̅𝑟 – Average yield observed in the field; 𝑌̅𝑠 – Average yield simulated in 

the AquaCrop model; MAE- Mean absolute; MRE -relative errors-; RMSE -root mean square error; 

Except for Arapoti, the determination coefficients 

and “d” index obtained in the localities had excellent 

results (r = 0.99; d > 0.98), indicating a perfect 

association between the estimated and observed yield 

values. Arapoti and Itaberá had the inconvenience of 

having only three harvests for linear regression 

analysis, which made it difficult to describe the 

results obtained (Table 5 and Figure 1). However, 

even with the limitations, the r = 0.88 and d = 0.87 

values obtained in Arapoti can be considered good. 

Based on the average of the 19 observed harvests, 

evaluated in the calibration process (3977 kg ha−1), 

the RMSE ≤ 138.00 kg ha−1 values obtained between 

the yields observed in the field and estimated in the 

program for all localities showed excellent results in 

association with the calibrated parameters analyzed 

in AquaCrop, representing almost 3.47% of the 

observed productivity average (Figure 1e). 
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(a)   Arapoti                                                                                       (b) Castro 

 
(c) Itaberá                                                                      (d) Ponta Grossa 

 

(e) All locations together 

Figure 1 Linear regression analysis and respective determination coefficients (R2) obtained in the calibration, between soybean yield 

observed in the field and simulated in the AquaCrop model  

3.2 AquaCrop model validations 

Even obtaining great adjustments in the 

calibration, there was an increase in errors in the 

validation analysis. The largest errors occur in 

Arapoti, with a relatively average error higher than 

10%. AquaCrop underestimated yields with higher 

intensity in this locality, and all simulated crops 

presented yields lower than those observed in the 

field (Table 6 and Figure 2). However, on average, 

considering all crops and localities analyzed, MAE = 

277.69 kg ha−1 and MRE = 7.12% were found  

 

between yields observed in the field and simulated in 

the program, which corresponded to an increase of 

only 4.6% compared to MRE = 2.52% verified in the 

calibration. The main limitation in Arapoti city was 

due to the low number of crops available in the 

calibration process, which made it difficult to obtain 

consistent parameters. Battisti and Sentelhas (2014) 

found a similar mean absolute error (MAE = 284 kg 

ha−1) for soybean in several locations in southern 

Brazil. 
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Table 6 MAE and MRE, RMSE, Pearson correlation coefficient (r), “d” and “c” indexes and yield average (𝒀̅𝒓 and 𝒀̅𝒔) 

obtained in the validation process between observed (Yr) and simulated (Ys)  

Localitie 
MAE MRE RMSE r “d” “c” 

Performance 
𝑌̅𝑟 𝑌̅𝑠 n* 

 kg ha–1 % kg ha–1 ----- unitless ----- -- kg ha–1 -- 

Arapoti 522.67 11.59 625.26 0.56 0.59 0.33 “Terrible” 5038 4516 3 

Castro 316.36 8.82 469.05 0.90 0.87 0.78 “Very good” 3706 3684 14 

Itaberá 59.75 1.60 78.02 1.00 1.00 0.99 “Excellent” 3906 3871 4 

Ponta Grossa 196.80 4.09 240.86 0.85 0.89 0.76 “Very good” 4598 4650 5 

All localities 277.69 7.12 419.13 0.89 0.92 0.81 “Very good” 4062 3995 26 

Note: n* – Total number of harvests (Yr and Ys) evaluated in the validation process; 𝑌̅𝑟 – Average yield observed in the field; 𝑌̅𝑠 – Average yield simulated in 

the AquaCrop model. 

     
           (a) Arapoti                                                                                        (b) Castro 

   
               (c) Itaberá                                                                               (d) Ponta Grossa 

  
(e) All locations together 

Figure 2 Linear regression analysis and respective determination coefficients (R2) obtained in the validation, between soybean 

production observed in the field and simulated in the AquaCrop model  

In Castro, two harvests presented extreme 

productivity. In the 2014/2015 harvest, the “BMX 

Apolo” cultivar presented an observed yield of 4361 

kg ha–1 and a simulated yield of 5462 kg ha–1, 

resulting in MRE = 25.25%. In the 2015/2016 harvest, 

a water deficit was observed, resulting in 2080 kg ha–
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1 of observed yield and 3267 kg ha–1 of simulated 

yield, with MRE = 36.33%. Both harvests contributed 

considerably to the increase in errors observed in the 

validation for this locality (Figure 2b). However, 

even with both occurrences, it was observed “Very 

Good” performance in the analysis. The correlation 

coefficient was very similar to that obtained by Silva 

et al. (2018), being r = 0.95 and r = 0.93 for soybean 

varieties “MSOY 9144” and “TMG 1244”, 

respectively. The authors pointed out that the good 

adjustment obtained was due to the irrigation 

treatments adopted, and the high precipitation 

observed in the treatment without irrigation. As 

irrigation practice was not adopted in the present 

study, it can be ensured that the calibration process 

was adequate, as it was adjusted to the natural 

climatic conditions of the Campos Gerais region. 

Akumaga et al. (2017) and Battisti et al. (2017) 

state that models can overestimate simulated yields, 

since they were developed to estimate the 

productivity that can be theoretically achieved, not 

accounting factors such as pests and diseases, and the 

photoperiod effect on soybean development, which 

can lead to increase or decrease on yield estimates for 

early or late planting dates. In the present study, 

AquaCrop underestimated productivity in most 

locations. Only in Ponta Grossa there was an 

overestimation, which can be considered negligible 

due to the productivities amplitudes (Table 6). 

Adeboye et al. (2017) also observed good 

adjustments in soybean validation, with estimated 

yield ranging from 0 to 3% (percentage deviation) of 

observed grain yield. 

The “d” indexes obtained in the analysis showed 

results similar to those found for correlation 

coefficients (r), being higher than those obtained by 

Battisti et al. (2017), which obtained “d” = 0.68 for 

the soybean crop in southern Brazil. 

In general, the validation analysis performed for 

Castro, Itaberá, and Ponta Grossa cities showed great 

performances, ranging from “Very good” to 

“Excellent” (Table 6). The result obtained in Arapoti 

points out the importance of data quantity and 

consistency to perform the calibration and validation 

analysis. The result of all crops analyzed together 

showed R2 = 0.79, “d” = 0.92 and “c” = 0.81 in the 

validation process, indicating “Very good” 

performance. 

The results indicated that the calibration of the 

AquaCrop model was adequate to the edaphoclimatic 

conditions of Campos Gerais region, Subtropical 

Zone in Southern Brazil, since only the parameters 

WP*, KcTR,x, CDC, and HIo had their values adjusted, 

according to the importance identified in the model 

sensitivity analysis. Thus, it is possible in future 

studies to use this computational tool to assist in crop 

forecasting and to identify better soybean planting 

alternatives, aiming to further increase yields in the 

region. 

To make the AquaCrop model suitable to be used 

with reasonable accuracy to estimate soybean 

productivity, in regions near to Campos Gerais or 

with edaphoclimatic conditions similar to the ones in 

the present study, the values attributed to the most 

sensitive parameters of the model (CDC, KcTR,x, WP*, 

and HIo) should be used as recommended by the 

present study. 

4 Conclusions 

Sensitivity and calibration analysis with 

AquaCrop model identified the parameters CDC ( 4.8% 

to 14.5% GDD−1), KcTR,x ( 1.10 to 1.15), WP* for 

ETo and CO2 ( 16 to 20 g m−2) and reference HIo ( 26% 

to 47%) as the most sensitive to estimate soybean 

production in the Campos Gerais region, Subtropical 

Zone in Southern Brazil. 

AquaCrop showed performances between “Very 

good” and “Excellent” in the validation analysis for 

the soybean crop in Castro, Itaberá, and Ponta Grossa. 

The worst result obtained in Arapoti was due to the 

few harvests available for calibration, resulting in 

“terrible” performance in the model validation 

process, which highlights the importance of data 

quantity and consistency to perform analysis with 

AquaCrop. 

AquaCrop is adequately able to estimate soybean 
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production in the Campos Gerais region and can be 

used as a computational tool in decision making in 

search of better soybean planting and management 

alternatives in the region. 
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