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Abstract: Corn yield estimation constitutes a critical issue in agricultural management and food supply, especially in demographic 

pressure and climate change contexts.  In light of precision and smart agriculture, this study aims to develop a diagnostic approach to 
temporally monitor and estimate corn yields using GRAMI (a model for simulating the growth and yield of grain crops), satellite 
images, and climate data at regional scale.  The GRAMI-corn model is controlled by vegetation indices (VIs) derived from Landsat 8 
satellite images and calibrated by climate data.  The model was performed and validated using information collected from twenty five 
cornfields in a semiarid region in Ravansar, Iran.  The average of under- or over-estimate yields was 919 k g  h a − 1.  In addition, the 
absolute error between the average observed and estimated yield values for the region was 19.21% for the 2016 corn season.  The 
results using the GRAMI-corn model showed an acceptable agreement with field measurements. 
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 1 Introduction 

Temporal monitoring of crop conditions and crop 
yields have been appeared as the main elements of 
sustainable agricultural management (Doraiswamy et al., 
2003). Governmental, agricultural, and insurance agencies 
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rely on acreage under crop cultivation to organize 
economic and social tasks including food supply and 
security, import and export markets, humanitarian aids, 
etc. from local to global scales. Among the agricultural 
products, corn (Zea mays L.) is an important staple food 
for human, forage for animal, and raw material for 
industrial products. Corn is the most cultivated cereals in 
the world. According to Food and Agriculture 
Organization (FAO), the world’s harvested area of corn 
increased from 138 million ha in 1994 to 197 million ha in 
2017. In addition, the production estimates increased from 
568 million tons in 1994 to 1.134 billion tons in 2017 
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(FAOSTAT, 2016). Based on FAO, the population of the 
world will have the growth of 35% by 2050 which reaches 
9100 million residents, chiefly in developing countries. To 
prepare food for this population, food production needs to 
increase by 70%, in accordance with the safety and 
conservation of natural resources. Notably, some studies 
demonstrated that corn yield could diminish in the coming 
years due to anthropogenic climate change. Main impacts 
of climate change on agriculture are deterioration in crop 
yields, effects on production, consumption, and 
commercialization, and effects on per capita caloric 
consumption and child nutrition. Corn crop yield straightly 
rely on many contextual factors like management 
practices, the environment, genotype, and their interactions 
(Khaki et al., 2020; Sharif and Alesheikh, 2018). The 
influence of regional climate patterns and large-scale 
meteorological phenomena are able to have a remarkable 
impact on agricultural production (Dahikar and Rode, 
2014). It is therefore necessary to have tools that enable 
real time corn yield monitoring and estimation over large 
areas. 

One of the challenging problems in precision 
agriculture is crop yield prediction, and many models have 
been suggested and validated so far. This issue requires the 
use of a number of datasets since crop yield rely on many 
different factors such as climate, weather, soil, fertilizer 
usage, and seed variety (Xu et al., 2019). This illustrates 
that crop yield prediction is not a trivial task; instead, it 
involves several complicated steps. Presently, crop yield 
prediction models have the capability of estimating the real 
yield rationally, but a better performance in yield 
prediction is still favorable. 

In light of smart agriculture and agronomy, remote 
sensing technology has been widely used in detection and 
classification of farmlands including corn yields 
(Atzberger and Eilers, 2011). A combination of visible, 
infrared, and microwave wavelengths of multi-band 
satellites, such as Landsat-8, Sentinel-1, and Sentinel-2, 
enables estimating and forecasting vigor, density, health, 
and productivity of crops (Drusch et al., 2012; Roy et al., 

2014; Torres et al., 2012). By analyzing the spectral 
features of vegetation derived from satellite images, crop 
canopies, crop conditions, and crop yields can be easily 
observed over large areas. Crop modeling and remote 
sensing (RS) are both prevalent methodologies that 
suggest all the advantages of the techniques accessible for 
practical assessments of crop productivity and growth 
conditions (Nguyen et al., 2019). A crop model permits for 
sequential simulation, whereas RS enables consistency in 
the monitoring of geographic and spatial variations in crop 
conditions and productivity (Kim et al., 2015; Jeong et al., 
2018b). The success of the remote sensing in crop 
modeling mainly originates in defining vegetation indices 
(VIs) as the primary explanatory indicator. However, crop 
modeling is still sensitive to soil and meteorological 
variables (e.g., temperature, precipitation, and moisture), 
which cannot be necessarily sensed on time, and need to 
be obtained from other sources (Moulin et al., 1998; 
Moran et al., 1995).  

Several crop models have been proposed for the 
estimation of crop yields using satellite imagery (see 
reviews (Di Paola et al., 2016; Rauff and Bello, 2015; 
Oteng-Darko et al., 2013; Hoefsloot et al., 2012)). 
However, the functionality of a large number of them is 
dependent on the accuracy and completeness of input 
surface parameters (Ko et al., 2005). These initial 
parameters cannot be easily obtained at the corresponding 
regional areas (Padilla et al., 2012), which may 
consequently affect the crop models’ performances. To 
overcome with the input parameterization constraint, 
various crop models have been introduced (e.g., GRAMI 
(Maas, 1992)) that not only employ fewer input parameters 
but also are faster to estimate crop production parameters 
(Ameline et al., 2018). The Gramineae (GRAMI)-crop 
model (Maas, 1993a, 1993b) was developed by the 
CESBIO laboratory to simulate the growth and yield of 
grain crops. GRAMI can use remotely sensed information 
(e.g., VI and land cover) for adjusting model parameters 
and reducing the gap between remote sensing estimate and 
model measurement of crop growth (Alharbi et al., 2019). 
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GRAMI has been validated for various crop types such as 
wheat (Triticum spp.), corn (Zea mays L.), sorghum 
(Sorghum bicolor), cotton (Gossypium spp.), and rice 
(Oryza sativa) in contrasting climatic conditions (Kim et 
al., 2017; Ko et al., 2005; Kim et al., 2015; Tashayo et al., 
2020). The present form of GRAMI has been retitled as a 
RS-integrated crop model (RSCM), representing that the 
model is updated with the abovementioned information for 
future simulations of several crops variously. The RSCM 
allows the monitoring of croplands at different scales, 
ranging from farm fields to various geographical regions 
(Jeong et al., 2018a; Jeong et al., 2018b; Jeong et al., 2020; 
Yeom et al., 2018; Shawon et al., 2020). 

Along with crop models, the contribution of climate 
data has been widely proved in the literature to estimate 
and measure crop production (Kamir et al., 2020; Basso 
and Liu, 2019). The influence of meteorological conditions 
on crop growth varies spatially and temporally (Butler and 
Huybers, 2013; Zipper et al., 2016). Meanwhile, the 
majority of the global models ignore the inherent 
correlation between the meteorological conditions in 
regions of study and crop yields (Van Ittersum et al., 2013; 
Van Wart et al., 2013). In this context, the objective of this 
study is to examine the GRAMI-corn model that is 
integrated with climate ancillary data for temporally 

monitoring grain corn yield derived from high spatial 
resolution satellite images.  

2 Materials and methods 

2.1 Site description 
The city of Ravansar (34.34º N 46.39º E), which is 

located in the northwest of Kermanshah province, Iran, is 
selected as the area of interest (Figure 1). Ravansar’s area 
is 1140 km2 and lies 1343 m above sea level. Ravansar 
classified as Mediterranean climate meaning that it is 
sweltering and arid in summer, and very cold in winter. 
The temperature varies by 25.6°C from the warmest month 
(July) to the coldest month (January) with an average high-
temperature of 6.5°C (43.7°F) and an average low-
temperature of -4.3°C (24.3°F) of the year 2016 (May to 
September). The average annual temperature is 13.8°C 
(Climate-data, 2016). The climatic classification of 
Kermanshah province has been shown in Figure 2. 
Ravansar is characterized by sufficient annual precipitation 
(averages 551 mm) and susceptible agricultural lands for 
production of various crop species, such as wheat, barley, 
chickpea, and flint corn. This research selected 25 farms 
dedicated to corn production. The total area of the corn 
farms is 189 ha. 

 
Figure 1 The study site: Ravansar, Kermanshah Province, Iran 
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Figure 2 Climatic classification of Kermanshah Province 

2.2 Data and pre-processing 
In the current study, three data types namely satellite 

images, ground data, and climate records were employed. 
Pre-processing was performed on the dataset as follows. 

Satellite Data: Five series of Landsat-8 images were 
acquired throughout corn cultivation period, from May to 
September 2016 (USGS, 2016). In terms of pre-
processing, geometric correction was already applied on 
the images, and only the radiometric correction was 
performed. It should be noted that, this correction involves 
two steps called sensor and atmospheric correction in order 
to convert the digital number (DN) values of the data to 
spectral radiance and then to reflectance (both at the 
sensor). This is followed by the removal of atmospheric 
effects, which are due to absorption and scattering, to 
perform atmospheric correction (reflectance at the 
surface). 

Ground Data: According to corn crop calendar in 
Ravansar, several queries and ground measurements were 
performed for each field to determine canopy growths and 
features including leaves dimensions, bushes heights, 
sampling points coordinates, phenological stages of the 
samples, fresh and wet weights of samples, irrigation 

period, and temperature at satellite crossing time. In 
addition, the AccuPAR LP-80 Ceptometer (Meter Group, 
USA) equipped with photosynthetically active radiation 
(PAR) sensor, was used for ground leaf area index (LAI) 
calculation. The obtained LAI map is compared with the 
normalized difference vegetation index (NDVI) map in 
Section 3.1. Throughout the crop season, the ground data 
were collected over 25 fields, in which 20 fields were used 
in calculations and five fields were used for validation and 
accuracy assessment. 

Climate Data: Meteorological data including minimum 
and maximum daily air temperature were obtained from 
Kermanshah meteorological station (which is located 56 
km far away from corn farms of the study) during the 
whole study season and the mean daily temperature was 
calculated. In addition, the average of monthly solar 
radiations was collected. 
2.3 Methodology 

A schematic overview of crop yield estimation using 
the GRAMI-corn model is illustrated in Figure 3. This 
procedure follows three steps of calculating NDVI and 
LAI from remote sensing data and ground data, 
respectively, and developing the GRAMI model by using 
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climate data and LAI map. 
 

 
Figure 3 Schematic representation of crop yield estimation using the GRAMI model 

2.3.1 Calculation of LAI and NDVI  
NDVI quantifies vegetation by measuring the 

difference between near-infrared with wavelength about 
1100–2500 nm (NIR, which vegetation strongly reflects) 
and red light with wavelength about 650 nm (Red, which 
vegetation absorbs) as shown in Equation 1. NDVI values 
range (-1, +1), however, there is not a distinct boundary 
for each type of land cover. 

𝑁𝐷𝑉𝐼 = (𝑁𝐼𝑅 − 𝑅𝑒𝑑)/(𝑁𝐼𝑅 + 𝑅𝑒𝑑)                (1) 
LAI indicates the total ground area of leaves related to 

the amount of light that can be intercepted by plants. LAI 
can be directly calculated or indirectly estimated. In this 
research, LAI was calculated by green leaf area per ground 
surface area (Equation 2), by using the AccuPAR LP-80 
Ceptometer data that was equipped with photosynthetically 

active radiation (PAR) sensor. 

𝐿𝐴𝐼 =  𝑙𝑒𝑎𝑓 𝑎𝑟𝑒𝑎 (𝑚2) / 𝑔𝑟𝑜𝑢𝑛𝑑 𝑎𝑟𝑒𝑎 (𝑚2)        (2) 
2.3.2 GRAMI model 

Inspired by the GRAMI model and remotely sensed 
data, corn yield was estimated. According to (Maas, 
1993c), there are four steps attributed to daily corn crop 
growth simulation including (i) quantifying the of growing 
degree-days (GDD), (ii) absorption of photosynthetically 
active radiation by leaf, (iii) dry mass produced by the leaf 
canopy, and (iv) specifying LAI classification of dry mass 
to leaf, stem, and grain. 

Equation 3 determines the increment of aggregated 
growing degree-days (ΔD). 

∆𝐷 =  𝑀𝑎𝑥(𝑇 − 𝑇𝑏, 0)                       (3) 
where T and Tb are the average daily air and crop-
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specific base temperatures (°C), respectively. The value of 

Tb for corn is 10°C. When T ≤ Tb, the value of ΔD is zero. 

The daily increase in above-ground dry mass (∆M, g m−2) 
was calculated using Equation 4. 

∆𝑀 =  𝜀𝜀𝑄                                      (4) 

where 𝜀𝜀 is the effective radiation efficiency in g MJ-1 
PAR and Q is the daily accumulated absorbed 
photosynthetically active radiation (MJ m−2) absorbed by 
the crop canopy through Equation 5. 

𝑄 =  𝛽𝑅(1 − 𝑒−𝐾 𝐿𝐴𝐼)                           (5) 
In Equation 5, β is the fraction of total solar irradiance 

and is valued 0.45 (Monteith and Unsworth, 2013), R is 
the incident daily total solar irradiance (MJ m−2), LAI 
stands for the leaf area index, and K is a light extinction 
coefficient specified for a given crop. 

The yield of the crop is a part of the total produced 
biomass equal to the harvest index based on Equation 6. 
According to the definition of harvest index, crop yield (kg 
ha−1) is the ratio of grain weight to the biomass weight 
above the ground at the time of crop maturity. 

𝑌𝑖𝑒𝑙𝑑 =  𝐻𝐼 × 𝑀                                    (6) 
HI (non-unit) is the harvest index (i.e., dry weight of 

plant m−2 /grain weight m−2) and M is the biomass (kg 
ha−1). 
2.3.3 Statistical analysis 

In this study, for model validation, values of simulated 
crop yield, biomass, LAI, and harvest index were 
compared with the measured values. Three statistical 
indices were used to determine the crop parameters and 
evaluate the performance of the model called p-value and 
R2 using regression analysis and standard deviation. All 
processes of the regression model were implemented in the 
Statistical Package for Social Science (SPSS) software 
(Version 23.0). Linear regression was applied to obtain the 
NDVI-LAI relationship for model calibration and 
validation of this equation. Similarly, this procedure was 
applied between the weight of dry biomass (M) and the 
values of Q (total absorbed radiant energy) to obtain light 
efficiency (Ԑ) and calibration of this parameter. Moreover, 

linear regression was performed between the dry weight of 
the seeds and the total biomass at harvest time to obtain 
the harvest index. A level of p-value<0.05 was considered 
to statistically assess the significance of the regressions. 

3 Results  

3.1 NDVI and LAI maps 
3.1.1 NDVI maps 

In the present study, once NDVI maps have been 
prepared from Landsat 8 satellite imagery, the LAI values 
were compared with the values of the NDVI derived from 
the satellite image (the pixel values where the sample 
points were located) and the empirical relationship 
between these two indicators was obtained. The 
relationship created after validation was employed to 
obtain the LAI map of satellite images. The generated map 
was used as one of the inputs of the GRAMI model to 
prepare a map for crop yield. Figure 4 shows NDVI 
variations during corn sowing indicating that with the 
growth of the corn plant, the amount of NDVI increases 
until the corn reaches its maximum growth. After that, the 
amount of NDVI decreases as the corn leaves dries. 

 
Figure 4 NDVI variations during corn sowing 

3.1.2 Leaf Area Index (LAI) 
The LAI value was measured at the sampling points by 

the ceptometer to estimate canopy PAR interception. 
These values were transferred to the map according to the 
coordinates of the harvested points. The values obtained 
for LAI were compared with pixel values of the NDVI 
map for empirical relationships. Figure 5 shows the 
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number of sample points and Table 1 indicates the 
measured LAI values, which are obtained at the time of 
visiting the region. In order to check data variability, 
Standard Deviation of LAI values was calculated with the 

result of 1.91, meaning that the data points tend to be very 
close to the mean. More precisely, the average distance 
between the values of the data in the set and the mean 
indicates an acceptable measure.  

 
Figure 5 Selected cornfields 

Table 1 Average ground LAI measured at sampling points 

 
May June July August September 

LAI 0.94 3.64 5.49 4.69 1.81 

In order to check data variability, the standard 
deviation of LAI values was calculated as 1.91 indicating 
that the data points tend to be very close to the mean.  
3.1.3 Relationship between NDVI and LAI 

The combination of NDVI-LAI can reveal the state of 
crop vegetation cover. Given the dependency of NDVI and 
LAI, they are able to estimate and predict crop yield 
(Curran, 1994). Therefore, for GRAMI model calibration, 
it was needed to compare the measured and simulated LAI 
values via obtaining a relation between LAI and NDVI 

that leads to obtaining the values of simulated LAI. A 
regression was taken between the ground LAI value and 
the NDVI of satellite images at 200 sample points. The 
highest coefficient of correlation with the coefficients of 
determination were 0.8 (Polynomial regression) and 0.7 
(Linear regression), respectively (Figures 6 and 7. In 
addition, the p-value<0.001 indicates that using a relation 
between these indices has been useful to obtain simulated 
LAI values. 
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Figure 6 NDVI-LAI relationship (Polynomial regression) 

 
Figure 7 NDVI-LAI relationship (Linear regression) 

 
Figure 8 Relationship between measured LAI and simulated LAI at control points (Linear) 

LAI = 12.093NDVI2 - 0.8155NDVI + 1.1865 
R² = 0.8164 
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Figure 9 Relationship between measured LAI and simulated LAI at control points (Polynomial) 

To validate the NDVI-LAI relationship, the LAI values, 
which were calculated at the control points, were 
compared with the LAI values of 20 ground points. The 
linear and polynomial regressions had R2=0.76 and 
R2=0.77, respectively (Figures 8 and 9). 
3.1.4 LAI map  

Five LAI maps were prepared for five periods of 

imagery during the corn growth to be used in the crop 
yield model. The map belonging to May 2016 can be seen 
in Figure 10 which is related to the planting stage until 
emergence of corn that indicates rising trend of LAI values 
from 1.21 to 6.87. This is the highest value at this month 
due to the beginning stage of flowering corn. 

 
Figure 10 LAI map 
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3.1.5 Total solar radiation (R) 

Since the meteorological stations do not harvest data 
from total radiation (𝑀𝐽 𝑚−2 ), the average of monthly 
solar radiations from Ravansar were collected. The total 
amount of daily radiation produced in the corn growth 

seasons (𝑊 ℎ 𝑚−2) was multiplied by 3.6 to be used in the 

model and converted to the unit (𝑀𝐽 𝑚−2) (Table 2). 
Table 2 Average monthly radiation 

 
May June July August September 

R (𝑾 𝒉 𝒎−𝟐) 5.88 6.81 7.27 7.68 6.75 

R (𝑴𝑱 𝒎−𝟐 ) 21.16 24.51 26.17 27.64 24.3 

3.2 Model calibration 
The crop-specific parameters were calculated for the 

GRAMI model as follows. 
3.2.1 Extinction coefficient (K) 

The K value was calculated using AccuPAR by 
measuring the higher and lower values of PAR for corn 
crops when visiting the farms. The calculated value of K 
for each image is shown in Table 3. There is an increasing 
trend for K values from spring to summer. 

Table 3 Calculated K value of images 

 
May June July August September 

K 0.06 0.12 0.64 0.72 0.8 

3.2.2 Light efficiency (Ԑ) 

Ԑ (𝑔 𝑀𝐽−1) was initially valued as the slope of the 
regression line between the dry biomass measured in the 

harvest season (𝑔𝑚−2) (M) and the total absorbed radiant 
energy (Q) for the sampled points. Figure 11 shows the 
behaviour of Q against the days that have elapsed after 
planting (DAP) to calculate the total PAR. 

 
Figure 11 Total absorbed radiant energy (Q) versus the number of days after planting (DAP) 

The information of 15 samples was used to determine 
Ԑ. The Q values were calculated for the above points.  

Table 4 Regression statistic results between Q and M 
Regression Statistics 

Multiple R 0.99 
R Square 0.98 

Adjusted R Square 
Standard Error 

p-value 

0.91 
1758.21 
<0.001 

Observation 15 
Sum of Squares 3175682883 

DF 15 
F 982.45 

The linear regression was obtained between the weight 
of dry biomass (M) and the values of Q, which was Ԑ. The 

R2 value was 0.98 and p-value<0.001 for 15 observations 
determine the level of trust in the predictions of the model 
using Q as the independent variable and M as the 
dependent one (Table 4). 

Table 5 Slope of the linear regression between Q and M  

 Coefficients Standard Error 

Intercept 0  

Q (M J m−2) 16.212 0.517 

The coefficients and the result of the effect of each 
independent variable on the dependent variables were 
calculated. Higher the coefficient results in higher the 
predictive power. The best number for the calibrated light 
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efficiency is 16.21 MJ m-2 in the above regression (Table 
5). 
3.2.3 Harvest index (HI) 

In the physiological maturity stage, samples were 
prepared from each plot and the harvest index was 
obtained by establishing the linear regression between the 
dry weight of the seeds and the total biomass at harvest 
time for the sampled points. R2= 0.93 was calculated 
between dry seed weight and total dry weight, and p<0.001 
indicates that regression analysis can be utilised as reliable 
results for obtaining harvest index. 

3.3 Model validation  
The mean crop of each of the five farms used in the 

validation was considered to be the simulated crop for 
evaluating the production error rate. The error rate of the 
GRAMI model in the estimation of the corn yield was 
calculated by comparing the land measurement data of the 
studied fields and values simulated by the model. Table 6 
shows the error rates of using the model in the 
experimental fields. According to the results obtained in 
this study, the model is valid with a mean error of 19.21%. 

Table 6 Error rate of corn production using GRAMI model 
 May June July August September 

Yield measured 
(kg ha−1) 

8962.1 7853.4 8489.2 7650.47 8759.5 

Simulated yield 
(kg ha−1) 

7203.5 6249.6 6686.0 6448.1 7087.9 

Error rate (%) 19.6 20.4 21.2 15.7 19.0 

The images were included in the model in five periods 
to prepare the pixel map. Corn fields’ maps of Ravansar 
city prepared and used with five LAI images related to the 
five stages of corn crop growth. Then, the optimization 

parameters obtained for Ravansar corn obtained in this 
study were entered into the model. Finally, by applying the 
harvest index, the pixel map of the whole city was 
obtained. The map of corn yield in Figure 12 demonstrates 
five categories of corn yield estimation of the city 
classified from 2334.39 to 8375.18 kg ha−1, which is the 
prediction of yield estimated belonging to the year 2016 
for the region.   

Figure 12 Corn yield prediction map in Ravansar 
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4 Discussion 

The feasibility of the GRAMI-corn model for crop 
growth and grain yield estimation using Landsat 8 satellite 
images and atmospheric data was evaluated for a semi-arid 
area. Although twenty-five corn farms were selected to 
assess the practicality of the model, the predicted map of 
corn yield estimation of the whole city was obtained. 

This research applied GRAMI model and climate data 
to estimate corn yield. Compared to other models and 
dataset that used the GRAMI model for crop monitoring, 
the finding of this research for corn estimation is 
acceptable. Using the SAFY-WB agrometeorological 
model along with optical and synthetic aperture radar 
satellite images and weather data (solar radiation, rainfall, 
air temperature, wind speed, and relative humidity) 
resulted in relative errors inferior to 13.95% (R2 > 0.69) 
(Yeom et al., 2018). Another study employed the 
piecewise linear regression method with breakpoint and 
considered NDVI, soil moisture, surface temperature, and 
rainfall data for yield prediction of corn and soybean with 
promising results of R2 = 0.78 and R2 = 0.86, respectively 
(Prasad et al., 2006). Therefore, the absolute error and 
accuracy between the average estimated and the average 
observed yield values reported for this study (19.21% and 
80.79%, respectively) certifies that integrating climatic 
data with the GRAMI model for corn estimation is 
effective. 

Several studies have applied GRAMI model to 
estimate other crop yields such as wheat, cotton, rice, and 
sorghum. The absolute errors for wheat were 5.44% and 
6.86% for two seasons (Padilla et al., 2012), 5.8% (Maas, 
1993c), and with final yield estimation of 25.9% 
(Atzberger and Eilers, 2011). The absolute errors for grain 
sorghum was 2% (Maas, 1988a, 1988b). Additionally, 
applying GRAMI model for rice demonstrated significant 
range of accuracy. Examples of these implementations are 
the standard errors of 0.45, 0.27, and 0.52 between 
simulated and measured mean values obtained from paired 
t-tests (α = 0.05) by using coverage of unmanned aerial 

vehicle (UAV) and RapidEye satellite images (Kim et al., 
2017) and standard errors of 0.183, 0.075, and 0.101 
between simulated and observed paddy yields obtained 
from t-testing procedure using Geostationary Ocean Color 
Imager (GOCI) and MODIS combined with 
meteorological parameters such as solar insolation and air 
temperature (Yeom et al., 2018). These result justify the 
performance of GRAMI rice model for paddy rice’s 
growth estimation (Yeom et al., 2015). Therefore, the p-
value (<0.05), R2 (0.81, 0.77, 0.98, and 0.93), and standard 
deviation (1.91) obtained in the relevant steps were 
rational and trustworthy in this research.  

A number of factors can contribute to the magnitude of 
estimation errors for corn fields that can stem from the 
characteristics of the corn in using different models and 
parameters, using only one type of satellite imagery, one 
year for assessment, limited ground and satellite 
parameters, not using multiple VIs, or human and machine 
errors. For example, yield values reported by farmers can 
result in estimation errors in this study. However, 
estimation of corn using GRAMI model incorporated with 
meteorological data has not been applied for higher 
evaluation and calibration. The results showed that the 
GRAMI-corn model successfully estimated grain yield of 
corn by map projections over the studied period. The 
GRAMI model with the ability to perform within-season 
calibration reproduces crop growth and grain yields using 
remotely sensed data. Thereby, it is functional for 
monitoring crop growth conditions and determining grain 
yield. Minimizing the error between simulated and 
observed canopy growth variables was justified by 
combining the GRAMI-corn model and LAI value (Kim et 
al., 2015). However, the final accuracy can be increased if 
high-resolution satellites images are coupled with other 
remote sensing data and ground measurements.  

5 Conclusion 

A GRAMI model was developed for temporally 
monitoring corn yields at regional scale. In this context, 
the use of climate data combined with satellite imagery 
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and ground data constitutes a useful tool for accurate 
monitoring of corn yields. Results of temporal monitoring 
corn yields over five months in a semiarid region in 
Western Iran (the city Ravansar) using this model 
demonstrated reasonable consistency between observed 
and estimated yields. In terms of model accuracy, the 
average amount that a field is under- or over-estimated as 
corn yield is approximately 19% of the average five 
months yield observation for the region. It was shown that, 
the spatial and temporal features for corn yield estimation 
is sensitive to meteorological factors, as it has been proved 
in literature for other agricultural products too. In 
conclusion, the GRAMI-corn model enriched by climate 
data and calibrated using satellite imagery become a useful 
tool to be exerted to wide agroclimatic areas and to be 
extended to additional crops. For future studies, the 
GRAMI model performance can be examined and 
incorporated with other acceptable models especially for 
corn yield estimation in tropical and sub-tropical regions 
and areas with different environmental and climatic 
conditions, various soil and other required factors related 
to crop growth with agroclimatic constraints. More 
accurate local climatic measurements (temperature, 
radiation, etc.), collected from networked weather stations, 
can calibrate the model to consider for a good estimate of 
crop yields.  
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