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Abstract: This study was designed to evaluate and model the impact of processing parameters (steaming time, soaking time, 
paddy moisture content and soaking temperature) on the energy consumption of five rice varieties (NERICA 8, FARO 52, FARO 
61, FARO 60 and FARO 44).  Energy consumption in the cleaning, soaking, steaming, drying, dehusking, polishing and grading 
operations were estimated by fitting data on labour, fuel and electricity consumption, time and machine efficiency into standard 
equations to determine total energy consumption.  The energy consumptions were separately modelled using Taguchi and 
Artificial Neural Network (ANN) models for each rice variety.  The accuracy of models was determined using the coefficient of 
determination (R2) and Mean Square Error (MSE).  Total energy consumption among the rice varieties varied significantly, 
ranging from 2.31 to 2.33 MJ for white rice, and 45.3 to 76.9 MJ for parboiled rice.  Paddy moisture content was observed to be 
the most important process parameter that influenced energy consumption.  Taguchi models were more accurate for total energy 
consumption prediction [R2 (0.95-0.97); MSE (1.24-1.96)], than ANN [R2 (0.93-0.94); MSE (3.21-3.52)].  The study established 
appropriate processing conditions that can guarantee minimum energy consumption for NERICA 8, FARO 52, FARO 61, FARO 
60 and FARO 44.  
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 1 Introduction 

Energy audit is a systematic approach used in 
keeping track of total energy consumption and costs 
through the whole facility (Akinoso et al., 2013). Energy 
audit can also be referred to as energy survey, energy 
analysis, or energy evaluation (Akinoso et al., 2013; 
Sanusi and Akinoso, 2021). Determination of how and 
where energy is used or converted from one form to 
another, identification of opportunities to reduce energy 
usage, evaluation of the economics and technical 
practicability of implementing these reductions, and 
formulation of prioritized recommendations for 
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implementing process improvements to save energy are 
the key objectives of energy audit in a facility (Capehart 
et al., 2008). In order to achieve this, data analysis and 
measurement are needed followed by the development of 
tables of energy consumption, cost and development of 
precision models for countermeasures in every factory 
and every process (Capehart et al., 2008). According to 
Bakari et al. (2010), energy consumption analysis in rice 
processing is crucial as a result of dire consequence of 
increasing cost of fuel and deforestation.  

Parboiling process as practiced in many rural rice 
producing communities is energy intensive, laborious 
and time-consuming (Kwofie et al., 2016). The recent 
trend of global energy consumption is increasing and is 
expected to reach 630 quadrillion Btu by 2020 (IEO, 
2013). Therefore, it is of great importance to note that 
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energy needs to be supplied in a more sustainable 
manner and efficient way (Kwofie and Ngadi, 2017). 
Many researchers have reported parboiling to be energy 
intensive. Bakari et al. (2010) studied the energy usage 
in small and medium scale rural rice parboiling centres 
and reported that the optimization of energy used is 
needed for sustainable rice processing in rural 
communities. In addition, sources of energy must be 
carefully considered (Bakari et al., 2010). Islam et al. 
(2004) reported that having information on energy 
requirement in rice parboiling can play a vital role in 
parboiling plants as it aids in plant efficiency and 
economic viability. Energy required in various 
parboiling methods was also reported by Bhattacharya 
(2013). Goyal et al. (2014) reported that the intensity of 
energy consumption is influenced by the variety of rice, 
parboiling conditions, parboiling method and quantity of 
rice being processed. Kwofie and Ngadi (2016) reported 
that the state of rice has a huge impact on the energy 
consumed and it is usually estimated based on the 
amount and heating value of the fuel used. Goyal et al. 
(2014) critically appraised the energy use pattern in rice 
milling industries and reported that there is need to 
improve their energy efficiency. Kwofie and Ngadi 
(2016), reported the potential use of rice husk as a 
strategic way of achieving sustainable energy supply for 
local rice parboiler in West Africa. According to Kwofie 
and Ngadi (2017), combinations of processing methods 
have been identified as a ways of improving energy 
consumption. In spite of the extensive work that had 
been done in analyzing the energy consumption involved 
in parboiling, only few have applied Taguchi model and 
computational model (Artificial Neural Network) to 
model the impact of processing parameters on energy 
consumption of parboiled rice. 

Taguchi technique is a statistical method developed 
to improve the efficiency and enhance quality of 
manufactured goods in the industry (Singh, 2012; 
Hussein et al., 2019). According to Singh (2012), 
Taguchi technique have been widely applied 
successfully in manufacturing, automobile, military and 
other industries with specific application in engineering, 
biotechnology, environmental science, agricultural, 

science, management and business. Conventional 
experimental design techniques have been found to have 
limitations when applied to industrial experimentation 
(Kondapalli et al., 2015). Based on this fact, Taguchi 
developed a new method that was known as orthogonal 
array design, which adds a new dimension to 
conventional experimental design (Sanusi et al., 2020a). 
Taguchi Orthogonal Array uses a special set of arrays 
that gives the minimum number of experiments with 
maximum information (Dash et al., 2016; Sanusi et al., 
2020b). 

One of the supervised machine learning models is 
Artificial Neural Network (ANN) and it is known to 
mimic a biological nervous system (Oluwatoyin and 
Chen, 2018). ANN can be defined as a computing 
system that uses the idea of information technology to 
mimic the processing, learning processes, transmission 
and abilities of biological neurons (Huang et al., 2016). 
Artificial Neural Network development is usually done 
either by using computer programming to develop the 
neural network or by the use of commercial artificial 
neural network software (Funes et al., 2015). According 
to Chen and Li (2007), developing ANN codes that can 
turn the theory of a particular ANN model into the 
design for a computer simulation and implementation, 
can be a herculean task for most engineers and scientists 
who do not have the programming and related 
knowledge of artificial neural networks. The use of 
commercial software has been the most famous method 
for developing an ANN model (Bhatt et al., 2014; Funes 
et al., 2015; Hosseinpour et al., 2019). ANN is a 
computer technology that emerges recently, it can be 
applied in a large number of ways such as; monitoring, 
controlling, modelling, recognition, image processing, 
optimization, predicts on line and signal processing 
(Funes et al., 2015; Hosseinpour et al., 2019; Sanusi and 
Akinoso, 2021). Therefore, the aim of this study was to 
evaluate and model the energy consumption of five 
Nigerian rice varieties by using Taguchi and Artificial 
Neural Network models.   

2 Materials and method 

Five Nigerian paddy rice varieties (NERICA 8, 
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FARO 52, FARO 61, FARO 60 and FARO 44) of 18 kg 
each were obtained from the breeding laboratory of the 
National Cereals Research Institute, Badeggi, Nigeria. 
2.1 Processing of five Nigerian paddy rice into white 
rice and parboiled rice  

Figure 1 shows the flow chart for processing paddy 
rice into white rice and parboiled rice. At each stage of 
unit operation, some energy input is required in form of 
manual energy, thermal and electrical energy. The type 
of magnitude of the energy input are functions of the 
technology and the quantity of paddy rice being 
processed. In terms of technology for this study, 
liquefied propane gas powered rice parboiler was used 
for soaking and steaming the paddy rice of the varieties. 
The paddy rice were dried at temperature of 38°C to 
desired paddy moisture content of 12%, 14% and 16%, 
respectively. Electrical powered rice roll rubber 
dehusker model (THU 35B, Satake Engineering Corp. 
Tokyo, Japan) was used for dehusking the dried paddies 
while electrical powered rice polisher (SE 1009, Satake 
Engineering Corp. Tokyo, Japan) was used to polish the 

brown rice obtained from the dehusker. International 
Rice Research Institute (IRRI) laboratory rice grader was 
used to grade parboiled rice into head rice and broken 
rice. The mass of the rice samples were measured using 
an electronic balance (GF-6000AND, Japan) of ± 0.1g 
accuracy. To determine the energy consumption, 
quantitative data of operating conditions for each unit 
operation, manual, thermal and electrical were measured. 
In some unit operations, combination of manual and 
electrical was used. The developed equations for energy 
consumption evaluation in rice processing are shown in 
Table 1. The unit operations were cleaning, soaking, 
steaming, drying, dehusking, first grading, polishing and 
second grading. The collection was done as a function of 
operating duration (h), calorific value of fuel, quantity of 
fuel used (kg), no of person involved, average power of 
man, power factor and power rating of the machines. 
Similar approach for energy consumption evaluation 
were reported by Akinoso et al. (2013); Anjorin et al. 
(2018) and Sanusi and Akinoso (2020). 

 
Figure 1 Flow chart for processing paddy rice into white rice and parboiled rice 
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Table 1 Summary of equations developed for estimating energy consumption in rice processing 

S/N Processing operations Energy components Developed equations 
1 Cleaning Manual Ec = 0.75N×0.0167t 
2 Soaking Manual and Fuel Es = 0.75N×0.0167t + Qf×Cf 
3 Steaming Manual and Fuel Est = 0.75N×0.0167t + Qf×Cf 
4 Drying Manual Ed = 0.75N×0.0167t 
5 Dehusking Electricity and Manual Edh=3.6×P×ⱷ+ N×0.0167t 
6 First grading Manual Eg1= 0.75N×0.0167t 
7 Polishing Electricity and Manual Ep=3.6×P×ⱷ+0.75×N×0.0167t 
8 Second grading Manual Eg2 = 0.75N×0.0167t 

 

where N is the number of male person involved, E is 
the energy consumption (MJ), t is time taken for a unit 
operation (h), Qf  is the quantity of liquefied propane gas 
(kg) used, Cf is the heating value of LPG used for a 
particular operation, P is the electrical power consumed 
for a particular operation (MJ), ⱷ is the power factor of 
the equipment used, 0.75 is the average power of a male 
in the tropical region (MJ h-1), 3.6 is the conversion 
factor of 1 kWh to MJ for electrical energy. The total 
energy consumption in producing a given quantity of 
paddy rice is the sum of energy components involved in 
each process operation. Thus, Equations 1 and 2 
represent equations for determining the total energy 
consumption for white rice and parboiled rice.   

Ecow = Ec + Edh+ Eg1+ EP+ Eg2       (1) 

Ecop = Ec + Es+ Est+ Ed+ Edh+ Eg1+ Ep+Eg2  (2) 
2.2 Taguchi experimental design for rice processing  

The Taguchi orthogonal array experimental plan was 
designed using Minitab®version 16 (Minitab, Inc. 
Coventry, UK) for the rice processing parameters. The 
experimental design has four factors at three levels given 
an array of L9 (34). Table 2 summarised the design 
parameters and their respective levels. In line with the 
Taguchi design, nine experimental runs were performed 
to evaluate the impact of processing parameters 
(steaming time, paddy moisture content soaking 
temperature and soaking time) on the total energy 
consumption of the parboiled rice of the five rice 
varieties.  

Table 2 Taguchi experimental design parameters and levels 
Process factors Code Unit Level 1 Level 2 Level 3 
Soaking time A h 10 13 16 

Soaking temperature B °C 65 70 75 
Steaming time C min 20 25 30 

Paddy moisture content D % 12 14 16 

2.3 Modelling of total energy consumption  
2.3.1 Taguchi model  

The smaller-the-better signal-to-noise (S/N) ratio of 
Taguchi Orthogonal Array in Equation 3 was used to 
analyse the experimental result. The 'signal' represents 
the desirable value and the 'noise' represents the 
undesirable value, where the signal to noise ratio 
expresses the scatter around the desired value (Sanusi et 
al., 2020b). The experimental results of the total energy 
consumption of the five rice varieties obtained were 
transformed into linear model using Equation 4.  

Smaller is the best characteristic 
𝑆𝑆
𝑁𝑁

= −10𝑙𝑙𝑙𝑙𝑙𝑙 1
𝑛𝑛

(∑𝑦𝑦2)      (3)  

where 𝑦𝑦�  the average response data, 𝑆𝑆𝑆𝑆2  is the 
variation of y, n is the number of treatments, and y is the 

response data.  
Y=𝛽𝛽0+𝛽𝛽1𝓍𝓍1+𝛽𝛽2𝓍𝓍2+𝛽𝛽3𝓍𝓍3+𝛽𝛽4𝓍𝓍4                             (4) 

Y is the total energy consumption, x1, x2, x3 and x4 are 
soaking temperature, soaking time, steaming time and 
paddy moisture content, 𝛽𝛽0 is the constant coefficient and 
𝛽𝛽1, 𝛽𝛽2, 𝛽𝛽3, 𝛽𝛽4 are the linear coefficient terms of the 
model. 
2.3.2 Artificial Neural Network (ANN) model  

Neural Network tool box 8.0 in MATLAB software 
was used for the Artificial Neural Network simulation. 
The schematic diagram of the Artificial Neural Network 
(ANN) is shown in Figure 2. The data obtained from 
Taguchi experimental runs were randomly divided into 
three groups, 70% in the training set, 15% in the 
validation set and 15% in the test set. The artificial 
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neural network used was back-propagation (BP), a 
descent algorithm which attempts to minimize error at 
each iteration (Turan et al., 2011). A three layer (input: 
hidden: output) feed-forward back-propagation ANN 
was used with Levernberg-Marquardt method, four input 
variables which were soaking temperature, soaking time, 
steaming time and paddy moisture content and 
corresponding outputs for the models were the total 
energy consumption for the five rice varieties. The 
number of neurons used at hidden layer was varied from 
1 to 10 neurons to get the neuron that could give an 
accurate model. The tangent sigmoid transfer function 
(tansig) at hidden layer and a tangent sigmoid transfer 
function (tansig) at output layer were used. Similar 
approach was also used by Khajeh et al. (2012) and 
Sanusi and Akinoso (2021). The training function 
selected for the network was ‘Trainlm’. ‘Trainlm’ is a 

network training function that updates weight and bias 
values according to the Lavenberg-Marquardt algorithm. 
The training set was used to train the weights in the 
neural network to produce the desired outcome. The 
validation data set was used to find the best artificial 
neural-network configuration and training parameters. 
Validation data was also used to monitor the network 
error during training. The test set was used only to 
confirm the actual predictive power of the neural 
network. The criterion used to stop training were high 
value of correlation coefficient (R) of regression plot of 
the training, validation, testing set; low mean square 
error and also the plot that compares the predicted output 
of ANN and the actual values. The accuracy of the 
predicted results of ANN model were analysed by 
comparing the actual values and predicted values. 

 
Figure 2 The schematic diagram of the Artificial Neural Network (ANN) for total energy consumption of the five rice varieties 

2.3.3 Model validation    
The performance and effectiveness of the modelling 

approach (Taguchi and ANN) were evaluated using mean 
square error (MSE) and regression coefficient of 
determination R2 (Equations 5 and 6). The generated 
models were then used to predict the total energy 
consumption. The actual values and predicted values were 
plotted against each other to determine the R2 and MSE. 
The closer the R2 of the model is to unity the more its 
reliability and accuracy. Also, lower MSE indicate better 
and more precise model.  

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁
∑ (𝑦𝑦𝑜𝑜𝑛𝑛
𝑖𝑖−1 − 𝑦𝑦𝑒𝑒)2                       (5) 

𝑅𝑅2 = 1 − ∑ (𝑦𝑦𝑜𝑜−𝑦𝑦𝑒𝑒)2𝑛𝑛
𝑖𝑖=1

∑ (𝑦𝑦𝑜𝑜−𝑦𝑦𝑚𝑚)2𝑛𝑛
𝑖𝑖=1

  (6) 

where n is the number of experiments used for 
developing the model, yo is the predicted value of the 
model, ye is the actual value and ym is the average of 
actual values.  
2.4 Statistical analysis 

All the experimental procedures were duplicated 
twice and the mean values were estimated using SPSS® 
version 20 (Statistical Package for Social Sciences, USA) 
and were recorded. Duncan’s multiple-range test was 
used to compare the difference between means at a 
probability level < 0.05. 

3 Results and discussion  

3.1 Energy consumption pattern in white rice and 
parboiled rice processing   
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The average energy consumption at each unit 
operation in processing the rice varieties into white rice is 
depicted in Figure 3. The total energy consumption for 
the varieties ranged between 2.31 and 2.33 MJ. The 
highest average energy consumption was obtained in 
polishing (1.177 MJ) while the least was found in grading 
(0.034 ± 0.008 MJ). This result corroborate with Goyal et 
al. (2014) findings, that the major portion of the total 
energy consumed in white rice processing was due to 
polishing operation. The average energy consumptions in 
dehusking and cleaning operations were 1.040 ± 0.015 
MJ and 0.048 ± 0.019 MJ, respectively. The high amount 
of energy consumed during polishing and dehusking 
maybe as a result of time required for removing husk and 
bran from the paddy rice of the varieties. The processing 
time at each unit operation has a lot of impact on energy 
consumption (Wang, 2008; Sanusi and Akinoso, 2021). 
Roy et al. (2003) also reported that the energy 
consumption for milling rice depends on paddy type, 
quantity of paddy, process, quality of final product, 
type/capacity/age or combination of equipment used, 
power source, efficiency of driver and power transmission. 
In the white rice processing, electrical energy took the 
highest energy portion with 96.42% while the human 

energy consumed 3.58% of the total energy. This implies 
that white rice production is electrical energy dependent.  

The average energy consumption required in 
processing paddy rice into parboiled rice varied from one 
unit operation to another (Figure 4). Drying operation was 
observed to consume the highest energy with the value of 
24.113 ± 1.24 MJ. This maybe as a result of the time 
required to dry the paddy rice of the varieties to desired 
paddy moisture content. The steaming and soaking 
operations were also observed to consume more energy 
with the values of 21.872 ± 0.209 MJ and 10.757 MJ, 
respectively. Kwofie et al. (2016) reported similar energy 
consumption pattern in the unit operations involved in 
rice parboiling process. The average energy consumption 
obtained in dehusking, polishing, cleaning, first grading 
and second grading operations were 1.045 ± 0.015 MJ, 
1.177 MJ, 0.0379 ± 0.016 MJ, 0.012 ± 0.003 MJ and 
0.032 ± 0.012 MJ respectively. In parboiled rice 
processing, thermal energy took the highest energy 
portion with 55.26%, human energy consumed 40.98% 
while electrical energy consumed 3.76% of the total 
energy consumption. Therefore, rice parboiling process is 
thermal energy dependent.

    
                                      Figure 3 Average energy consumption patterns in processing paddy rice into white rice 
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Figure 4 Average energy consumption patterns in processing paddy rice into parboiled rice

3.2 Taguchi modelling of impact of processing 
parameters on total energy consumption 

The impact of processing parameters on total energy 
consumption was examined to minimize the energy 
consumption during parboiling as it has been earlier 
shown in Figure 4 that parboiling is an energy-intensive 
process. Kwofie et al. (2016) reported that parboiling 
process has direct implication on production cost due to 
its energy consumption intensity. Table 3 shows the 
impact of processing parameters on total energy 
consumption using Taguchi techniques. The lower the 
better signal to noise ratio (S/N) of Taguchi indicated that 
the processing conditions at 75°C soaking temperature, 16 
h soaking time, 25 min steaming time and 12% paddy 
moisture content resulted in high energy consumption for 
all the rice varieties. However, the least energy 
consumption differs across the varieties with respect to 
the processing conditions combination. In FARO 44, the 
lowest S/N ratio (-33.96) and total energy consumption 
(49.88 MJ) was observed at 75°C soaking temperature, 13 
h soaking time, 20 min steaming time and 16% paddy 
moisture content.  

For FARO 52, the lowest S/N ratio (-34.28) and total 
energy consumption (52.08) was observed at 70°C 
soaking temperature, 10 h soaking time, 25 min steaming 

time and 16% paddy moisture content. FARO 60 
observed the lowest S/N ratio (-33.79) and total energy 
consumption (48.91 MJ) at 70°C soaking temperature, 10 
h soaking time, 25 min steaming time and 16% paddy 
moisture content. For FARO 61, the lowest signal to noise 
ratio (-34.28) and total energy consumption (51.37 MJ) 
was observed at 70°C soaking temperature, 10 h soaking 
time, 25 min steaming time and 16% paddy moisture 
content. The lowest total energy consumption (52.27 MJ) 
and S/N ratio (-34.36) that occurred in NERICA 8 at 75°C 
soaking temperature, 13 h soaking time, 20 min steaming 
time and 16% moisture content. Although there was no 
significant difference (p>0.05) in the total energy 
consumption of NERICA 8 at 70°C soaking temperature, 
10 h soaking time, 25 min steaming time and 16% paddy 
moisture. It can be deduced that the right combination of 
processing conditions is significant in identifying energy 
conservation approach. The variation in the intensity of 
energy consumption could be as a result of the parboiling 
method used, variety of rice and processing parameters. 

Roy et al. (2003), also observed that energy 
consumption varied from process to process while 
according to Kwofie and Ngadi (2017), energy 
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consumption are influenced by the quantity of rice being 
processed, state of rice (rough or dehusked), parboiling 
method used, variety of rice, and processing factors such 
as the soaking temperature and time etc. Table 4 shows 
the ranks of processing parameters on the total energy 
consumption, which represent the S/N ratio, mean values, 
delta values, and ranks of each processing parameters. 
The ranks of processing parameters based on their 
influence on total energy consumption of the five rice 
varieties were paddy moisture content, steaming time, 
soaking time and soaking temperature respectively. The 
ranking trend corroborates with Goyal et al. (2014) 
findings which stated that the drying operation was the 
highest consuming operation in rice parboiling. Therefore, 
the time required to dehydrate the paddy rice varieties to 
desired paddy moisture content could be the reason why 
paddy moisture content was ranked first. Also, Islam et al. 
(2004) reported that steaming and drying operations 
consumed more than 90% of total energy required in a 
rice milling system. The generated Taguchi models to 
predict the total energy consumption were expressed in 
Table 5. 

The generated models have R2 that ranged between 
0.945 and 0.966 while R2adj ranged between 0.880 and 
0.930. The R2 and R2adj values obtained were closer to 
unity. Zaibunnisa et al. (2009) reported that when R2 is 
close to unity, the better the empirical model fit the 
experimental data. According to Koocheki et al. (2009) 
for a well-fitted model, R2 should not be less than 0.80, 
while Chauhan and Gupta (2004) reported R2 greater than 
0.75 as acceptable for fitting a model. Therefore, the 
developed models indicated their appropriateness to 
predict total energy consumption. The generated models 
were fit to predict the total energy consumption while 
processing different rice varieties into parboiled rice. The 
generated mean square error (MSE) between the actual 
values and predicted values obtained from the developed 
models were 1.814, 1.959, 1.240, 1.838, and 1.555 for 
NERICA 8, FARO 52, FARO 61, FARO 60 and FARO 
44, respectively. The high and low values obtained for R2 
and MSE values from the developed models showed that 
the models were fit to predict the total energy 
consumption of the varieties during rice processing.  

Table 3 Impact of processing parameters on total energy consumption using Taguchi model 

Note: The values of mean in the same columns with the same superscript do not differ significantly (p<0.05) 

EC 8, EC 52, EC 61, EC 60 and EC 44 represent Total Energy Consumption for NERICA 8, FARO 52, FARO 61, FARO 60 and FARO 44 

Soaking 
Temperature 

(°C) 

Soaking 
Time (h) 

Steaming 
Time 
(min) 

Paddy 
Moisture 

Content (%) 

EC 44 
(MJ) 

S/N 
EC 52 
(MJ) 

S/N 
EC 60 
(MJ) 

S/N 
EC 61 
(MJ) 

S/N 
EC 8 
(MJ) 

S/N 

65.00 10.00 20.00 12.00 54.28e -34.69 55.81e -34.93 53.40d -34.55 55.69c -34.92 57.84d -35.25 

65.00 13.00 25.00 14.00 58.44d -35.33 59.85d -35.54 57.02c -35.12 59.42b -35.48 60.98c -35.70 

65.00 16.00 30.00 16.00 59.63c -35.51 60.93c -35.70 57.67c -35.22 60.15b -35.58 61.02c -35.71 

70.00 10.00 25.00 16.00 50.78f -34.11 51.74f -34.28 49.46e -33.88 53.05d -34.49 52.51f -34.41 

70.00 13.00 30.00 12.00 66.96b -36.52 67.84b -36.63 65.71b -36.35 68.64a -36.73 67.49b -36.58 

70.00 16.00 20.00 14.00 53.81e -34.62 55.46e -34.88 53.51d -34.57 55.29c -34.85 56.18c -34.99 

75.00 10.00 30.00 14.00 59.10cd -35.43 59.71d -35.52 57.16c -35.14 59.59b -35.50 60.53c -35.64 

75.00 13.00 20.00 16.00 49.88f -33.96 52.08f -34.33 48.91e -33.79 51.37e -34.21 52.27f -34.36 

75.00 16.00 25.00 12.00 68.41a -36.70 70.22a -36.93 67.05a -36.53 69.40a -36.83 70.11a -36.92 
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Table 4 Ranks of processing parameters on total energy consumption 

 
Soaking Temperature (°C) 

Soaking Time Steaming Time Paddy Moisture Content 

(h) (min) (%) 

Levels S/N ratio S/N ratio S/N ratio S/N ratio 

FARO 44 
    

1 -35.18 -34.75 -34.42 -35.97 

2 -35.08 -35.27 -35.38 -35.13 

3 -35.36 -35.61 -35.82 -34.53 

Delta 0.28 0.86 1.4 1.44 

Rank 4 3 2 1 

FARO 52 
    

1 -35.39 -34.91 -34.72 -36.16 

2 -35.26 -35.5 -35.58 -35.31 

3 -35.59 -35.84 -35.95 -34.77 

Delta 0.33 0.92 1.23 1.4 

Rank 4 3 2 1 

FARO 60 
    

1 -34.96 -34.53 -34.3 -35.81 

2 -34.94 -35.09 -35.18 -34.94 

3 -35.15 -35.44 -35.57 -34.3 

Delta 0.22 0.91 1.27 1.51 

Rank 4 3 2 1 

FARO 61 
    

1 -35.33 -34.97 -34.66 -36.16 

2 -35.36 -35.47 -35.6 -35.28 

3 -35.51 -35.76 -35.94 -34.76 

Delta 0.19 0.78 1.28 1.39 

Rank 4 3 2 1 

NERICA 8 
    

1 -35.55 -35.1 -34.87 -36.25 

2 -35.33 -35.55 -35.68 -35.45 

3 -35.64 -35.87 -35.98 -34.83 

Delta 0.31 0.78 1.11 1.42 

Rank 4 3 2 1 

 
Table 5 The generated Taguchi models to predict total energy consumption 

Note: Stemp, Stime, ST, MC, TEC, E, B, D, C, and A represent soaking temperature, soaking time, steaming time, paddy moisture content, total energy consumption, 
NERICA 8, FARO 52, FARO 61, FARO 60 and FARO 44, respectively.  

 

 

 

S/N Taguchi Models R2 R2(adj) 

1 𝑻𝑻𝑻𝑻𝑻𝑻 (𝑨𝑨) = 𝟒𝟒𝟒𝟒.𝟓𝟓𝟓𝟓 + 𝟎𝟎.𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝑺𝑺𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 + 𝟎𝟎.𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝑺𝑺𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 + 𝟎𝟎.𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝑺𝑺𝑺𝑺− 𝟐𝟐.𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝑴𝑴𝑴𝑴 0.959 0.920 

2 𝑻𝑻𝑻𝑻𝑻𝑻(𝑩𝑩) = 𝟒𝟒𝟒𝟒.𝟕𝟕𝟕𝟕 + 𝟎𝟎.𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝑺𝑺𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 + 𝟏𝟏.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝑺𝑺𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 + 𝟎𝟎.𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝑺𝑺𝑺𝑺− 𝟐𝟐.𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝑴𝑴𝑴𝑴 0.947 0.890 

3 T𝑬𝑬𝑬𝑬(𝑪𝑪) = 𝟒𝟒𝟒𝟒.𝟐𝟐𝟐𝟐 + 𝟎𝟎.𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝑺𝑺𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 + 𝟏𝟏.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝑺𝑺𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 + 𝟎𝟎.𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝑺𝑺𝑺𝑺− 𝟐𝟐.𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝑴𝑴𝑴𝑴 0.966 0.930 

4 𝑻𝑻𝑻𝑻𝑻𝑻(𝑫𝑫) = 𝟒𝟒𝟒𝟒.𝟔𝟔𝟔𝟔+ 𝟎𝟎.𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝑺𝑺𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 + 𝟎𝟎.𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝑺𝑺𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 + 𝟎𝟎.𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝑺𝑺𝑺𝑺− 𝟐𝟐.𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝑴𝑴𝑴𝑴 0.949 0.890 

5 𝑻𝑻𝑻𝑻𝑻𝑻(𝑬𝑬) = 𝟓𝟓𝟓𝟓.𝟒𝟒𝟒𝟒 + 𝟎𝟎.𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝑺𝑺𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 + 𝟎𝟎.𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝑺𝑺𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 + 𝟎𝟎.𝟕𝟕𝟕𝟕𝟕𝟕𝟕𝟕𝑺𝑺𝑺𝑺− 𝟐𝟐.𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝑴𝑴𝑴𝑴 0.945 0.880 
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Figure 5 The optimum architecture of the developed ANN model for simulating total energy consumption of the five rice varieties during 

processing 

3.3 Total energy consumption simulation using 
artificial neural network (ANN) 

The data obtained from Taguchi experimental runs 
were randomly divided into three groups, 70% in the 
training set, 15% in the validation set and 15% in the test 
set. The optimum architecture had four (4) inputs 
(soaking temperature, soaking time, steaming time and 
paddy moisture content), one hidden layer with 10 
neurons and tangent sigmoid function (tansig) at both 
hidden layer as the training function and output layer 
with five outputs which are the total energy consumption 
obtained while processing NERICA 8, FARO 52, FARO 
61, FARO 60 and FARO 44 into parboiled rice. Back-
propagation (BP) with Levernberg-Marquardt method of 
the artificial neural network was used to minimize error 
at the iterations. Figure 5 shows the optimum  

 
architecture of the developed ANN model for simulating 
total energy consumption of the five rice varieties during 
processing. It was observed that neural network 
architecture with 10 neurons at the hidden layer and one 
layer at the hidden layer produced the best performance 
model. Also, tangent sigmoid transfer function (tansig) 
at hidden layer and a tangent sigmoid transfer function 
(tansig) at output layer gave the optimum topology. 
Figure 6 represent artificial neural network simulation 
performance for total energy consumption of the five 
rice varieties during processing. The optimum ANN 
model for predicting total energy consumption was 
terminated when low mean square error (MSE) and high 
correlation coefficient (R) values were obtained as 
shown in Figure 6 (a) and (b). 
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Figure 6 Artificial neural network simulation performance for total energy consumption 
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Figure 7 The actual total energy consumption values and predicted total energy consumption values using ANN for processing NERICA 8 

into parboiled rice 

According to Yadav et al. (2017), the selection of 
suitable artificial neural network architecture, its 
topology, and transfer function is critical for successful 
application of ANN as a predictive model, as transfer 
function used influence the ANN learning rate and its 
performance. The regression analysis between ANN 
predicted outputs and experimental data for total energy 
consumption indicated a precise and effective prediction 
capability of ANN model for total energy consumption 
with a correlation coefficient (R) of 0.964, 0.973, 0.9838 

and 0.9691 for training, validation, testing and all data 
respectively (Figure 6b). The MSE value was found to 
be 1.7754 at 0 epochs for the optimal architecture of the 
ANN model. The predictive capability of the generated 
ANN model for total energy consumption was tested 
using unknown set of inputs data and the ANN predicted 
values versus actual values was plotted for each rice 
variety that was processed into parboiled rice as depicted 
in Figures 7, 8, 9, 10 and 11. The coefficient of 
determination (R2) between the ANN actual and 
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predicted data were 0.9368, 0.9347, 0.9376, 0.9379, and 
0.9413 for NERICA 8, FARO 52, FARO 61, FARO 60 
and FARO 44, respectively while the mean square error 
between the predicted values and actual values were 
3.305, 3.522, 3.327, 3.212 and 3.345 for NERICA 8, 

FARO 52, FARO 61, FARO 60 and FARO 44, 
respectively. This result showed that the predictive 
accuracy of the ANN model for total energy 
consumption was high.   
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Figure 8 The actual total energy consumption values and predicted total energy consumption values using ANN for processing FARO 52 into 

parboiled rice 

45 50 55 60 65 70 75 80
45

50

55

60

65

70

75

80

Pr
ed

ic
te

d 
T

ot
al

 E
ne

rg
y 

C
on

su
m

pt
io

n 
(M

J)

Actual Total Energy Consumption (MJ)

R2=0.9376

 
Figure 9 The actual total energy consumption values and predicted total energy consumption values using ANN for processing FARO 61 into 

parboiled rice 
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Figure 10 The actual total energy consumption values and predicted total energy consumption values using ANN for processing FARO 60 
into parboiled rice 
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Figure 11 The actual total energy consumption values and predicted total energy consumption values using ANN for processing FARO 44 

into parboiled rice 

3.4 Comparison of Taguchi and ANN models  
The effectiveness of Taguchi and ANN models in 

predicting the total energy consumption of the five rice 
varieties into parboiled rice were compared using 

coefficient of regression (R2) and mean square error 
(MSE) were presented in Table 6. Betiku and Taiwo 
(2015) reported that R2 and MSE can be used to evaluate 
the effectiveness of modelling techniques. Table 6 shows 
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the comparative results of the obtained coefficient of 
determination (R2) and MSE for Taguchi, and ANN 
models in fitting the actual data of total energy 
consumption. Taguchi model was observed to have 
highest R2 values and lowest MSE for total energy 
consumption than and ANN models. This might be due 
to the linear relationship that exists between the 
processing parameters and total energy consumption. 
Dash et al. (2016) reported that Taguchi techniques have 
capability of predicting linear or homogenous 
relationship that exists in a process. 
Table 6 Comparison of Taguchi, RSM and ANN coefficient of 

determination (R2) 
RICE 

VARIET
Y 

TAGUCHI 
MODEL (R2)  

ANN 
MODEL 

(R2) 

TAGUCHI 
MODEL (MSE)  

ANN 
MODEL 
(MSE) 

FARO 44 0.959 0.941 1.555 3.345 

FARO 52 0.947 0.935 1.959 3.522 

FARO 60 0.966 0.937 1.240 3.212 

FARO 61 0.949 0.938 1.838 3.327 

NERICA 
8 

0.945 0.937 1.814 3.305 

4 Conclusions  

The polishing operation was the highest energy 
consuming unit operation while processing paddy rice 
into white rice and electrical energy accounted for 96.42% 
of total energy consumption. The paddy moisture, 
steaming and soaking operations consumed 24.11 MJ, 
21.87 MJ and 10.76 MJ of the total energy involved in 
processing paddy to parboiled rice with thermal energy 
accounting for 55.26%, human energy 40.98%, and 
electrical energy 3.76% of the total energy consumption. 
The paddy moisture content and steaming time were the 
most significant processing parameter that affected the 
total energy consumption. Taguchi model showed most 
predictive accuracy for total energy consumption with 
coefficient of determination (R2) that ranged between 
0.947 and 0.966, and mean square error (MSE) from 
1.240 – 1.959 for NERICA 8, FARO 52, FARO 61, 
FARO 60 and FARO 44 than ANN that had R2 and MSE 
that ranged between 0.935 and 0.941 and 3.212 and 
3.522 respectively. Therefore, Taguchi model is more 
accurate for predicting total energy consumption during 
the production of parboiled rice of different rice varieties. 

This study will guide in establishing the optimum 
processing conditions that can guarantee minimum 
energy consumption during the processing of the rice 
varieties to parboiled rice and also minimize the manual 
or laboratory system of monitoring total energy 
consumption during processing.   
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