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ABSTRACT 
In this study, ammonia stripping and magnesium ammonium phosphate hexahydrate 

OH6POMgNH 244 ⋅  method (MAP) were evaluated for pretreating methane 
fermentation effluent before applied to soil trench system. For ammonia stripping, the 
optimal calcium hydroxide dosage was searched systematically. The results shown 
that the overdosing of calcium hydroxide, 27.5/l wastewater, achieved not only higher 
ammonia but higher phosphorus, COD, SS and Turbidity removal efficiency. In 
addition, the volume and settling rate of precipitation was also relative optimal. As 
expected, ammonia stripping performance was highly dependent on air/water ratio; 
however, from the point of view of engineering application, air flow rate as 5 l/min 
for 1 l wastewater should be optimal. For MAP, the optimal pH was about 9 based on 

NNH 4 −
+ , PPO3

4 −−  and COD removal efficiency. Although NNH 4 −
+  and 

PPO3
4 −−  removal reached almost maximum at −++ 3

44
2 PO:NH:Mg  mole ratio 

1:1:1, additional +2Mg  dosage, such 1.5:1:1, is preferred for thoroughly PPO3
4 −−  

removal. In conclusion, compared with MAP precipitation, ammonia stripping is 
much more suitable for pretreating methane fermentation effluent in engineering 
application. 

Keywords: Ammonia stripping, MAP, struvite, physico-chemical pretreatments, 
methane fermentation effluent 
 

1. INTRODUCTION 

The high strength of ammonium, phosphate and suspended solid (SS), 1000 to 3000 
mg/l of ammonium nitrogen ( NNH 4 −

+ ), 100 to 500 mg/l of total phosphorus (TP), 
and 15000 to 25000 mg/l of SS, is a common feature of methane fermentation effluent. 
Such high ammonia, phosphate and SS content are generally difficult of access to 
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conventional biological treatment processes. Li and Zhao (1999) confirmed that the 
performance of a conventional activated sludge process could be significantly affected 
by a high concentration of ammonia. On the other hand, although today several 
biological nutrient removal plants exist throughout the world, phosphorus removal 
may prove more difficult because of its release during either sludge handling or 
anaerobic digestion(Battistoni, Fava, Pavan, Musacco and Cecchi 1997). In addition, 
methane fermentation effluent will cause clogging in soil trench system by trapping of 
suspended and colloidal material in the pores of it (Bouwer and Chaney 1974). So 
physico-chemical pretreatments such as ammonia stripping, ion exchange, membrane 
processes or chemical precipitation are required to lower the concentration of 
ammonia, phosphate and SS prior to application to soil trench system. 

1.1 Ammonia Stripping 

It is often easier and less expensive to remove nitrogen from wastewater in the form 
of ammonia than to convert it to nitrate-nitrogen before removing it (Culp, Wesner 
and Culp 1978). Nowadays, the most common method for eliminating a high 
concentration of NNH 4 −

+  (>1000 mg/l) involved in waste-water treatment 
technologies is the ammonia stripping process. However a major concern about 
ammonia air stripping is the release of 3NH  into the atmosphere so as to cause 
severe air pollution if ammonia can not be properly absorbed with either H2SO4 or 
HCl. Moreover, a large stripping tower will be needed due to foaming when 

NNH4 −
+  in methane fermentation effluent is stripped out (Culp, Wesner et al. 

1978). 

For ammonia stripping by adding calcium hydroxide ( 2)OH(Ca  to increase pH of 
wastewater, the phosphorus will also be removed. Calcium–phosphorus precipitation 
is a common method of phosphorus removal, mainly because of low cost and ease of 
handling. Removal is achieved by direct precipitation of calcium phosphate (HAP, 
hydroxyapatite, OH)PO(Ca 345 )(Yi and Lo 2003). The formation of HAP can be 
expressed in the following reaction: 

−− ++↓⇔+ OH6OH3OH)PO(CaHPO3)OH(Ca5 2345
2
42          (2) 

In addition, SS can also be removed by adding calcium hydroxide, because of the fact 
that the CaCO3 precipitation, due to the reaction between lime and CO2 absorbing 
from the ambient air, induces a sweep coagulation process and the larger particles can 
be entrapped (Elmaleh, Yahi and Coma 1996). 
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1.2 MAP Precipitation 

An alternative promising method of NNH4 −
+  and P removal from methane 

fermentation effluent is through the precipitation of MAP (magnesium ammonium 
phosphate hexahydrate OH6POMgNH 244 ⋅ ) commonly known as struvite. The 
formation of MAP can be expressed in the following reaction: 

↓⋅⇔+++ +−+ OH6POMgNHOH6NHPOMg 24424
3
4

2             (1) 

This method has been studied and practiced for different types of wastewater, such as 
tannery effluent in leather industries (Tunay, Kabdasli, Orhon and Kolcak 1997), 
digester supernatant (Siegrist 1996) in wastewater treatment plants and also landfill 
leachate(Li, Zhao and Hao 1999). Compared with these studies, there is an advantage 
for applying struvite precipitation process to methane fermentation effluent, because 
struvite constituent ions, NNH4 −

+  and −3
4PO , are among the predominant ions 

present in methane fermentation effluent, thereby minimizing the need to add 
chemicals. Several potential markets that could utilize struvite have been identified. 
They are, as a slow release fertilizer, as a raw material to the phosphate industry, for 
use in making fire resistant panels and as a binding material in cements (Sarkar 1990; 
Schuiling and Andrade 1999). 

Although many researches confirmed the efficiency of ammonia and phosphorus 
removal by MAP precipitation, the SS removal efficiency of MAP precipitation still 
need to be evaluated. 

In this study, ammonia stripping and MAP were evaluated for pretreating methane 
fermentation effluent before applied to soil trench system. For ammonia stripping, 
although there are many researches used calcium hydroxide to increase pH, however 
almost no papers systematically searched optimal dosage of calcium hydroxide based 
on NNH4 −

+ , PPO3
4 −− , COD and SS removal efficiency that was accomplished in 

a bath experiment. And effect of aeration rate on NNH4 −
+  removal was also studied. 

For MAP precipitation most papers focused on either NNH4 −
+  or PPO3

4 −−  
removal, the effects of pH and PPO:NNH:Mg 3

44
2 −− −++  mole ratio on 

NNH4 −
+ , PPO3

4 −− ,COD and SS removal need to be quantified in this study. Finally 
these two methods were compared based on engineer application. 

2. METHODS 

The temperature effect of all reactions were not taken into account, the temperature 
was about 15 Co . 
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2.1 Characteristics of Methane Fermentation Effluent 

Methane fermentation effluent obtained from an anaerobic digestion energy plant, 
Sanwa city, Japan, was stored under 4 Co  until experiments. Characteristics of 
methane fermentation effluent, such as pH, temperature and concentrations of TN, 
ammonia, nitrate, TP, orthophosphate and COD, were analyzed before experiments, 
and results were shown in Table 1. 

Table 1. Characteristics of methane fermentation effluent 

Parameters Sample 1 Sample 2 
Sample date 2005.12.14 2005.12.20 
pH 7.50 7.55 
Temperature ( C° ) 15 16 
Total Suspended Solid (mg/l) 20000 18000 
Turbidity (FAU) 51700 52300 
COD (mg/l) 2290 1720 
TN (mg/l) 1770 1410 

NNH4 −
+  (mg/l) 1510 1160 

NNO3 −
−  (mg/l) 34 27 

TP (mg/l) 279 159 
Ortho-P (mg/l) 74 84 

2.2 Ammonia Stripping 

2.2.1 pH Adjustment and Removal of Phosphorus and SS 

Different dosages of calcium hydroxide, 3, 5, 7, 9, 11, 13 and 15 g, were added to 400 
ml methane fermentation effluent in 500 ml beakers, and the mixtures were stirred for 
30 minutes for the dissolve of calcium hydroxide and the reaction between calcium 
and phosphate. Then the result mixtures were allowed to precipitate, and pH, 

NNH 4 −
+ , PPO3

4 −−  and COD were measured three times in two days. 

2.2.2 Air Stripping 

After adding optimal dosage of calcium hydroxide to methane fermentation effluent, 
precipitation was allowed to settle for 8 hours. The supernatants were used in air 
stripping. 

Air stripping was conducted in 500 ml beakers. Supernatants of 200 ml were added to 
the beakers, and ammonia stripping was started by aeration using diffusers at different 
rate, 0, 0.6, 1, 2 l/min. Ammonium nitrogen in the supernatant was analyzed during 
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one day. 

2.3 MAP Precipitation 

It can be found that although concentration of PPO3
4 −−  is very high, the mole ratio 

of PPO:NNH 3
44 −− −+  is about 20.4 or 13.8 for wastewater sample 1 or sample 2 

respectively (Table 1). So beside Mg, additional phosphorate should also be added to 
maximize MAP precipitation. 

MAP precipitation experiments were carried out using 400 ml methane fermentation 
effluent in 500 ml closed flasks using magnesium chloride ( OH6MgCl 22 ⋅ ) as the 
magnesium source and sodium hydrogen phosphate ( OH2PONaH 242 ⋅ ) as the 
phosphate source. After mixing the flasks for 15 min until a stable pH is reached 
(equilibrium state), samples were precipitated for 30 min in order to separate the 
crystallized precipitate from bulk liquid. After precipitation, supernatants were 
analyzed. 10 M NaOH and 10 M HCl were used to adjust pH for the minimum of 
MAP solubility. 

2.4 Analytical Procedures 

Analytical procedures for the determination of pH, NNH 4 −
+ , PPO3

4 −− , COD and 
SS of wastewater were conducted according to Standard Methods (APHA 1998). 
Turbidity was measured by using Hach DR4000. 

3. RESULTS AND DISCUSSION 

3.1 Ammonia Stripping 

Wastewater sample 1 was used in the experiments of ammonia stripping. 
3.1.1 pH Adjustment and Removal of Phosphorus and SS 

After the dissolve of calcium hydroxide (30 min), pH was measured, and the effect of 
different dosages to pH was depicted in Figure 1. It can be found that pH increased 
over 12 when 5 g calcium hydroxide was added, and no increases were found for 
additional increase of dosages. To evaluate the settling rate of precipitations, the 
precipitation volume after 24 hours was measured, and the result was also shown in 
Figure 1. The settlements of precipitations for dosages of 9 and 15 g were very slowly, 
however those for dosages of 3 and 11 g were very quickly, and the precipitation 
volumes were almost stable in 1 hour. And the precipitation for dosages of 3, 5, 7 and 
9 g were almost black, however those for the over-dosages of 11, 13 and 15 g were 
light black, many white precipitations could also be found. 
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Figure 1 Effect of calcium hydroxide dosages on pH of supernatant and 

precipitation volume after 24 hours settlement 
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Figure 2 Effect of calcium hydroxide dosages on SS and turbidity in supernatant 

after 24 hours settlement 
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Figure 3 Effect of calcium hydroxide on NNH4 −

+ , PPO3
4 −−  and COD removal 

The SS and turbidity variations of supernatant were measured and depicted in Figure 



 

X. Lei, S. Shimada, K. Intabon and T. Maekawa. “Pretreatment of Methane 
Fermentation Effluent by Physico-chemical Processes before applied to Soil Trench 
System”. Agricultural Engineering International: the CIGR Ejournal. Manuscript EE 
06 002. Vol. VIII. June, 2006. 

8

2. It can be found that all dosages had very good turbidity removal efficiency, from 
the original 51700 FAU to lower than 9000 FAU. And with the increase of dosages 
from 3 g to 7 g, SS and turbidity decreased sharply and when the dosages were greater 
than or equal to 11 g, SS and turbidity reached an almost stable value for additional 
increase of dosages. 

And the variations of NNH4 −
+ , PPO3

4 −−  and COD were shown in Figure 3. 
Ammonium nitrogen removal maintained an almost same level when pH increased to 
12, and for dosage of 3 g (pH =9.4), the efficiency of NNH4 −

+  removal is relative 
low under no aeration condition. Ortho-phosphorus reached a relative low level for all 
dosages after calcium phosphorate precipitation formed and settled for about 8 hours, 
with following settlement the concentration of NNH4 −

+  and PPO3
4 −−  decreased 

continuously. And the efficiency of COD removal increased with the increase of 
dosages, and COD maintained an almost stable level in following settlement. 

From the result of pH adjustment and removal of phosphorus and SS, it can be found 
that the limit factors for optimal dosage of calcium hydroxide is not phosphorus, but 
pH adjustment (higher than 12), COD, SS and turbidity removal and the settlement of 
HAP and CaCO3 precipitation. Because phosphorus was removed to a relative low 
level for all calcium hydroxide dosages. 

As expected, ammonia removal was significantly higher at pH 11 than that at lower 
pH (Figure 3), because the proportion of volatile 3NH  of total ammonia-nitrogen 

NNH4 −
+  is a function of pH and temperature (Srinath and Loehr 1974). Based on 

the result, the dosage of calcium hydroxide, 27.5 g/l wastewater, was optimal for 
NNH4 −

+ , PPO3
4 −− , COD, SS and turbidity removal, which is greater than 8 g for 

landfill leachates gotten by Ozturk, Altinbas et al. (2003). Compared with our result, 8 
g calcium hydroxide may unable to raise pH close to 12 and then can not obtain good 
ammonia stripping efficiency, which may be cause by the higher buffer capacity of 
methane fermentation effluent than landfill leachates. Moreover even a dosage greater 
than 8 g just suited for raising pH to 12, a good ammonia removal rate can be 
obtained, however COD, SS and turbidity removal will remain inferior and the 
settling rate of precipitation will be slow. The NNH4 −

+ , PPO3
4 −− , COD, SS and 

turbidity removal rate for the optimal dosage of calcium hydroxide after precipitation 
formed and settlement for 24 hours was 53.4%, 98.7%, 82.8%, 91% and 97.2%. 

From the previous result, 11 g of calcium hydroxide per 400 ml wastewater, or 27.5 g 
of calcium hydroxide per 1 l wastewater, was regarded as optimal dosage for pH 
adjustment, removal of phosphorus, COD and SS, and the settlement of the 
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precipitation was relative quick. 
3.1.2 Air Stripping 

Dosage of 27.5 g calcium hydroxide was added to 1 l methane fermentation effluent 
for pH adjustment and phosphorus, SS removal before air stripping. 
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Figure 4 Effect of aeration rate on NNH4 −

+  removal 

During the beginning 30 minutes, a large of foams produced especially for rate of 2 
l/min, the foams were destroyed manually, however, after that time, the production of 
foams decreased very quickly. In addition, only 200 ml supernatants were used in 500 
ml beakers, so the loss of solution caused by foam can be omitted. The NNH 4 −

+  
removals for different aeration rate during 1 day were shown in Figure 4. The 
ammonium removal rate increased greatly when aeration was applied. And after 12 
hours for aeration rate of 1 l/min, 8 hours for 2 l/min, the residual NNH 4 −

+  
decreased lower than 100 mg/l. However even after 24 hours, that was still over 100 
mg/l for aeration rate of 0.6 l/min. 

Ammonia stripping performance is as expected highly dependent on air/water ratios. 
From the result of air stripping, it can be found that for 1 l wastewater, ammonia 
removal rate almost reached maximum 95.3% after 12 hours at air rate of 10 l/min. 
And after air stripping for 12 hours at air flow rate of 5 l/min, the ammonia removal 
rate also reached 89.9%. The result is similar with that obtained by Ozturk, Altinbas et 
al. (2003). For air flow rate of 3 l/min for 1 l wastewater, even after 24 hours the 
concentration of NNH4 −

+ was still over 100 mg/l and ammonia removal rate was 
72.1%. And for no aeration, the concentration of NNH4 −

+ was still over 600 mg/l 
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and ammonia removal rate was only 25.1%. The result is because increase in air flow 
rate increases the gas–liquid surface area, which in turn controls the amount of 3NH  
diffused from water (Srinath and Loehr 1974). However, from the point of view of 
engineering application, air flow rate as 5 l/min for 1 l wastewater should be optimal, 
because much more costly method of 10 l/min for 1 l wastewater increased only about 
5% ammonia removal efficiency. 

And because the temperature of the experiment is about 15 Co , and the fact that 
higher temperature increases ammonia stripping efficiency (USEPA 1973; Liao, Chen 
and Lo 1995), it can be expected higher temperature such as 50 Co , 80 Co  would 
shorten the air stripping time greatly. 

3.2 MAP Precipitation 

Wastewater sample 2 was used in the experiments of MAP precipitation experiment. 
3.2.1 Effect of pH 
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Figure 5 Effect of pH on NNH4 −

+ , PPO3
4 −−  and COD removal  

After adding MgCl2·6H2O + Na2HPO4·12H2O (final PPO:NNH:Mg 3
44

2 −− −++  
mole ratio of 1:1:1) to the methane fermentation effluent samples, a white-color 
precipitate rapidly settled as soon as stirring stopped. And pH of the methane 
fermentation effluent dropped from an initial concentration of 7.5 to 6.4. To identify 
the effect of pH to residual nitrogen, phosphate and COD in the treated methane 
fermentation effluent, 10 M NaOH solution was used to raise the pH of it from 6.4 to 
10.5 and the experimental results are plotted in Figure 5. The results indicated that 

NNH 4 −
+  was efficiently decreased from 1507 to 181 mg/l at pH of 9. 

Ortho-phosphorus and COD also kept almost same tendency as NNH 4 −  except the 



 

X. Lei, S. Shimada, K. Intabon and T. Maekawa. “Pretreatment of Methane 
Fermentation Effluent by Physico-chemical Processes before applied to Soil Trench 
System”. Agricultural Engineering International: the CIGR Ejournal. Manuscript EE 
06 002. Vol. VIII. June, 2006. 

11

variation extent of COD was relative smaller. However PPO3
4 −−  still maintained 

the same level as original concentration even at pH of 9, in another word PPO3
4 −−  

was almost not removed by MAP precipitation. And SS and turbidity in supernatant 
was still 12000 mg/l and 5420 FAU respectively. 

From Figure 5, it can be found that NNH 4 −
+  and PPO3

4 −−  removal is highly 
dependent on pH especially for PPO3

4 −− , with the pH increased from 6.4 to 9, 
NNH 4 −

+  decreased from 489 to 181 mg/l, however PPO3
4 −−  decreased from 426 

mg/l to 46 mg/l. Because +H  concentration although does not directly enter the 
MAP equation, struvite precipitation is highly pH dependent. Because the activities of 
both +

4NH  and −3
4PO  are pH dependent. As pH increases from 7 to 9, the percent of 

total NNH 4 −
+  present as +

4NH  decreases from 99% to 64% (Stumm and Morgan 
1970). In the same range of pH change, the fraction of total PPO3

4 −−  present as the 
−3

4PO  anion increases 250 fold (Stumm and Morgan 1970). Because of the 
overwhelming increase in the proportion of total PPO3

4 −−  present as −3
4PO  within 

the pH range of 7–9, the pH effect on −3
4PO  activity has a greater influence on 

struvite precipitation than does the pH effect on +
4NH  activity. 

The optimal pH of 9 obtained in our research is close to that gotten by Li, Zhao et al. 
(1999) for landfill leachate and Nelson, Mikkelsen et al.(2003) for anaerobic swine 
lagoon liquid. 
3.2.2 Effect of PPO:NNH:Mg 3

44
2 −− −++  Mole Ratio 

Based on the previous result, the pH of 9 was regarded as optimum, and the pH of all 
mixtures in following experiments were adjusted to 9. 

Different PPO:NNH:Mg 3
44

2 −− −++  mole ratios, with +2Mg  or PPO3
4 −−  

overdose and underdose, were tested to find the optimal ammonia and phosphorus 
removal rate (Figure 6). With the increase of +2Mg  dosage, ammonia and 
phosphorus removal efficiency also increased, however when +2Mg  dosage were 
bigger than 1, the increase of both removals were very little. 

The adjustment of PPO3
4 −−  reached almost same tendency as that for +2Mg . 

However with the higher PPO3
4 −−  dosage, bigger than 1, ammonia removal 

increased a little means much higher residual PPO3
4 −−  concentration. 

The PPO:NNH:Mg 3
44

2 −− −++  mole ratio of 1:1:1 may be enough for NNH4 −
+  

removal, however the phosphorus concentration was still high (Figure 6). From the 
result, it can be found with the increase of +2Mg  concentration, PPO3

4 −−  
concentration decreased continuously from 51 mg/l for PPO:NNH:Mg 3

44
2 −− −++  
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mole ratio of 1:1:1 to 19 mg/l for 1.5:1:1. The result is similar as that obtained by 
Maekawa, Liao et al. (1995). And this additional +2Mg  is necessary, because of the 
difficulty to treat the higher concentration phosphorus by subsequent biological 
methods. 
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Figure 6 Effects of PPO:NNH:Mg 3

44
2 −− −++  mole ratio on NNH4 −

+ , PPO3
4 −−  

removal 

On the other hand, even though the increase of PPO3
4 −−  concentration also 

increased the ammonia removal rate, the residual PPO3
4 −−  concentration is relative 

high, 688 mg/l for PPO:NNH:Mg 3
44

2 −− −++  mole ratio of 1:1:1.5, which is 
adverse for wastewater treatment. 
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3.3 Comparison between Ammonia Stripping and MAP Precipitation 

If optimal PPO:NNH:Mg 3
44

2 −− −++  mole ratio, such as 1.5:1:1 obtained in our 
research, is applied in MAP precipitation, NNH4 −

+  and PPO3
4 −−  can be removed 

in a very short time, less than 1 hour. However for in ammonia stripping, besides the 
time consuming of the settlement of HAP, CaCO3 precipitation, air stripping required 
for NNH4 −

+  removal also takes a relative long period. 

The settlement of MAP precipitation is rather rapid compared with HAP, CaCO3 
precipitation in ammonia stripping, and in which a large of foams are also produced; 
however the later has also a relative high COD, SS and turbidity removal capacity by 
adding overdosing of calcium hydroxide. 

For pH adjustment, it is rather difficult and expensive for MAP precipitation than that 
for ammonia stripping. However much more acid is required to neutralize the effluent 
of ammonia stripping than that of MAP precipitation before applied to soil trench 
system. 

Compared with ammonia stripping that had no requirements for wastewater, MAP 
precipitation is much more suitable for wastewater with PPO:NNH 3

44 −− −+  close 
to 1 and much more +2Mg  available that can save the quantity of chemical additions 
required for maximizing MAP precipitation. And the higher PPO:NNH 3

44 −− −+  
mole ratio of methane fermentation effluent makes beside +2Mg , additional 
phosphorous should also be added. 

In conclusion, although there are some advantages for MAP precipitation, ammonia 
stripping is much more suitable for pretreating methane fermentation effluent in 
engineering application. 

4. CONCLUSIONS 

1). By adding overdose of calcium hydroxide, 27.5 g per 1 l wastewater, NNH4 −
+ , 

PPO3
4 −− , COD, SS and turbidity can be effectively removed, the treated wastewater 

can be directly applied to soil trench system, with no further 
physico-chemical NNH4 −

+  or PPO3
4 −−  treatments are required except pH 

adjustment. 
2). Although NNH4 −

+  and PPO3
4 −−  removal reached almost maximum at 

PPO:NNH:Mg 3
44

2 −− −++  mole ratio 1:1:1, additional +2Mg  dosage, such 1.5:1:1, 
is preferred for thoroughly PPO3

4 −−  removal. 
3). Compared with MAP precipitation, ammonia stripping is much more suitable for 
pretreating methane fermentation effluent in engineering application, under the 
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condition that ammonia is to be adsorbed with the 42SOH  or HCl . 
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