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Abstract: Timely detection of water stress in agricultural crops is important.  In this paper, a smart classification algorithm was 
developed to detect water stress in tomato plants that were grown in the greenhouse.  During the growth period, thermal and 
visible light images were acquired from the canopy tops in two states: (1) plants in normal conditions; and (2) plants under water 
stress.  Images were obtained using a camera that recorded simultaneous frames of thermal and visible (red, green, and blue 
(RGB)) features.  Based on these features, 22 parameters were defined and applied to classify the image frames.  In order to 
develop an efficient algorithm, principal component analysis (PCA) was applied to optimize the classifying of parameters.  For 
normalizing the data in PCA, 6 normalization methods were applied and assessed.  Among them, peak normalization was the 
best as its PC1 and PC2 described 94% and 5% of total variation, respectively.  Based on the PCA results, 9 parameters were 
found with most loadings as the most effective indexes that all obtained from the visible features.  In other words, the thermal 
features were not as useful for detecting plant water stress.  These parameters were used in multilayer perceptron neural 
networks (MLPNN) to develop the classification algorithm.  The resulting mean-square error and r values for the MLPNN with 
ten hidden layer were 6.05×10-3 and 0.9905, respectively which shows the robustness of the classification algorithm.  This 
algorithm accuracy was 83.3%. 
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 1  Introduction 

Water deficit is a result of transpiration with rates 
more than water uptake that causes inhibition of plant 
growth and development. Associated with this 
phenomenon, turgor pressure falls resulting in stomata 
closure (Blum, 2011; Wolf and Rudich, 1988). Closed 
stomata lead to decreased CO2 assimilation rate and 
photosynthesis in plant leaves. Thus, absorbed irradiation 
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energy cannot be used in photosynthesis (Katsoulas et al., 
2016). This stress and the consequent reactions of plants 
lead to changes in leaf color and temperature (Lin et al., 
2013) which may significantly reduce plant productivity 
(Kim et al., 2011). Therefore, early detection of water 
stress in plants is critical (Katsoulas et al., 2016) and 
automated real-time detection of plant stress would 
decrease losses (Kim et al., 2011).  

Plant canopy temperature has been introduced as a 
good indicator for detection of plant water status (Wang 
et al., 2010). Therefore, several thermal indices based on 
remote infrared thermographic measurements were 
introduced by Bartzanas et al. (2015) for plant water 
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stress detection in greenhouses. Wang et al. (2010) 
monitored the temperature difference between canopy 
and ambient as an indicator for monitoring water status 
in plants. Water status in apple trees was assessed by 
analyzing the spectral signature of plant leaves and the 
highest correlation between spectral indices and stress 
levels was found using red edge normalized difference 
vegetation index (NDVI) at 705 and 750 nm in 
narrowband indices and NDVI at 680 and 800 nm in 
broadband indices (Kim et al., 2011). In another study, 
water stress was monitored in non-homogeneous crop 
canopies of an olive garden using an airborne 
hyperspectral scanner acquiring imagery in 38 spectral 
bands in the 430–1250 nm spectral range (Sepulcre-
Cantó et al., 2006).  

In addition to spectral and thermal inspections, 
visible spectra have been utilized to detect water stress in 
agricultural crops in some works. Kacira et al. (2002) 
developed a machine vision system to detect water stress 
in New Guinea Impatiens by means of visible images. 
They measured top-projected canopy area and introduced 
the coefficient of relative variation of top–projected 
canopy area as a marker for stress detection (Kacira et al., 
2002). Leaf deflection and associated stem and leaf  
inclination of tomato plants have also been measured as 
water stress indicators (Font et al., 2005).  

Researchers have reported that applying hue-
saturation-intensity (HIS) color space is sufficient and 
reliable to predict and classify water stress in Sunagoke 
moss plants (Ondimu and Murase, 2008). In a similar 
research, hue values of RGB images were successfully 
utilized for detecting disease stress in wheat (Casanova et 
al., 2014). 

For real-time, nondestructive and non-contact 
detection of water stress in agricultural crops, a vast 
variety of sensor-based methods has been suggested a 
few of which were reviewed here. Among the developed 
machine-vision-based methods to detect water stress, 
thermal images have been used in many research works. 
This is while processing visible images is mostly devoted 
to image segmentation or color space conversions.  

The objective of this paper is to develop an accurate 
and inexpensive machine-vision-based, classifying 

method to detect water stress in tomato plants using 
images in the visible wavelength range. 

2  Material and methods 

In order to develop a machine-vision-based smart 
classification system to distinguish normal and water-
stressed tomato plants, they were grown under controlled 
conditions in a greenhouse at Tarbiat Modares University, 
Tehran, Iran (35.74°N, 51.16°E). Potted tomato plants 
(Solanum lycopersicum, cv. 'Early Ch.) were grown 
under the same conditions of soil volume, density, 
texture (loamy sand), and fertility; air temperature and 
humidity; as well as illuminance conditions throughout 
the greenhouse to mask the effect of undetermined 
factors (errors). Three different irrigation schedules were 
implemented to obtain normal (class 1) and water 
stressed (class 2) treatments. Thus, it was possible to take 
photos of both classes under uniform conditions to 
diminish the data collection errors.  

As the soil texture was coarse, the plants were 
irrigated in close intervals (Heuvelink, 2005) including 
three treatments: once per 96 h (i1), 72 h (i2), and 48 h 
(i3). Depending on the irrigation schedule, it was 
assumed that the plants would face water stress during 
the period of 48 to 96 h after irrigation based on soil 
water content. During tomato growth and development, 
thermal and visible light images were acquired from the 
plant canopies, at two times: (1) 2 to 24 h after irrigation 
when plants were succulent; and (2) 48 to 96 h after 
irrigation when they were under reversible water stress.  

Table 1 Camera technical specifications 
Characteristics Specifications 

Visible Image 
Color space RGB  
Resolution  2.0 Megapixels 
Processor  CMOS 

Thermal Image 

Spectral range 800 to 1400 nm 
Thermal Sensitivity ≤0.08℃ at 30℃ 
Temperature Range -20℃ to 250℃ 

Accuracy 2% of reading 
Operating Temperature -10℃ to 50℃ 

Operating Humidity 10% to 95%, non-condensing 

The images were acquired under natural daylight 
conditions without any control or artificial lighting. The 
thermal and visible images were simultaneously acquired 
using an infrared camera (ITI-P400, Infrared 
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Thermography Inspection, Sweden). Specification of 
which are given in Table 1.  

The camera was fixed on a stand that was linked to 

the top rails. The top rails consisted of two rails fixed to 

the top of the greenhouse structure (to guide the moving 

platform direction) and one moving rail (platform) was 

perpendicular to the fixed rails. The H-shaped rail system 

made it possible for the camera stand to cover all the 

plants throughout the length and width of the greenhouse, 

while the camera height could be adjusted through the 

stand length. Camera height was adjustable between 150 

and 180 cm from the greenhouse floor (depending on the 

plant age) to acquire images with the same scale. This 

camera was able to record the visible and thermal images 

and combine them into one data matrix. Therefore, its 

visible and thermal images were recorded in one file 

( 𝑓𝑓(𝑥𝑥, 𝑦𝑦) = [𝑟𝑟, g, b, Temperature] ). Then, the images 

were transferred to the laptop and preprocessed using the 

camera interface (ITI-IrAnalyser) to export visible 

images and thermal properties from the raw images. 

Among the thermal properties, maximum and 
minimum temperatures of each frame were measured. It 
was assumed that the emissivity of tomato leaves is 0.98 
(López et al., 2012). Simultaneously, the visible images 
were also exported from the software. The visible images 
were acquired in RGB color space that consisting of red, 
green, and blue image matrixes. Maximum temperature 
(Tmax) and minimum temperature (Tmin) were obtained 
from the thermal images.  

Intensity ( 𝐼𝐼 = 𝑟𝑟+𝑔𝑔+𝑏𝑏
3

) and excessive green (𝐸𝐸𝐸𝐸 =

2𝑔𝑔 − 𝑟𝑟 − 𝑏𝑏 ) image matrices were extracted from the 
RGB images for further image processing according to 
Sabeenian and Palanisamy (2010). The minimum and 
maximum temperatures, extracted from the thermal 
images, as well as the visible characteristics were utilized 
as the parameters of image classification.  

Five indexes were determined based on the thermal 
characteristics (Equations 1 to 5). Means and standard 
deviations for all the visible image matrices (r, g, b, I, 

and EG) were then determined and coefficients of 
variation were calculated (Equation 6).  

 𝐼𝐼𝐼𝐼𝐼𝐼1 = 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚                       (1) 

𝐼𝐼𝐼𝐼𝐼𝐼2 = 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚−𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

                            (2) 

𝐼𝐼𝐼𝐼𝐼𝐼3 = 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚−𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

                           (3) 

𝐼𝐼𝐼𝐼𝐼𝐼4 = 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚−𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚+𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

                           (4) 

𝐼𝐼𝐼𝐼𝐼𝐼5 = 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

                                 (5) 

  𝐶𝐶𝐶𝐶𝑚𝑚 = 𝑆𝑆𝑆𝑆𝑚𝑚
𝑀𝑀𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚

                             (6) 

Where: 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  and 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  are the maximum and 

minimum temperatures, respectively (°C); 𝐶𝐶𝐶𝐶𝑚𝑚  is the 

coefficient of variation in each matrix; 𝑚𝑚 implies any of 

image matrices 𝑟𝑟 , 𝑔𝑔 , 𝑏𝑏 ,  𝑖𝑖 , or 𝐸𝐸𝐸𝐸 ; 𝑆𝑆𝑆𝑆𝑚𝑚  is the standard 

deviation of each matrix; and 𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼𝑚𝑚  is the mean of 

each matrix. 

Based on the preprocessed and processed data, 22 

parameters were determined for classifying the images 

into normal (class 1) and water-stressed (class 2) groups. 

These parameters included: 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 , 𝐼𝐼𝐼𝐼𝐼𝐼1 , 𝐼𝐼𝐼𝐼𝐼𝐼2 , 

𝐼𝐼𝐼𝐼𝐼𝐼3 , 𝐼𝐼𝐼𝐼𝐼𝐼4 , 𝐼𝐼𝐼𝐼𝐼𝐼5  (Equations 1 to 5), 𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼𝑟𝑟 , 𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼𝑔𝑔 , 

𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼𝑏𝑏, 𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼𝑚𝑚, 𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼𝐸𝐸𝐸𝐸, 𝑆𝑆𝑆𝑆𝑟𝑟, 𝑆𝑆𝑆𝑆𝑔𝑔, 𝑆𝑆𝑆𝑆𝑏𝑏, 𝑆𝑆𝑆𝑆𝑚𝑚, 𝑆𝑆𝑆𝑆𝑔𝑔𝑔𝑔, 𝐶𝐶𝐶𝐶𝑟𝑟, 

𝐶𝐶𝐶𝐶𝑔𝑔, 𝐶𝐶𝐶𝐶𝑏𝑏, 𝐶𝐶𝐶𝐶𝑚𝑚, and 𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸 (Equation 6).  

3  Results and discussion 

A large number of parameters increase the classifying 

computational complexity which reduces the feasibility 

of applying a classification algorithm (Park, 2011). 

Therefore, the parameters must be reduced. Principal 

components analysis (PCA) was used as an unsupervised 

approach that transforms a large multivariate dataset of 

measured original variables into a new space with 

linearly uncorrelated attributes called Principal 

components (PCs) using orthogonal transformation (Dinç 

et al., 2014). Here, PC1 explains the highest variance in 

the data and PC2 explains the next largest variance in the 

data. At first, PCA was run on the raw data (not 

normalized) of measured and calculated parameters 

(Figure 1). 
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Figure 1. Results of running PCA on the raw data 

(the inferior point graph, showing the cores, includes two classes: range 1 stands for succulent plants and range 2 for water-stressed) 

As shown in Figure 1, PC1 describes 44% and PC2, 
22% of the total variation when running the PCA on the 
raw data. PCs larger than 90% are more desirable 
(Holland, 2008). Therefore, the data was normalized to 
achieve more reliable PCs and consequently increase 
classification performance. 
3.1  Normalization 

Normalization, as a family of transformations, is 
utilized to scale the samples in order to get all the data on 
approximately the same scale. For this purpose, six 
normalization methods were applied and evaluated as 
follows. In order to apply the normalization methods, 
Unscrambler 10 software (Anonymous, 2010) has been 
utilized. 

1) Area normalization divides an observation (𝑋𝑋𝑚𝑚) by 

the area under the curve of observation (𝑋𝑋𝚤𝚤� = 𝑋𝑋𝑚𝑚
∑ 𝑋𝑋𝑚𝑚𝑖𝑖𝑖𝑖

). For 

all the samples (𝑋𝑋𝑚𝑚), the area (∑ 𝑥𝑥𝑚𝑚𝑖𝑖𝑖𝑖 ) becomes the same 

(Figure 2) (Anonymous, 2010). 
2)  Unit vector normalization, as a useful method in 

some pattern recognition applications, transforms the Xi 

to unit vector (𝑋𝑋𝚤𝚤� = 𝑋𝑋𝑚𝑚

�∑ 𝑚𝑚𝑚𝑚𝑖𝑖
2

𝑖𝑖

) that results in samples with a 

norm of 1 (Anonymous, 2010). Results of raw data 
normalization using unit vector method are shown in 
Figure 3. 

3)  Mean normalization divides each row of data 
matrix by its average, thus, the influence of the hidden 
factor is negated and it keeps the area under the curve the 
same for all the samples (Figure 4) (Anonymous, 2010).  

4)  Maximum normalization, contrary to mean 
normalization, this method divides each row by its 
maximum absolute value. If all the sample values are 
positive, the maximum value becomes +1; conversely, if 
all the values are negative, the minimum value becomes -
1 (Figure 5) (Anonymous, 2010). 
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5)  In range normalization, each row is divided by its 
range (𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚). The curve span becomes 1 (Figure 
6) (Anonymous, 2010). 

6)  Peak normalization normalizes a sample 𝑋𝑋𝑚𝑚 

divided by the chosen 𝑘𝑘𝑡𝑡ℎ  data point, which is always 

selected for both the training set and the unknowns for 

prediction (𝑋𝑋𝚤𝚤� = 𝑋𝑋𝑚𝑚
𝑚𝑚𝑚𝑚,𝑘𝑘

). The peak variable (max) is equal 

to the total number of variables and all the transformed 
samples take the value of 1 at the chosen constant point 
(Figure 7) (Anonymous, 2010). 

 
Figure 2. Results of running PCA on area-normalized data 

(the inferior point graph, showing the cores, includes two classes: range 1 stands for succulent plants and range 2 for water-stressed) 
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Figure 3. Results of running PCA on unit-vector-normalized data 

(the inferior point graph, showing the cores, includes two classes: range 1 stands for succulent plants and range 2 for water-stressed) 

 

 

Figure 4. Results of running PCA on mean-normalized data 
(the inferior point graph, showing the cores, includes two classes: range 1 stands for succulent plants and range 2 for water-stressed) 
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Figure 5. Results of running PCA on maximum-normalized data 

(the inferior point graph, showing the cores, includes two classes: range 1 stands for succulent plants and range 2 for water-stressed) 
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Figure 6. Results of running PCA on range-normalized data 

(the inferior point graph, showing the cores, includes two classes: range 1 stands for succulent plants and range 2 for water-stressed) 

As shown in Figures 1 to 6, for raw data (not 
normalized) and data normalized by area normalization, 
unit vector normalization, mean normalization, 
maximum normalization, or range normalization, their 

first two PCs (PC1 and PC2) ranged from 69% to 72% 
which is low and not desirable. Therefore, peak 
normalization was tested (Figure 7).  

 

 
Figure 7. Results of running PCA on peak-normalized data 

(the inferior point graph, showing the cores, includes two classes: range 1 stands for succulent plants and range 2 for water-stressed) 
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As shown in Figure 7, the first two PCs obtained by 
peak normalization together account for 99% of data 
variance of the original dataset. This fact means that 
classifying along the first two axes is more significant 
and peak normalization performed much better than the 
previous 5 normalization techniques.  

In PCA, the correlation between a component and a 
variable (loading) estimates the information they share 
(Abdi and Williams, 2010). As shown in Figures 2 to 6, 
maximum and minimum temperatures can be considered 
as effective parameters in classification, while in peak 
normalization (Figure 7) their effect may be ignored. 
Therefore, 𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼𝑔𝑔 , 𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼𝑚𝑚 , 𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼𝑟𝑟 , 𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼𝑔𝑔𝑔𝑔 , 𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼𝑏𝑏 , 

𝑆𝑆𝑆𝑆𝑏𝑏 , 𝑆𝑆𝑆𝑆𝑟𝑟 , 𝑆𝑆𝑆𝑆𝑚𝑚 , and 𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸  were  selected as classifying 
parameters that had the highest loadings, respectively. 
This result indicates that water stress in tomato plants can 
be determined using visible characteristics while no 
thermal image attributes performed as well, here. The 

classifying parameters were applied as the inputs of 
artificial neural networks. 
3.2  Artificial neural networks 

Multilayer perceptron neural network was applied as 
a supervised classification model. The network consisted 
of three (input, hidden, and output) layers. The 9 
parameters, defined by PCA, were applied as the input 
neurons. The output layer was just 1 neuron that divided 
the output of multilayer perceptron neural networks 
(MLPNN) into two classes. The appropriate number of 
neurons for the hidden layer was found to be 10. This 
value was selected by trial and error and based on the 
lowest MSE value with the most r value (Table 2). 
Sigmoid transfer function and linear transfer function 
were applied in the hidden and output layers, respectively, 
and the network was trained using Levenberg-Marquardt 
algorithm (trainlm). 

Table 2 Training, validation, and testing results of MLPNN on PCA outputs 

N   MSE r 
 

N   MSE r 

1 

Training 4.67301E-02 0.92 
 

6 

Training 1.81663E-04 0.99 

Validation 3.24114E-02 0.97 
 

Validation 2.91178E-02 0.95 

Testing 5.76888E-02 0.90 
 

Testing 1.48333E-01 0.70 

2 

Training 3.71195E-02 0.92 
 

7 

Training 1.58266E-02 0.97 

Validation 8.05059E-04 0.99 
 

Validation 7.69647E-03 0.99 

Testing 5.15405E+00 0.99 
 

Testing 2.80444E-02 0.96 

3 

Training 1.10604E-02 0.98 
 

8 

Training 2.53383E-04 0.99 

Validation 4.29477E-03 0.99 
 

Validation 4.54109E-05 0.99 

Testing 6.55204E-03 0.99 
 

Testing 1.87336E-02 0.96 

4 

Training 1.88066E-10 0.99 
 

9 

Training 1.52732E-02 0.98 

Validation 4.87744E-03 0.99 
 

Validation 2.63993E-02 0.95 

Testing 7.69184E-02 0.85 
 

Testing 3.31119E-02 0.93 

5 

Training 2.83429E-05 0.99 
 

10 

Training 2.60346E-03 0.99 

Validation 6.25578E-03 0.98 
 

Validation 4.84167E-03 0.99 

Testing 1.77474E-02 0.98 
 

Testing 6.04998E-03 0.99 

Table 2 shows the results of MLPNN on the PCA 
outputs with hidden layer of 1 to 10 neurons. The overall 
correlations between the MLPNN-based classification 
and actual classes (succulent vs. water-stressed plants) 
show a good r of roughly 0.99 (Table 2). Rud et al. (2014) 
found r=0.99 for a thermal based water detection system 
in potatoes. Bellvert et al. (2014) reported the r=0.91 for 
water stress detection in vineyard using a thermal remote 
sensing imagery. The value of r was reported 0.91 in 
another research was done by Rossini et al. (2013) to 

map water stress in a maize field using hyperspectral 
remote sensing. Analyzing hyperspectral images to detect 
water stress in apple trees, Kim et al. (2011) found 
r=0.94. 

In order to evaluate the accuracy of the developed 
classification algorithm, results of the developed 
algorithm were compared with a database of manually 
classified images. This algorithm was capable to classify 
the images in 83.3%. The error of the algorithm to 
classify normal and water-stressed plants was 26.7% and 
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6.7%, respectively. Therefore, the algorithm developed 
here performed better to work on water-stressed tomato 
plants rather than normal. The former error results in 
more water consumption by 26.7%; however, the 6.7% 
savings in water consumption due to the latter error, in 
the other hand, may reduce the productivity in water-
stressed plants (Kim et al., 2011).  

Although, in the reviewed literature, more emphasis 
has been placed on the thermal characteristics of a plant 
canopy, it was found that a classification algorithm based 
on visible features and MLPNN model (using the PCA-
approved parameters of tomato canopy) yields better 
results here. Visible features can lead to the development 
of an inexpensive smart water stress detection system as 
opposed to spectral, or thermal-based algorithms 
developed by Kim et al. (2011), Sepulcre-Cantó et al. 
(2006), and Wang et al. (2010) which require much more 
expensive equipment. This algorithm is preferred to 
image segmentation methods used by Font et al. (2005) 
and Kacira et al. (2002), since it is not very complicated 
and does not require much processing time. Associated 
with low price, working with a visible camera is easier 
and its calibration for all the conditions takes a short time, 
making it appropriate to be utilized in commercial smart 
irrigation systems.  

4  Conclusion 

Among the 22 parameters applied on images for 
classifying to detect water-stressed tomato plants, nine 
parameters were determined to be most appropriate. The 
optimization process was implemented using Principal 
Components Analysis. Among the normalization 
methods, peak normalization performed better than the 
others with overall PCs of 99%. Peak normalization 
loading outputs were used in multilayer perceptron 
neural network to develop the classification algorithm. 
The outputs indicated 𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼𝑔𝑔, 𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼𝑚𝑚, 𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼𝑟𝑟, 𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼𝑔𝑔𝑔𝑔, 

𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼𝑏𝑏 , 𝑆𝑆𝑆𝑆𝑏𝑏 , 𝑆𝑆𝑆𝑆𝑟𝑟 , 𝑆𝑆𝑆𝑆𝑚𝑚 , and 𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸  to be the most 
appropriate parameters for classifying the images. All the 
parameters were extracted from visible light image 
characteristics. 

Results of analysis showed that the classification 
algorithm was capable of detecting water stress based on 

nine visible properties of tomato plant canopy images (as 
input layer), 10 neurons in the hidden layer, and 1 neuron 
in the output layer. This approach can effectively be 
utilized for non-contact real-time determination of 
tomato irrigation requirements using an inexpensive 
camera. This is while the use of thermal images did not 
provide acceptable results. The overall accuracy of the 
developed algorithm to classify images to normal and 
water-stressed was 83.3%. 
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