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Abstract: The study aimed at estimating the leaf area index of okra using vegetation indices obtained by analysing image 

data from a low-cost Unmanned Aerial Vehicle (UAV).  Additionally, the work also assessed which of the two indices 
commonly used (excess green (ExG) and normalized green-red difference index (NGRDI)) could give a better estimation of leaf 
area indices.  The study was conducted in Cape Coast in southern Ghana at an experimental site located at the University of Cape 
Coast’s Teaching and Research Farm.  The experiment was arranged in a randomised complete block design (RCBD) with four 
treatments (2 cm, 3 cm, 5 cm and 7 cm sowing depths) and four replicate blocks. This resulted in sixteen plots each measuring 3 
m by 3 m. Overall, it was realised that sowing okra seeds at 3cm depth gave the best prediction of leaf area index (R2>0.76 for 
both indices).  Also, comparing the vegetation indices, the ExG gave a better estimation (R2>0.65) compared to NGRDI 
(R2>0.43).  This study suggests a recommended sowing depth of 3 cm for okra and ExG vegetation index for estimating leaf area 
index of okra. 
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 1  Introduction 

In Ghana, agriculture contributes about 19.2% of the 
gross domestic product(GSS, 2018). Among the key 
vegetable crops cultivated in the country include okra 
(Abelmoschus esculentus L) which is largely consumed 
by the citizenry due to its high composition of essential 
vitamins and minerals (Agyare et al., 2017). The weather 
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conditions in the country largely favour the production of 
the crop all-year-round. It is therefore important to 
increase the production of okra for the country’s 
economic benefit.  

In the face of projected rapid change in population 
growth with corresponding food demand, there is the 
need to focus on research related to the monitoring of 
agronomic parameters that promote the development of 
okra. Leaf area index (LAI) is one important parameter 
that could be used to assess crop health status, canopy 
physiology and nutritional supply (Kalisperakis et al., 
2015). The method of determining LAIs manually tends 
to be laborious and time consuming.  
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Consequently, the modern trend of research in 
precision agriculture shows that using unmanned aerial 
vehicle imagery data (drone technology) is rapidly 
gaining attention for crop phenotype studies and 
surveillance purposes. UAV imagery data have been 
employed to predict leaf area indices with varying 
degrees of accuracies (Yuan et al., 2017; Apolo et al., 
2018). Yuan et al. (2017) successfully retrieved the leaf 
area indices of soybean plants from UAV imagery data 
models. Apolo et al. (2018) confirmed that images of 
UAV flying at low altitude could be used to successfully 
estimate LAIs of maize. Other works have also attempted 
using vegetation indices (VIs) from UAV images for 
predicting the vegetative growth of plants, especially 
LAI and biomass (Bendig et al., 2014; Kalisperakis et al., 
2015). Zhou et al. (2017) showed that VIs can as well be 
used to predict other growth parameters including yield.  

However, for developing countries in sub-Saharan 
Africa such as Ghana, the use of UAV technology in 
precision agriculture research has rarely been explored. 
Researchers continue to study crop growth parameters by 
manual means with its associated drudgery. Hence, the 
need to explore the potential of UAV technology 
estimate in-field growth parameters.  

Our literature search so far shows that little focus has 
been given to estimating the okra LAI using   VIs from 
UAV images in Ghana and other sub-Saharan countries. 
However, two common vegetative indices (Excess Green 
(ExG) and Normalized Green-Red Difference Index 
(NGRDI)) obtained from UAV flying at low altitude 
have been widely used for predicting plant biomass ( Xue 
and Su, 2017; Tumlisan, 2017; Wan et al., 2018). In 
addition to this, Singh et al. (2013) reported that sowing 
depth influences the LAI of plants.  

Hence, the study aimed at estimating the LAI of okra 
cultivated under varying sowing depths using UAV- 
based VIs. 

2   Materials and methods 

2.1  Experimental Setting 
The study field was located at the University of Cape 

Coast’s School of Agriculture’s Teaching and Research 
Farm in the Central Region of Ghana. According to 
Owusu-Sekyere et al. (2011), the area is characterized by 
an annual temperature range of 23.2ºC -33.2ºC with an 
annual mean of 27.6ºC and a relative humidity range of 
81.3%-84.4%. It usually experiences two rainy seasons 
namely the major season which usually starts from May 
and ends in July/August and a minor season that starts 
around September and ends around November/December. 
The soil type at the experimental site is loamy sand. The 
study was done under rainfed conditions from June 12, 
2018, to August 23, 2018.  

 
Figure 1 Location of study site on the University of Cape Coast’s 

School of Agriculture Teaching and Research Farm 

Figure 1 shows the experimental area indicating the 
location of the 16 plots. The latitude and longitude of the 
study area were 5◦ 07’ 57.13” and 1◦ 17” 48.28” 

respectively. A randomised complete block design with 
four replicate blocks was used in this study. The 
treatments were sowing depths at 2 cm, 3 cm, 5 cm and 7 
cm. In each block, the treatments were randomly 
administered to the plots. Prior to this, the field was 
ploughed and harrowed and the plot sizes demarcated to 
a dimension of 3 m by 3 m square size. It was laid out in 
such a way that 1.5 m spacing between blocks and 1 m 
spacing between plots in a block were used as buffer 
zones. Seeds of Kirikou F1 okra variety were sown using 
a dibbler. A 50 cm by 50 cm planting spacing was used. 
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2.2  UAV Imaging system, flight planning and data 
collection. 

In this study, our main surveying device was a quad-
copter UAV for the acquisition of high-resolution aerial 
images. The imaging system used was a low-cost 
Phantom 3 Professional UAV (DJI, Shenzhen, China) 
made up of a platform and a red, green and blue (RGB) 
camera equipped with a 1/ 2.3” Complementary Metal 
Oxide Semiconductor (CMOS) sensor and 12.4 effective 
megapixels. The camera has a resolution of 4000×3000. 
The lens has a 94° of the angle of view with 20 mm f2.8 
focus. Even though similar studies have used UAV with 
a multispectral camera (Zhou et al., 2017), the purpose of 
this study was to opt for a low-cost device that is 
affordable to most farmers in developing countries. Map 
Pilot v2.7 software was used for monitoring the UAV, as 
well as for setting up the flight paths. The images were 
captured at nadir in every 3.5 s at a flying height of 20 m 
above ground level (AGL). The average ground sample 
distance or the resolution of the images was 0.86 cm. The 
images were also captured at a frontal and side overlap of 
80%.  

Prior to the flights, black and white Ground Control 
Points (GCP) targets were placed at vantage points on the 
ground and their geographical locations measured using 
Dual Frequency Geographic Positioning System (GPS) 
with an accuracy of 2cm. The size of all the targets was 
42 cm × 29.7 cm (A3 size). The visibility of these targets 
in the images was then used during the image processing 
to geo-rectify the orthophoto. The images were collected 
between day time hours of 10 am to 12 pm starting on 
the day of sowing (12th June 2018) and subsequently on 
26th June (okra seedling stage), 12th July (okra crop 
initial stage), 26th June (okra crop development stage), 9th 
August (mid-stage or early maturity stage of okra) and 
23rd August (Late maturity stage of okra).  
2.3  Generation of spectral vegetation indices 

Based on the UAV images of RGB spectral bands, 
VIs were calculated using band math tool in ENVI 5.2. 
Two (2) VIs, ExG and NGRDI, were used. Details of the 
indices formulae are presented in Table 1.  

At each date, average VIs for each plot were 
calculated using zonal statistics tool in ArcMap 10.5. 

Table 1 Vegetation indices used in the study 
Vegetation Index Equation 

ExG 2G R B− −  
                                                            

NGRDI 
G R
G R

−
+

 

Note: *R, G and B represent the spectral reflectance values acquired in 
the Red, Green and Blue portion of the electromagnetic spectrum, 
respectively. 

2.4  Field measurement 
Manual measurements of the plant height of six 

tagged plants per plot were taken using a tape measure 
two days after flying the UAV on the experimental plot. 
Specifically, the leaf length along the mid-rib (from 
petiole to the tip) and maximum width were measured for 
leaves of the tagged plants for average length and width 
to be noted per the specific growth stage. The number of 
leaves was also recorded. The following equation was 
used to calculate the leaf area (LA) of each leaf: 

𝐿𝐿𝐿𝐿 (𝑚𝑚2) = 𝐿𝐿 × 𝑊𝑊 × 𝑘𝑘 (1) 
Where, 
      L =leaf length (m) 
     W = leaf width (m). 
     k= 0.62 for okra (Musa and Usman, 2016) 
To obtain the total leaf area per plant, the specific 

leaf area was multiplied by the number of leaves counted. 
The LAI was then determined by dividing the leaf area 
by the ground area of the plant (Tunca et al., 2018). 
2.5  Statistical analyses 

All data collected were subjected to the analyses of 
variance procedure using Minitab statistical software 
version 17. Where significant difference exists, the 
Tukey comparison test was done at a probability level of 
5%. Multiple linear regression was also conducted to 
investigate the relationship between the LAI and VIs. 
Graphs were plotted using Microsoft Excel 2010. 

3  Results and discussion 

3.1 Change of VIs and LAI sat different growth stages 
under varied sowing depths 

The NGRDI and ExG maps of the fields were 
generated for each flight date (or okra growth stage) from 
UAV images obtained (Figure 2). Generally, a similar 
trend of increasing vegetation over time was observed on 
both maps.  
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This observation was in accordance with what was 
generally observed in the okra field. However, from the 
generated data (Figure 3), for some experimental 
treatments, especially, 2 cm - ExG and 5 cm – NGRDI, 
there was little drop in the pattern of growth at the early 
maturity stage of the plant (9th August). This could be 
attributed to some pest attack on the plants some days 
prior to the date of flight (or growth stage). It was 
observed that the leaves had some pests boring holes in 

some leaves and this might have affected the estimation 
of the VIs. 

The analysis of variance conducted showed that there 
were no significant differences among the treatments 
(p>0.05) for both indices at all stages of growth 
presented for the image-based data in this study. 
Nevertheless, it could generally be observed that at 2 cm 
and 3 cm sowing depths, there were generally gave better 
leaf growth. It was also observed that, sowing at the 
deepest treatment of 7 cm gave the lowest VIs. 

 

 

(a) NGRDI and (b) ExG at various growth stages 
Figure 2 Maps of vegetation indices 

(a) 

(b) 
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(a) NGRDI (b) ExG  

Figure 3 Vegetation indices at different growth stages under varying sowing depths 

Table 2 shows the mean LAIs at the growth stages 
for the plants sown at different depths. The analysis of 
variance results for the ground truth LAI data showed 
significant differences among the treatments on the 26th 
July (p=0.047), 9th August (p=0.00) and 23rd August 
(p=0.00) which represent the crop development, early 
maturity and late maturity stages of the plant respectively. 
The results from the pooled analyse indicates a similar 
trend for the VIs except for the 5 cm depth of sowing at 

the early and late maturity stages where the trend 
changed, making the highest recording to be observed in 
5 cm treatment instead of 3 cm depth of sowing. Zhou et 
al. (2017) reported a strong relationship between 
observed image-based UAV values and ground-based 
data for estimating LAI at the early and mid-stages of 
crop development. This could account for the differences 
observed in UAV based data and ground-truth LAI at the 
early and late maturity stages.  

Table 2 The variation of LAI at different growth stages under varying sowing depths 
Growth Stage LAI at 2cm  LAI at 3cm  LAI at 5cm  LAI at 7 cm  

           Seedling stage(June 26) 0.051±0.037 0.054±0.054 0.041±0.030 0.033±0.020 
 

Crop initial stage (July 12) 0.223±0.127 0.202±0.164 0.161±0.062 0.179±0.026 
 

Crop Development stage (July 26) 0.492±0.142 0.761±0.178 0.714±0.073 0.608±0.083 
 

Mid-stage/Early maturity stage (August 9) 1.197±0.070 1.320±0.061 1.700±0.023 0.950±0.062  
                                                                                                                          

Late maturity stage (August 23) 1.588±0.129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1.779±0.106 2.212±0.041 1.385±0.062                                                                                                                                                                                                                                                     

            Note: Values represent mean ± standard deviation 
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3.2  Relationship between VIs and LAI for different 
sowing depths 

Figures 4 and 5 present the relationship between the 
UAV image-based VIs and the manually determined 
LAIs over the whole period of growth for the respective 
treatments (2 cm, 3 cm, 5 cm and 7 cm depths). Thus, all 
the experimental tests were combined into one data for 
each of the treatments separately for the two indices. It 
consistently showed that at 3cm depth of sowing okra 
seeds, a strong regression (R2=0.77 for NGRDI and 
R2=0.81 for ExG) was established for predicting the LAI 
from the imaged based data. Again, the weakest 
regression was observed for 7cm sowing depth (R2 =0.39 
for NGRDI and R2 = 0.61). According to Aikins et al. 
(2011), sowing depth significantly affect the leaf growth 
of soybean. This could influence the photosynthetic 

activities of the plants and general crop productivity and 
yield. The authors reported that sowing seeds too deep in 
the soil negatively influence the development of the crop. 
Other work by Singh et al. (2013) also confirmed that 
increasing sowing depth influences the LAI of wheat. 
They reported that at a sowing depth of 2 cm, the highest 
mean LAI was 2.87 while the lowest (2.66) was recorded 
for a greater depth of 6 cm. They further reported a 
similar trend for the yield of the crop. The reason for 
crop doing better in moderate depths could be that it 
ensures good germination, rapid emergence and good 
performance as the seeds must be planted in an 
environment that ensures the availability of nutrients and 
water from the soil. Opande et al. (2017) also buttressed 
the need to sow seeds at a moderate depth for better plant 
leaf growth and general performance. 

 

 

 
(a) 2cm, (b) 3cm, (c) 5cm, (d) 7cm 

Figure 4 Relationship between NGRDI and LAI for sowing different depths of throughout the growth period 
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(a) 2cm, (b) 3cm, (c) 5cm, (d) 7cm 
Figure 5 Relationship between ExG and LAI for sowing different depths throughout the growth period 

3.3  Comparative assessment of the VIs in predicting 
LAI 

An overall regression graph was plotted to assess how 
the indices effectively or otherwise predict the LAI of 
okra in the pooled data. From Figure 6, a strong 

relationship was found for ExG-LAI (R2=0.68) while a 
relatively weaker one was observed for NGRDI 
(R2=0.44). This gives an indication that the ExG index 
predicts the LAI better than NGRDI. 
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(a) NGRDI - LAI (b) ExG-LAI 

Figure 6 Comparison of VIs and LAI 

Multiple linear regression was carried out to 
investigate whether the VIs could predict LAI. The 
results showed that more than 65% of the variation in 
LAI can be explained by the predictor variables ExG and 
NGRDI. Overall, the regression model was found be 
significant (p=0.000). On the other hand, it was found 
that the ExG was statistically significant (p=0.000) 
whiles the NGRDI was not (p=0.197) The final 
predictive model was: 

LAI = -0.509 +0.03317ExG +2.07NGRDI 
Since LAI plays a key role in the biological and 

physical processes of plants (Yao et al., 2017), in this 
work, it is more likely to predict it using the ExG than 
NGRDI for okra plants. This confirms that between the 
two, ExG is a better option. From the works of Yang et al. 
(2015) and Hamuda et al. (2016), the ExG is often able to 
better extract plant green features against the bare soil 
especially in the presence of other residues on the surface 
of the soil. This is explaining the reason behind this 
observation and hence, ExG, may be a good index for 
estimating okra plant parameters from aerial view. 

3 Conclusion 

Overall, the study has demonstrated the possibility of 
estimating the LAI of okra using VIs obtained from a 
low-cost UAV imagery under four sowing depths. It 
could be concluded from the study that sowing the okra 
seeds at 3 cm depth resulted in the best vegetation 

growth and LAI determination. The poorest observation 
was with sowing okra seeds at 7 cm depth. Also, 
comparing the two VIs data extracted from the UAV 
imagery, the ExG showed a better potential for 
estimating the LAI compared to NGRDI. Future work 
could look into assessing their efficiencies in predicting 
okra yield.  
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