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Abstract: This study estimated crop water requirements using CROPWAT while AQUACROP and CERES models evaluated 
performance in simulating biomass and grain yield of upland rice's response to different irrigation schedules.  NERICA 4 was 
subjected to five treatment given as: full (100% ET), good (80% ET), medium (60% ET), average (40% ET), and low (20% ET) and 
three replicates in a randomized block design.  It was planted at the farmyard of the International Institute of Tropical Agriculture 
(IITA) Ibadan, Nigeria for two seasons 2015 and 2016 and the results of the first season were used in model calibration while second 
season's result was used invalidation.  Biomass and grain yield values were obtained and compared with simulated values from 
AQUACROP and CERES and the results were analyzed using E-VIEWS, R, and Minitab 17 statistical tools.  Results showed that 
there were significant differences among the models in the simulation of grain and biomass yield concerning irrigation schedule.  
CERES slightly underestimated leaf area index (LAI) while both CERES and AQUACROP slightly overestimated grains and 
biomass yields although CERES showed the highest precision in grain yield, AQUACROP showed the highest accuracy in biomass 
yield and slightly underestimated canopy cover.  CROPWAT performed excellently and could be used to efficiently estimate water 
requirements and reference evapotranspiration.  The models showed high performance and accuracy in simulation of crop water 
requirements, grain and biomass yield of rice respectively.  
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 1  Introduction 

Food security in the world is challenged by increasing 
demand and threatened by declining water availability and 
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the effects of climate change (Akinbile and Sangodoyin, 
2011). This is because one major challenge facing a lot of 
Nations especially the Third World countries in this present 
time is the problem of water scarcity. In other words, 
absolute dependence on rainfall for future crop production 
has become a major constraint for sustainable food 
production (Koudahe et al., 2017). Water required by crops 
is supplied by nature in the form of precipitation, but once 
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it is scarce or its distribution does not match with demand 
peaks, artificial water supply by irrigation becomes 
inevitable (Bouman et al., 2005). Irrigated agriculture, 
therefore, accounted for about 70% of freshwater use 
globally (Lafitte et al., 2005). Several irrigation methods 
are available and the selection of one depends on factors 
such as water availability, crop, soil characteristics, land 
topography, and associated cost. Rice is produced in at least 
95 countries across the globe and provides staple food for 
more than half of the world's current population. Due to its 
importance, it ranks third after wheat and maize in terms of 
production, being the primary food source for more than 
three billion people living mostly in Asia and Africa. At the 
beginning of the 1990s, annual production was around 350 
MT and by the end of the century, it reached 410 MT 
(Akinbile et al., 2015). As the population increased over 
this century, the projected demand for rice will grow to an 
estimated 2000 million metric tons by 2030 (FAO, 2007). 
Rice is one of the few crops grown nationwide and in all 
agro-ecological zones from the Sahel to the coastal swamps 
and could be cultivated in about 4.6 to 4.9 million hectares 
of land in Nigeria, but the actual area under cultivation is 
only 1 million hectares representing 22% of the total 
potential available area (Akinbile et al., 2015) and the sixth 
major crop in cultivated land area after sorghum, millet, 
cowpea, cassava and yam (Akinbile, 2013). Due to the 
underutilization of available resources in rice production, 
Nigeria resulted in importation which rose from 7,000 T in 
the 1960s to 657,000 T in the 1990s (Fujiie et al., 2010). 
Although, Nigeria is West Africa's largest producer of rice, 
producing an average of 3.2 million tons of paddy rice for 
the past five years (FAO, 2007) the country is also the 
World's second-largest rice importer, spending over 
US$300 million on rice imports annually which rose to 
US$1 billion in 2010 (Sanusi, 2011). Recent statistics 
showed that local production in Nigeria has risen to an 
average of 5.3 million tons as of the middle of 2019 due to 
land border closure by the State that resulted in the local 
production increase (Akinbile et al., 2019). In Nigeria, rice 
yields vary greatly across years due to markedly irregular 

rainfall distribution, and this random pattern makes it 
difficult to identify optimal farming practices and to make 
decisions on planting date or cultivar selection. This 
challenge is not only peculiar to Nigeria in West Africa but 
other parts of the continent and most especially Tanzania in 
sub-Saharan African as reported by Senthilkumar et al. 
(2018). This gap has made scientists and irrigation 
engineers devise means of predicting key factors required 
for optimum rice growth such as water, nutrients to arrive at 
a conclusion where approximately exact water quantities 
required are administered for optimum growth 
Balasubramanian et al. (2007) and one major tool for 
optimization is by modeling. Simulation models, therefore, 
provide a viable alternative to adequately plan for planting 
season and almost an efficiently predictable yield to 
meeting the growing demand of the increasing population 
to ensure food security especially in regions where the 
acute shortage is experienced (Adusumilli and Laxmi, 
2011). In principle, crop simulation models can address 
these risk issues, and to factor out environmental effects 
from management effects (Yadav et al., 2011). Crop 
simulation models provide the means to qualify effects of 
climate, soil, and management on crop growth, productivity 
and sustainability of agricultural production. These tools 
can reduce the need for expensive and time-consuming 
field trials and could be used to analyze yield gaps in 
various crops including rice (Akinbile, 2013). Rice crop 
models are useful tools to evaluate the impact of changes 
on rice production as well as to assess the effectiveness of 
adaptation options. In general, these models dynamically 
describe the biophysical and physiological processes of 
growth, development, and yield and quantitatively predict 
the productivity of a crop concerning genotype, 
environment, and management (Hoang et al., 2016). The 
need to deploy these tools to address the risk of rice 
shortage to produce commensurate grain to meet the 
burgeoning population is inevitable. The objective of this 
study, therefore, was to deploy AQUACROP and CERES-
Rice models to simulate biomass and grain yields at 
different irrigation schedules while CROPWAT was used 
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in estimating crop water requirements of NERICA 4 upland 
rice and also to access their accuracy for optimum rice 
production. 

2  Materials and methods 

2.1  Study area 
The study was carried out at the farmyard of the 

International Institute of Tropical Agriculture, (IITA), 
Ibadan, Nigeria. IITA is located between latitude 3°54′ E 
and 7°30′ N, at an elevation of 231 m above the mean sea 
level. It has an annual rainfall range of between 1,300 and 
2,000 mm while its rainfall distribution pattern is bimodal. 
The annual mean temperature is 27.2℃ during the dry 

season and 25.6℃ during the rainy season. The soil class is 
oxic paleustaff which belongs to Egbeda Series and is 
described as IITA (2002) as Alfisol (Apomu sandy loam). 
The vegetation is a humid rain forest with an average 
relative humidity of between 56% and 59% during the dry 
season and 51%-82% during the wet season IITA (2002).  
2.2 Land preparation, experimental design, and 
irrigation  

Convectional land preparation was carried out in the 
third week in September 2015 and repeated as a dry-season 
experiment in 2016 while pre-wetting was performed in the 
4th week of the same month. NERICA 4 upland rice was 
cultivated using convectional practices planted on the 25th 
of September on all the plots with dimension 5 x 5 m each. 
The experimental design was a Randomized Complete 
Block Design (RCBD) with 5 treatments based on the level 
of water application and three replicates. The water rates 
were full field capacity (100% ET) for treatment A, good 
(80% ET) for treatment B, medium (60% ET) for treatment 
C, average (40% ET) for treatment D, and low (20% ET) 
for treatment E.  
2.3  Soil and environmental conditions 

Soil physical and chemical properties of the study area 
were analyzed and results used as input parameters 
especially for CERES Rice and AQUACROP models. The 
parameters included: textural class, bulk density (BD), field 
capacity (FC), permanent wilting points (PWP), total 

available moisture (TAM), ions and metals such as 
manganese (Mn), magnesium (Mg), sodium (Na) and the 
soil pH. Others are potassium (K), phosphorus (P), Calcium 
(Ca) and Nitrogen (N). All these were determined using 
conventional methods and standard laboratory procedures 
at soil depths; 0-10 cm, 10-20 cm, 20-30 cm, and 30-40 cm 
respectively. The results of the soil analysis are as 
presented in Table 1.  

Table 1 Physical and chemical properties of the soil 
Soil depth (cm) 0-10 10-20 20-30 30-40 

Sand (%) 74 68 57 60 
Clay (%) 14 12 29 26 
Silt (%) 12 10 14 14 

Textural class Sandy 
loam 

Sandy 
loam 

Sandy 
clay loam 

Sandy clay 
loam 

BD (g cm-3) 1.24 1.27 1.28 1.40 
FC 0.20 0.28 0.29 0.25 

PWP 0.06 0.12 0.09 0.13 
TAM 0.12 0.12 0.13 0.12 

Mn (ppm) 236.44 235.32 239.54 239.4 
P (ppm) 6.05 7.52 7.04 7.85 
N (%) 0.13 0.13 0.13 0.14 

Na+(cmol kg-1) 0.10 0.08 0.07 0.08 
Ca2+(cmol kg-1) 2.7 2.9 2.10 2.82 
Mg2+(cmol kg-1) 0.70 0.95 0.67 0.94 

K+(cmol kg-1) 0.5 0.5 0.5 0.47 
pH(H2O) 5.5 5.4 5.4 5.6 

Similarly, weather parameters used for the models' 
simulation were obtained from IITA meteorological station 
which was solar radiation, maximum and minimum 
temperature, vapor pressure, sunshine hours, minimum and 
maximum relative humidity, rainfall, and wind speed. Soil 
moisture contents were determined using the gravimetric 
method at the specified depths. The samples were collected 

with a 40 mm core sampler and oven-dried at 105oC for 48 

hours. The linear water depth was determined by finding 
the product of soil moisture content (%) and the bulk 
density of each layer and root depth. The net irrigation 
requirement (d) (m3/ha per year) was determined by using 
Equation 1. 

𝑑 = ∑ (𝑀𝑓𝑐𝑖−𝑀𝑏𝑖)
100

 ×  𝐴𝑖𝑛
𝑖=1  ×  𝐷𝑖  (1) 

Where, 

𝑀𝑓𝑐𝑖 = FC in the ith layer of the soil (m3 m-3), measured 

2 days after irrigation. 
𝑀𝑏𝑖= moisture content before irrigation in the ith layer 
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(m3 m-3). 
𝐴𝑖 = bulk density in the ith layer (g cm-3). 

𝐷𝑖 = depth of the ith soil layer in the root zone (mm). 
n = soil layers in the root zone D. 
The leaf area index (LAI) and canopy cover (CC) were 

measured using the Canopy Analyzer (LAI2200) model 
from 7 Days after Transplant (DAT) 

The daily canopy cover CC (%) was computed by using 
the Ritchie equation used by Farahani et al. (2009):  

𝐶𝐶 = 11 − exp (−𝜆 𝑋 𝐿𝐴𝐼)        (2) 
Where: 
λ = seasonal leaf extinction coefficient (0.46) 

2.4  Models description 
2.4.1  CROPWAT 

CROPWAT is a decision support system developed by 
the Land and Water Development Division of FAO for the 
planning and management of irrigation. CROPWAT is 
meant as a practical tool to carry out standard calculations 
for reference evapotranspiration (ETo), crop water 
requirements (CWR) and crop irrigation requirements, and 
more specifically the design and management of irrigation 
schemes (Adiana, 2014). The model calculates the CWR 
using the Equation 3: 

𝐶𝑊𝑅 = 𝐸𝑇𝑜 × 𝐾𝑐 × 𝐴    (3) 
Where; 
ETo = reference evapotranspiration, (mm/day)  
Kc = crop coefficient, (dimensionless) 
A= planted area  (m2) 
TAM in the soil for the crop during the growing season 

was calculated as:  
𝑇𝐴𝑀 = (𝐹𝐶 −𝑊𝑃)  × 𝐷   (4) 

Where  
WP = wilting point (θwp) 
D = current rooting depth of the crop (m) 
While readily available moisture (RAM) (in mm) is 

calculated as;  
𝑅𝐴𝑀 = 𝑇𝐴𝑀 × 𝑃   (5) 

 Where P is the depletion fraction 
2.4.2  AQUACROP 

AQUACROP is a water-driven model for simulating 
crop growth response to water under various management 
and environmental conditions, including climate change 
scenarios but, like most crop models as a function of water 
consumption (Raes et al., 2011, 2012; Steduto et al., 2012). 
It estimates daily evapotranspiration and partitions it into 
crop transpiration and soil evaporation. The model has four 
sub-models: the climate sub-model, which requires daily 
maximum and minimum air temperatures, rainfall, 
reference evapotranspiration (ETo), and the mean annual 
carbon dioxide concentration in the bulk atmosphere; the 
soil water balance; the phonological development of the 
crop, growth and final yield; the management sub-model 
that combines water application and levels of fertilization 
(Adeboye et al., 2017; Raes et al., 2012). The crop 
transpiration where there is no water stress is expressed as:  

𝑇𝑟 = 𝐶𝐶∗ × 𝐾𝑐𝑡𝑟𝑥 × 𝐸𝑇𝑜  (6) 
Where. 
Tr = transpiration (mm) 
CC*= adjusted canopy cover for micro-advective effects 

(%). 
Ktrx = coefficient for maximum crop transpiration 
ETo = evapotranspiration (mm) 
When there is no water stress, Tr is adjusted by using 

the water stress coefficient Ks (0-1) which explain the 
effects of soil moisture stress on reduction in the rate of 
canopy expansion, rate of senescence and closure of leave 
stomata.  

The rate of evaporation when soil is covered by a crop 
is given as:  

𝐸𝑥 = (1 − 𝐶𝐶∗) × 𝐾𝑐𝑒,𝑤𝑒𝑡 × 𝐸𝑇𝑜          (7) 

Where 
Ex = evaporation from bare soil (mm). 
CC* = adjusted fraction of soil surface adjusted for 

micro-advective effects. 
Kce, wet = evaporation coefficient for fully wet and 

unshaded soil surface (Allen et al., 1998) 
The final crop yield from the biomass is determined by 

using Equation 7: 
 𝑌 = 𝑓𝐻𝐼  × 𝐻𝐼𝑜  × 𝐵   (8) 
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Where 
HIo = the reference harvest index 
fHI = adjusted factor integrating water stress factors 

relative to the inhibition of leaf growth and inhibition of 
stomata. 

B = biomass (t ha-1). 
2.4.3  CERES-Rice 

The CERES (Crop-Environment REsource Synthesis) 
model was used to predict the growth of rice development 
and yield taking into account the effects of weather, 
management, soil, water balance, and nitrogen balance. 
Timsina and Humphreys (2006) remarked that CERES 
simulates dry matter accumulation as a linear function of 
intercepted photosynthetically active radiation. CERES 
model defines the atmospheric demand for water (Etp) as 
the potential evaporation rate defined from some variant of 
the Penman equation (Ep), modified by the current value of 
LAI (Akinbile, 2013; Eitzinger et al., 2004; Mahmood, 
1998). The water balance of CERES models performed as 
reported by Cheyglinted et al. (2001): 

𝐸𝑡𝑝 = 𝐸𝑝[ 1 − exp( −𝑘𝐿𝐴𝐼)]          (9) 
Where  
Etp = potential transpiration rate (mmd-1)  
Ep = potential evapotranspiration rate (mmd-1)  
k  = extinction coefficient (dimensionless) 
LAI = leaf area index (dimensionless) 

2.5  Assumptions made during calibration  
The following assumptions were used for the models' 

calibration. 
CROPWAT model (Amiri et al., 2014) 
i  Kc values for initial stage (0.40), and mid-season 

(1.15)  
ii  Critical depletion fraction from initial to mid-season 

was (0.45) and harvest (0.50)  
iii  Yield response factor at the initial stage (0.20), 

development stage (0.80), mid-season (0.60), and late stage 
(0.20).  

AQUACROP model  
i  Default atmospheric CO2 concentration from 1902 to 

2099 was 369.41ppm  

ii  Canopy performance under elevated CO2 sink 
strength was 50%  
2.6  Model calibration 

 The monthly climatic data of the study area (which 
includes temperature, humidity, wind speed and sunshine 
hour) were incorporated into the climate/ETo module of the 
CROPWAT Model 8.0 which used the FAO-56 Penman-
Monteith (PM) approach to calculate and give the 
corresponding monthly ETo values. The crop water 
requirement and irrigation schedule were estimated after 
feeding the crop and soil input parameters such as planting 
date, maximum rooting depth, critical depletion fraction, 
yield response factor, crop height, crop coefficient, total 
available soil moisture, maximum rain infiltration rate, 
initial soil moisture depletion and initial available soil 
moisture into the models. The model contained different 
field management practices relative to salinity, the fertility 
of the soil, mulching and soil bunds for reducing runoff 
(Hsiao et al., 2009) 
2.7  Input data requirement for models’ validation 

The input data for the simulation of variables are 
environmental and crop sub-model that can be adjusted for 
specific environments and crop varieties which included 
soil and crop parameters. (Adeboye et al., 2017; Raes et al., 
2012).  

 Some of the soil parameters utilized were from four 
soil horizons, textural class, field capacity, wilting point, 
saturated hydraulic conductivity, and volumetric water 
content at saturation.  

In the AQUACROP model, the development of the 
canopy was measured in terms of CC (equation 2) and root 
length. Crop-management factors incorporated in the model 
included planting date, planting depth, row spacing, and 
direction, some plants per square meter, age of seedling, 
fertilization application dates and amount, irrigation, 
residue applications, tillage, and harvest date. All these 
were as presented in Table 2 and were calibrated by using 
the measured parameters in Table 3 to predict CC, biomass 
and grain yield. Parameters that influence referenced 
variables were adjusted by using a trial and error approach 
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to reduce the error between simulated and measured data. 
After entering crop phonological data such as days to 
maximum canopy cover, days to flowering, duration of 
flowering, days to senescence, and maturity as input 
parameters, canopy expansion rates were predicted by the 
AQUACROP model. Rooting depth and expansion activity 
were derived from Raes et al. (2011) while soil’s FC, PWP, 
hydraulic conductivity at saturation point, and TAW were 
set according to the soil class as reported by Raes et al. 
(2011). All model parameters were adjusted with a trial and 
error approach until the model-based computations 
explained in close match field observations.  

CERES-Rice model was calibrated with the data  

from the field experiment as shown in Table 3 while 
genetic coefficients of NERICA cultivars were as presented 
in Table 4. Weatherman utility in the DSSAT was used to 
create the weather file that was used by the DSSAT Rice 
model. Data used to create the weather file included station 
information while daily maximum and minimum 
temperature, daily solar radiation, daily rainfall and daily 
sunshine hours for a period of interest were imported into 
the DSSAT model. The data was edited and exported to the 
DSSAT format and was ready for use by the CERES-Rice 
model. Soil data tool (SBuild) under the tools section in 
DSSAT v 4.5 was used to create the soil database which 
was used for the general simulation purposes. 

Table 2 AQUACROP model parameters used in simulating the response of rice yield 

Description value Unit 

Base Temperature 5.0 oC 

Cut –off temperature 30.0 oC 

Canopy cover per seedlings at 90% emergence (CCo) 5.0 cm-2plant-1 

Canopy growth coefficient (CGC)  Increase in CC relative to existing CC day-1 

Crop coefficient for transpiration at CC = (100%) 1.00 Full canopy transpiration relative to ETo 

Decline in crop coefficient after reaching CCx 0.30% Decline per day due to leaf aging 

Canopy decline coefficient at senescence (CDC)  The decrease in CC relative to CC per GDD 

Water productivity normalized for ETo and CO2 15.0 gm-1 (biomass) 

Soil water depletion threshold for canopy expansion - upper 0.15 As a fraction of TAW, above this leaf growth, is inhibited 

Soil water depletion threshold for canopy expansion - lower 0.65 Leaf growth stops completely at this value  

Leaf growth stress coefficient curve shape 3.0 Moderately convex shape 

Soil water depletion threshold for stomata control –upper  0.5 Above this stomata begins to close  

Stomata stress coefficient curve shape 3.0 Highly convex shape 

Soil water depletion threshold for canopy senescence (Psen ) – upper threshold 0.7 Above this early canopy, senescence begins 

Shape factor for water stress coefficient for canopy senescence  3.0 Convex curve 

Coefficient describing the positive impact of restricted vegetative growth 

during yield formation on HI 

None HI increased by inhibition of leaf growth at anthesis 

Coefficient describing the negative impact of stomata closure during yield 

formation on HI 

Strong HI reduced by inhibition of stomata at anthesis 

Allowable maximum increase (%) of specified HI 10  

atmospheric CO2 concentration from 1902 to 2099 369.41 ppm 

          Note: Source: Raes et al. (2012) 

Table 3 Measured crop phenological stages used in simulating the response of rice yield 

Description A (100% ET) 
B 

(80% ET) 
C 

(60% ET) 
D 

(40% ET) 
E 

(20% ET) 
Unit 

Time from Sowing to emergence 10 9 11 15 16 Day 
Time from tillering – Panicle Initiation 42 43 45 47 48 Day 
Time from panicle Initiation – Heading 25 26 28 30 33 Day 
Time from sowing to start of flowering 77 78 84 92 97 Day 

Duration of flowering 6 6 8 9 9 Day 
Time from sowing to start of senescence 86 85 82 79 78 Day 

Time from sowing to maturity 110 110 110 110 110 Day 
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Table 4 CERES model parameters used in simulating the response of rice yield 
Genetic parameters Description coefficients 

P1 
Time from seedling emergence to the end of the juvenile phase. This period is also referred to as the basic 

vegetative phase of the plant. 
300 

P2O Critical photoperiod or the longest day length (in hours) at which the development occurs at a maximum rate. 5 

P2R 
The extent to which phasic development leading to panicle initiation is delayed for each hour increase in 

photoperiod above P2O. 
450 

P5 The period from the beginning of grain filling to physiological maturity 13.5 

G1 
Potential spikelet number coefficient as estimated from the number of spikelets per g of main culm dry weight 

(fewer lead blades and sheaths plus spikes) at anthesis. 
54.0 

G2 
Single grain weight (g) under ideal growing conditions, i.e. nonlimiting light, water, nutrients, and absence of 

pests and diseases. 
0.0250 

G3 Scalar vegetative growth coefficient for tillering relative to IR64 1.00 
G4 Temperature tolerance coefficient. Usually 1.0 for varieties grown in normal environments. 1.00 

              Note: Source: Amiri et al. (2014). 

2.7  Statistical analysis 
Apart from the conventional tools such as analysis of 

variance (One-way ANOVA), the least square difference 
(LSD), root mean square error (RMSE) and statistical 
package for social sciences (SPSS) used for the analysis 
especially between simulated and observed (field) values. 
Others such as ratio analysis software (R) and econometric 
analysis software (E-VIEWS) and MINITAB 17 were also 
used in determining the efficacy of the models in achieving 
the set-out objectives at P < 0.05 confidence levels. 

3  Results 

Soil in the study area is predominantly sandy loam with 
the percentage composition of sand, clay, and silt as 
presented in Table 1 which enhances rice production by 
encouraging root development and penetration. BD was 
found to be 1.27 g cm-3 which showed that the soil is well 
aggregated for rice production since this BD permits root 
development. Field capacity and permanent wilting point 
on all the plots were estimated to be 28% and 13% 

respectively. TAM was approximately 12% while the 
values obtained for all the metals and ions were all within 
permissible limits for optimum rice growth. Other soil 
nutrients such as Na, Mg, Mn, Ca, N, P and K were all 
within maximum permissible limits required for rice 
production in ordinary soil conditions.  

Figure 1(a) to c shows the weather parameters 
consisting of rainfall, temperature and relative humidity of 
the study area within the period of research. From Figure 
1(a), highest rainfall was recorded on the 213th Julian day 
with a value of 64 mm while minimum value of 0 mm was 
recorded from 1st to 27th, 30th to 59th and 309th to 365th 
Julian days respectively. For temperature as presented in 
Figure 1(b), the maximum temperature ranged between 
24oC and 36oC while minimum temperature ranged was 
13oC and 25.5oC respectively. In Figure 1(c), maximum 
relative humidity ranged between 65 and 100% while 
minimum relative humidity ranged from 8% to 67% 
respectively.
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(a) Rainfall; (b)Air temperature; (c) Relative humidity 

Figure 1 Rainfall, temperature and relative humidity against Julian days of the planting year 2015 
 
The results of estimated ETo using the Penman-

Monteith (PM) model is as presented in Figure 2. ETo 
values ranged between 2.7 mm day-1 in August and 4.3 mm 
day-1 in December. Reasonably high values ranging from 
4.1 mm day-1 in January up to 4.2 mm day-1 in February 
were recorded which started declining in March with a 
value of 4.0 mm day-1 up to 2.7 mm day-1 in August.  

Increased value of 3.2 mm day-1 in September and 4.3 
mm day-1 in December were recorded. This was responsible 
for the high ET values recorded during the period. The 
same trend was observed from October through December 
implied that higher temperature and sunshine hours during 
those identified months would result in the higher ETo and 
lower humidity values recorded. 

                      
Figure 2 Monthly ETo estimated using Penman-Monteith (PM) for 2015
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Figure 3 shows the output of the rainfall trend (both in 
mm/Dec and percentage) on the rice field and for the period 
of study using CROPWAT model. In September when the 
upland rice was planted, effective rainfall was 130.5 mm 
out of the total rainfall of 85.7 mm, representing 15.9% as 
estimated by CROPWAT. The trend reduced to 6.4 mm 

rainfall in November, representing 0.8% but the model 
predicted 822.0 mm (100%) in the same month although 
average rainfall was 1080.2 mm. No rainfall was recorded 
in December through February indicating the need for 
100% irrigation to satisfy the consumptive water use of the 
rice crop in the study area.  

 
Figure 3 Average monthly effective rainfall file in the study area using CROPWAT model 

Also, Figure 4 shows trend of the irrigation water 
requirement (IWR) generated for the entire growing season 
from September through January using the CROPWAT 
model. IWR ranged from 3.9% to 1.4%, the lowest on 
January 2 while the highest requirement was recorded on 
December 2 with a value of 48.3 mm (16.8%), rose to 
288.10 mm (100%) on January 1 and stabilized till 

September 3. In October, effective rainfall was on the high 
side so irrigation water required was low. At the latter stage 
of growth, IWR decreased till the harvesting period since a 
further increase in irrigation water does not result in any 
corresponding increase in agronomic and yield 
development of the rice crop. 

 
Figure 4 Irrigation water requirement from CROPWAT file 
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Figure 5 shows changes in the plant height of rice with 

days after planting (DAP) during the growing season. 

Treatment A had the highest height of 93 cm in 84 DAP 

while expectedly Treatment E was at least with 49 cm. 

beyond 100 DAP, a gradual decline in height in all the 

treatments was observed which indicated that further water 

application does not result in height increase. Identical 

orientation was observed in the measured LAI in all the 

treatments although the highest value was recorded in A 

while the least was in E (Figure 6a). When comparing with 

the predicted LAI using the CERES-Rice model (Figure 

6b), an almost identical orientation was produced but with 

slightly lower values. Treatment A in the measured LAI 

recorded a value of 3.82 at 70 DAP while E produced 2.67, 

predicted LAI with CERES model produced 2.15 in 

treatment A and 1.46 in treatment E respectively (Figure 6a, 

6b). The values of the five treatments are nearly equal, 

particularly at the maturity stage.  

Figure 7 shows the measured canopy cover (CC) and 
the modeled using AQUACROP. Highest CC as was 
observed during the heading, flowering, and milky phases 
of the ripening stage (80 DAP) with the value 69.2% 
treatment (A), 62.72% treatment (B), 48.25% treatment (C), 
38.1% treatment (D), and 26.21% treatment (E). At 100 
DAP, canopy cover has reduced to 50.15%, 46.32%,  

30.03%, 20.6%, and 13% from treatment A to E. This was 
because at maturity, leaves coloration has begun to change 
from lush green to brown and the canopy had started to 
collapse in readiness for harvesting. The predicted figure of 
CC also shows identical behavior with the highest value of 
82.6% recorded in A, 81.2% in B, 80.1% in C, 78.5% in D 
and 68% in E respectively. 

As for the predicted canopy cover using AQUACROP, 

the values was 0 at the initial stage for the five treatments 

and increased gradually at the vegetative stage (20 DAP) 

from 6.08%, 6.12%, 6.01%, 6.09% and 6.07% for the five 

treatments, to maximum canopy cover at flowering stage 

(80 DAP) with the value 82.55% treatment (A), 82.18% 

treatment (B), and 81.98% treatment (C) then decreased 

gradually from the maximum canopy cover as the 

senescence increases due to water stress which occurred at 

the maturity stage. It was observed that maximum canopy 

cover in treatment D was 70.2% at 60 DAP, and 63.7% for 

treatment E at 50 DAP. The increase in canopy 

development concerning variation in water application was 

due to an increase in crop transpiration which increased 

from 0.0 for all the treatments at the initial stage to 4.2, 4.1, 

3.8, and 3.5 at the vegetative stage where the crop 

transpired most. 

 
Figure 5 Measured Plant height among treatments at different stages of growth 
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(a) Measured LAI vs DAP                                                       (b) CERES-predicted LAI vs DAP 

Figure 6: Measured leaf area index (LAI) with days after planting and predicted LAI with DAP using CERES model 

    
                         (a) Measured CC vs DAP                                                                        (b) AQUACROP-predicted CC vs DAP 

                                       Figure 7 Measured canopy cover (CC) with DAP and predicted CC DAP using AQUACROP model 

The highest yield of 3.02 tons ha-1 (grain) and 8.30 tons 
ha-1 (biomass) were recorded in treatment A on the field 
experiment. Also, treatment A of AQUACROP model 
produced the highest yield of 3.73 tons ha-1 (grain) and 
12.89 tons ha-1 (biomass). Moreover, treatment A of the 
CERES model produced the highest yield of 4.02 tons ha-1 
(grain) and 12.50 tons ha-1 (biomass). Reduction in yield 
from treatment A to E might be due to water deficit at the 
grain filling stage which adversely affects grain 
development mainly due to shortage of moisture that 
impaired nutrient uptake. Yield reduction due to water 
deficit was also observed by Feng et al. (2007). 

Both AQUACROP and CERES models overestimated 
grain and biomass yields and again agreed with the findings 
of Akinbile (2013). This showed that the observed values 
from the field were less than normally expected results 

which might be a result of the shortcoming of the models. 
CERES Rice model showed the highest precision in grain 
yield than the AQUACROP model which showed the 
highest accuracy in biomass yield. This might be because 
the AQUACROP model used a constant harvest index for 
the estimation of grain yield in rice. Moreover, the 
AQUACROP model built on evapotranspiration of study 
crop estimates the yield from the daily transpiration 
considering key physiological characteristics of the crop. 
Whereas, CERES-Rice simulates grain yield using dynamic 
components such as potential spikelet number coefficient 
and single grain weight for each rice variety. 

Two of the models used predicted grains yield and 
biomass in all the treatments as recorded in Figure 8. For 
the grain yield, AQUACROP expectedly predicted that no 
yield was recorded from 0 to 79 DAP and grain yield began 
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at 80 DAP and increased till maturity at 100 DAP after 
which the yield increase became steady till harvesting at 
110 DAP (Figure 8a). However, for the CERES model, 
grain yield began at 46 DAP and increased till 110 DAP 
with treatment A having the highest, 4.02 tons ha-1 and E 
the lowest value of 2.3 tons ha-1 (Figure 8b). For 
AQUACROP, the highest yield of 3.73 tons ha-1 was 
recorded in A while the lowest values of 2.0 tons ha-1 were 

recorded in E (Figure 8a). The two models over-predicted 
grain yield as the value of observed yield (3.02 tons ha-1) in 
treatment A with 100% ET was slightly lower than the 
predicted values obtained. The same trend was recorded in 
the lowest observed values of 1.02 tons ha-1 in treatment E 
with 20% ET (Figure 8a). The decrease in yield especially 
in E might be due to stress which occurred at the vegetative 
stage.

 

 
 

Figure 8 Predicted grains yield and biomass with DAP using AQUACROP and CERES models 

Similar observations for biomass yields were recorded 
for all the treatments using the two models, AQUACROP 
and CERES respectively as shown in Figure 8 (c, d) 
respectively. AQUACROP biomass production began at 30 
DAP and increased up to 12.89 tons ha-1 at 100 DAP in 
treatment A while treatment E had 4.51 tons ha-1 on the 
same day (Figure 8c). This agreed with Raes et al. (2006) 
that biomass production increases as the water application 
increases. In CERES prediction, however, biomass 

production began at 46 DAP and increased up to 11.76 tons 
ha-1 at 110 DAP in treatment A while treatment E had 4.40 
tons ha-1 (Figure 8d). The two models overestimated the 
biomass yield as the highest measured value of 8.3 tons ha-1 
was recorded in treatment A and the lowest value of 4.2 
tons ha-1 was recorded in treatment E (Figure 8b) when 
considered with the quantity of irrigation water applied. 
Table 5 shows the post-harvest agronomic parameters of 
the rice crop in all the treatments. From the values obtained, 
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there was no statistically significant difference between 
treatments A and B in all the parameters considered. Plant 
height, no of leaves, no of panicles, LAI, grain yield and 
biomass which could strongly be traced to the irrigation 
water applied to the two treatments. Treatment A received 
100% ET while treatment B received 80% ET and van Oort 
(2018) established a strong relationship between the 

behavioral responses of the agronomic parameters with the 
quantity of water applied in his studies. It was also 
established from the study that the treatment with the 
highest total irrigation water applied had the lowest average 
ET while the treatment with the lowest water applied had 
the highest ET. 

Table 5 Irrigation water, average ET and measured plant parameters after harvest from field experiment 
crop parameters A B C D E 

Plant height 83.2 81.3 69.5 61.2 46.2 

No of leaves 12 12 10 10 7 

No of panicles 370 360 345 286 150 

LAI 2.01 1.91 1.79 1.9 1.37 

Grain yield (ton ha-1) 3.02 3.01 1.73 1.25 1.02 

Biomass (ton ha-1) 8.3 8.25 5.97 4.78 4.2 

Irrigation water applied 
(mm) 

1700 1360 1020 680 340 

Average ET (mm) 285.6 293.8 297.2 310.6 337.1 

4  Discussions 

From the information supplied in Table 1, Akinbile et 
al. (2016a) reported that soils with the composition 
described are excellent for rice production since the higher 
sand content permits extensive root configuration and 
development which was supported by Bouman and Van 
Laar (2006) in their studies. Akinbile and Sangodoyin 
(2011) described maximum root depth in their studies to be 
less than 30 cm for the NERICA 4 upland variety, hence 
the maximum soil depth of 40 cm from where samples were 
obtained and analyzed to have a fair idea of the condition of 
the roots at such depth. The presence of nutrients such as 
phosphorus, potassium, nitrogen which are the main 
constituents of inorganic fertilizers in sufficient and 
appropriate quantities across the soil profile suggests the 
beneficial fertility of the soil even without introducing 
amendments and fertilizer which has been reported by 
Akinbile et al. (2016b) and supported by Amiri et al. (2014) 
and Confalonieri et al. (2005) in their respective studies. 
The average BD value of 1.30 g cm-3 is okay for optimum 
rice production while FC, PWP and TAW values are 
adequate for rice growth without water stress that could be 

inimical to the proper development of the agronomic 
parameters of the rice crop. The values recorded, especially 
for PWP are not serious enough to introduce alternate 
wetting and drying (AWD) techniques for plant crop 
survival. 

The highest rainfall recorded on the 213th Julian day 
(August 2) suggests the peak rainfall which falls during the 
wettest month of the year (Figure 1a) by Akinbile (2013). 
During this period, temperature expectedly will be lowest 
while the values of relative humidity are also expected to be 
very high. This very high rainfall does not translate to 
increased metabolism or agronomic responses (since water 
loss could be experienced through percolation and/or 
seepage) but contributes significantly to the growth and 
yield development of the rice crop under rain-fed 
conditions. The maximum temperature ranged was between 
24oC to 36oC which has some effect on the germination and 
development process of the seeds. Higher temperature 
range will lead to seed abortion as a result of heat while the 
lower temperature range will result in spikelet infertility 
(Balaghi, 2010). High temperatures were recorded during 
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the periods of low or no precipitation while low humidity 
was also recorded during the same period too (Figure 1b) 
Mahmood (1998). These trends are normal climate change 
observations that are occasioned by extreme temperature 
variations and as reported by Confalonieri et al. (2005). The 
temperature, rainfall and relative humidity range for 2015 
were within permissible ranges for optimum upland rice 
production. 

From the results presented in Figure 2, an ET ranged 
identical to most conventional cereal crops was recorded 
which agreed with the findings of Akinbile and Sangodoyin 
(2011). Allen et al. (1998), Bouman et al. (2005), Kuo et al. 
(2001), and Lafitte et al. (2005) all reported that 
evaporation was pronounced during vegetative, ET during 
mid-season and transpiration takes place during maturity 
stages of crop development. Water loss through stomata 
and lenticels was pronounced in the mid-season stage, the 
stage when water need and water use is maximum 
(Akinbile, 2013; Akinbile and Sangodoyin, 2011).  

The scenarios described in Figure 3 and Figure 4, as 
well as the observations reported, are the conventional 
behavioral pattern of crop-water-food nexus in climatic 
variability trends involving some of it parameters such as 
rainfall and temperature and is as reported by Akinbile et al. 
(2015) in their studies. From Figure 5, a strong correlation 
exists between the plant height and the quantity of water 
administered to the crop. Similar observations were 
reported in Figure 6 for LAI, particularly when comparing 
measured with CERES-predicted values. The trends 
established pointed to a relationship between the responses 
reported and water use. This agreed with the findings of 
Lafitte et al. (2005) who stressed that the leaf area index 
orientation is a function of water application. Also from the 
predicted results, it could be inferred that water application 
has a great influence on leaf growth as shown in Figure 6b 
and supported the inferences drawn by Amiri et al. (2014) 
and Feng et al. (2007). 

Figure 7 shows the measured and AQUACROP-
predicted values of CC. The behavior was similar to LAI as 
the highest canopy cover was observed during the ripening 

stage; at the same time, LAI was maximum in all the 
treatments. This agreed with the findings of Raes et al. 
(2012), Raes et al. (2011), and Steduto et al. (2009) that 
under severe water stress, the canopy development might be 
brought to a standstill and canopy senescence would be 
triggered. Also, when the crop transpiration is fully 
inhibited canopy cover no longer can increase (Hsiao et al., 
2009). This observation agreed with the findings of Steduto 
et al. (2009) which have shown a linear relationship 
between biomass produced and water applied in identical 
circumstances.  

Results of agronomic, grain and biomass yields, 
irrigation water applied and average ET as presented in 
Table 5 shows a trend that is consistent with the quantities 
of water applied in all the treatments which showed that 
highest values applied resulted in lowest average ET and 
lowest water applied resulted in the highest ET. This trend 
was also established by Amiri et al. (2014), Eitzinger et al. 
(2004), and Akinbile (2013). This shows that a linear 
relationship exists between the agronomic parameters and 
irrigation water use while the continuous increase in water 
use at the maturity stage does not imply a corresponding 
increase in yield. Rinaldi (2004) justified this in one of his 
studies.  
4.1  Statistical interpretation of models’ performances 

Four different tools of the ratio analysis package (R), 
Econometric Views Package (E-VIEWS), statistical 
package for social science (SPSS) and Minitab 17 were 
used to ascertain the correlation and co-variability between 
simulated and observed values in both AQUACROP and 
CERES models used for biomass yield, grain yield the 
results which were as presented in Figures 9-12 
respectively. From Figure 9(a), the simulated values of 
biomass in both models are in good agreement with the 
observed values with low average absolute error and 
RMSE. Corresponding values for different treatments were 
also well simulated with the observed yields giving 
correlation coefficients of 0.96 for AQUACROP and 0.91 
for CERES. From Figure 9(b), R-package showed that the 
CERES model had high precision in grain yield prediction 



June, 2020                                   Crop water requirements, biomass and grain yields estimation for upland                                 Vol. 22, No. 2     15 

under different irrigation schedules when compared with 
the AQUACROP model, while the AQUACROP model 
simulated biomass yield by more accuracy than CERES 
model. 

Using E-VIEWS, the simulated and observed values of 
biomass were strongly correlated in both AQUACROP and 
CERES models with the values 0.95 and 0.94, indicating 
that there is a perfect agreement between the simulated and 
the observed yields (Figure 10a). Similarly, a strong 
agreement existed between the simulated and observed 
values of grain yields with the correlation coefficient of 
0.90 AQUACROP and 0.96 in CERES as shown in Figure 
10(b). CERES model showed high precision in grain yield 
prediction under different irrigation schedules than the 
AQUACROP model, while the AQUACROP model 
simulated biomass yield by more accuracy than the CERES  

model. 
The simulated values of biomass in both models are in 

good agreement with the observed values with low average 

absolute error and RMSE using SPSS and as shown in 

Figure 11(a). Corresponding values for different treatments 

were also well simulated with the observed yields giving 

correlation coefficients of 0.96 for AQUACROP and 0.91 

for CERES. The simulated and observed values of grain 

yields under different water applications are well correlated 

as the coefficient of efficiency and the correlation 

coefficient is high as shown in Figure 11(b). CERES model 

showed high precision in grain yield prediction under 

different irrigation schedules than the AQUACROP model, 

while the AQUACROP model simulated biomass yield by 

more accuracy than the CERES model. 

 

AQUACROP Model                                                                          CERES Model 
(a)simulated biomass yield  

 

 
(b) simulated Grain yield  

Figure 9 Comparison of observed and simulated Grain yield/simulated Grain yield in both models under different treatments with Ratio Analysis 
Package 
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AQUACROP Model 

 
CERES Model 

(a)simulated biomass yield 

 
AQUACROP Model 

 
CERES Model 

 (b) simulated Grain yield 
Figure 10 Comparison of observed and simulated biomass yield/simulated Grain yield in both models under different treatments with 

Econometric Views Package (E-VIEWS) 
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                                     CERES Model 

(a)simulated biomass yield 
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                 AQUACROP Model 

                            
                         CERES Model 

 (b) simulated Grain yield 
Figure 11 Comparison of observed and simulated biomass yield/simulated Grain yield in both models under different treatments with Statistical 

Package for Social Science (SPSS) 

                 
                                           AQUACROP Model                                                                                   CERES Model 

(a) Simulated Grain yield 

                                                                               
                                                         AQUACROP Model                                                                                   CERES Model 

(b) simulated biomass yield        
Figure12: Comparison of observed and simulated grain yield/simulated biomass yield in both CERES Model  models under various levels of 

water application using Minitab software 
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Identical responses were recorded in biomass and grain 

yield when Minitab 17 was used to access the correlation 
between the performance of AQUACROP and CERES 
models, indicating the efficacy of these models in 
successfully predicting the biomass and grain yield 
concerning applied irrigation water (Figure 12a, 12b). This 
is a clear indication that these tools are very useful in 
irrigation schedule and rice production planning to ensure 
food security. 

5  Conclusions  

This study estimated crop water requirements using 
CROPWAT while AQUACROP and CERES-Rice models 
evaluated performance in simulating biomass and grain 
yield of NERICA 4's response to different irrigation 
schedules. From the study, it was established that 288.10 
mm of irrigation water applied and 800 mm of effective 
rainfall as predicted by the CROPWAT model was required 
for optimum rice production in the region and as confirmed 
by other studies carried out in the same area. CERES model 
slightly underestimated LAI while both CERES and 
AQUACROP models slightly overestimated grains and 
biomass yields although CERES showed the highest 
precision in grain yield than the AQUACROP model which 
showed the highest accuracy in biomass yield. 
AQUACROP slightly underestimated canopy cover when 
compared with the measured values. There was no 
statistically significant difference in all the post-harvest 
parameters such as plant height, no of leaves, no of 
panicles, LAI, grain yield and biomass considered in the 
first two treatments (full and good) which could strongly be 
traced to the irrigation water applied. All the statistical tools 
(R, E-VIEWS, SPSS, and MINITAB 17) used showed 
similar relationships between the simulated and observed 
yield values and RMSE shows that the models' simulation 
performance was perfect since its value was closer to zero. 
The study, therefore, underscores the models' (CERES and 
AQUACROP) performance under different irrigation 
schedules for simulation of grain and biomass yield of rice 
while it also shows that CROPWAT could be used 

effectively and efficiently to estimate agricultural water 
requirements and reference evapotranspiration required for 
optimum production of rice. 
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