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Abstract: The present work used an artificial neural network (ANN) model to correlate beetroot extraction conditions with total 
phenolic compounds (TPC), anthocyanins (ANT) and antioxidant activity (AOA).  The input variables were extraction time, 
type of solvent, solvent volume/sample mass (VMR = volume to mass ratio) and order of extraction.  The ANN models 
produced showed very good accuracy (R>94%), being suitable for data mining using weight analysis techniques.  The 
experiments involved variable conditions: solvents (methanol, ethanol: water and acetone: water), extraction times (15 and   
60 min), VMR (5, 10 and 20), order of extract (3 sequential extractions).  The TPC were evaluated by the Folin-Ciocalteu 
method, ANT by the SO2 bleaching method and AOA following the ABTS method.  The experimental results showed that the 
extracting solutions used in this study exhibited similar extraction efficiency for TPC, but not for AOA.  Also, the results 
allowed concluding that a higher VMR originated extracts with higher amounts of TPC and AOA. 
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1  Introduction  

Beetroot (or red beet) is a form of Beta vulgaris subsp. 
vulgaris (conditiva) and comprises several varieties of 
edible taproots that are cultivated in America, Europe and 
Asia. As compared to the sugar beet, Beta vulgaris subsp. 
vulgaris (altissima), it has a considerable lower sugar 
content, about two times lower, thus being grown for 
many food uses (pickles, salads, juices) instead of sugar 
production (Wruss et al., 2015). 

Red beetroot constitutes the richest source of 
betalains, which are a group of phenolic secondary plant 
metabolites. Betalains are water-soluble, 
nitrogen-containing natural pigments that can be divided 
into two groups: red-violet betacyanins and 
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yellow-orange betaxanthins (Ravichandran et al., 2013). 
The very intense red coloration of beetroots comes from 
particularly high concentrations of betalains as well as 
anthocyanins. The betalains are used as natural colorants 
in the food industry, but have also received increasing 
attention due to possible health benefits in humans, 
mostly related to their antioxidant and anti-inflammatory 
activities (Azeredo, 2009; Sawicki et al., 2016). 
Furthermore, they have demonstrated antiviral effects and 
also can inhibit the cell proliferation of human tumour 
cells (Strack et al., 2003; Reddy et al., 2005). 

Natural antioxidants like phenolic compounds have 
attracted much attention due to their positive effects for 
the human health. In fact, studies demonstrated that 
phenolic compounds have outstanding antimicrobial 
activities and can be utilized instead of synthetic 
antioxidants and antimicrobial agents in food products. 
Moreover, they can be used in functional food 
formulations and pharmaceutical industries for 
health-promoting effects (Rafiee et al., 2017). The 
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phenolic compounds are a large group of phytochemicals, 
existing ubiquitously in plants as secondary metabolites. 
The most abundant phenolic compounds present in the 
human diet are phenolic acids, flavonoids and tannins 
(Tian et al., 2017). Anthocyanins are a type of phenolic 
compounds belonging to the class of flavonoids, which 
are present in a very wide range of fruits and vegetables, 
providing particularly bright colours such as red, blue, 
purple and orange (Wang et al., 2017). 

Artificial neural networks (ANN) is a useful tool for 
modelling processes in different areas, including food 
engineering and food chemistry fields. The models 
created can be used both for predicting output values 
based on known input variables, as well as for data 
mining, revealing important correlations between input 
and output variables. Guiné et al. (2015) successfully 
modelled the antioxidant activity and phenolic 
compounds content through ANN for dried bananas. 
Dahmoune et al. (2015) also used ANN for the prediction 
of recovery of phenolic compounds from Pistacia 
lentiscus leaves using ultrasound assisted extraction. 

The aim of the present work was to find a model 
through ANN that could correlate the extraction 
conditions with the contents of phenolic compounds, 
anthocyanins and antioxidant activity in beetroot. The 
input variables evaluated included extraction time, type of 
solvent, sample mass/solvent volume ratio and order of 
the extraction step. Hence, the research hypothesis 
investigated in this work is whether the extraction 
conditions can be optimized in order to maximize the 
quantification of phenolic compounds and antioxidant 
activity in beetroot. 

2  Material and methods 

2.1  Sampling and extraction procedure 
Samples of beetroot (B. vulgaris) were purchased in a 

local market and carried to the laboratory where they 
were washed, the peel removed and the pulps triturated 
for standardization. Samples of 5 g were taken from the 
ground mass, for the extraction experiments, which 
included trying different conditions as indicated in Table 
1. For each experiment, the same sample mass was used 
to perform three successive extraction steps.  

The experiments in Table 1 allowed obtaining 54 

extracts which were then used to quantify the total 
phenolic compounds, the anthocyanins and the 
antioxidant activity.  

    

Table 1  Operating conditions tested for the extraction 
procedures 

Solvent Order of extraction
Nº 

Type Volume (mL) VMR1 

Time 
(min) 1st 2nd 3rd

1 15 √ √ √ 

2 
25 5 

60 √ √ √ 

3 15 √ √ √ 

4 
50 10 

60 √ √ √ 

5 15 √ √ √ 

6 

Methanol 
(100%) 

100 20 
60 √ √ √ 

7-12 Ethanol: Water 
(50:50, v:v) 25/50/100 5/10/20 15/60 √ √ √ 

13-18 Acetone: Water 
(60:40, v:v) 25/50/100 5/10/20 15/60 √ √ √ 

Note: 1 VMR = Volume/mass ratio. 
 

2.2  Evaluation of total phenolic compounds 
The contents of total phenolic compounds (TPC) in 

the extracts was determined by the Folin-Ciocalteu 
reagent, by adaptation of the method referred by 
Gonçalves et al. (2012) and Guiné et al. (2014). For that, 
0.125 mL of each sample were added to 0.75 mL of 
deionized water and 0.125 mL of the Folin-Ciocalteu 
reagent. Then the solution was left to stand for 6 min, and 
after that 2 mL of a 5% (m/v) solution of sodium 
carbonate were added and the mixture was left to rest 
again for 90 min, at room temperature and in the dark. A 
calibration curve was obtained with standard solutions of 
gallic acid and the absorbance was measured in a 
spectrophotometer at 760 nm. The results were expressed 
as milligrams of gallic acid equivalents (GAE) per gram 
of fresh sample, being a mean of three measurements for 
different conditions of sample mass and volume of 
extract. 
2.3  Evaluation of anthocyanins 

Total anthocyanins (ANT) were determined using 
SO2 bleaching method (Cheynier et al., 1989; Boulton, 
2001). For that, 1 mL of each sample was added to equal 
volume of ethanol acidified by 0.1% HCl and 20 mL of 
2% HCl (pH 0.6) solution. In one tube, 2 mL of previous 
solution was added to 0.8 mL of water (t1). In another 
tube (t2) 2 mL of previous solution were mixed with   
0.4 mL of HNaSO3 solution (15% w/v). After 20 min in 
the dark and at room temperature, the absorbance was 
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measured at 520 nm. The total anthocyanins (ANT) were 
calculated using the following equation: TA (mg Mv3G/g) 
= 875 × (abst1 – abst2), and results were expressed as 
malvidin equivalents, according to the mass of sample 
and volume of extract. The analyses were performed in 
triplicate for each sample.  
2.4  Evaluation of antioxidant activity 

The antioxidant activity (AOA) was determined using 
the free radical 2, 2'-azino-bis (3-ethylbenzthiazoline-6- 
sulphonic acid (ABTS). The method is based on the 
abilities of different substances to scavenge ABTS+ 

radical compared with a standard antioxidant (Trolox). 
The results were based on the percentage of inhibition, 
compared with the Trolox, in a dose–response curve 
being expressed as μmol Trolox equivalents (TE) per 
gram of sample. 

For the assay, ABTS+ radical was prepared by mixing 
an ABTS+ stock solution (7 mM in water) with 2.45 mM 
potassium persulfate. This mixture was allowed to stand 
for 12–16 h at room temperature in the dark until a stable 
oxidative state. The ABTS+ solution (1 mL) was diluted 
in 80 mL of ethanol or buffer solution prior to utilization. 
In a tube, 2 mL of ABTS+ solution were placed with   
0.1 mL of sample and after agitation it was left to rest in 
the dark for 15 minutes (Santos et al., 2014; Guiné et al., 
2014). Then the absorbance was measured at 734 nm to 
assess the percentage of inhibition, using a calibration 
curve previously obtained. The analyses for antioxidant 
activity were performed in triplicate for each of the 
extracts analysed.  
2.5  ANN modelling 

Artificial neural networks are computational models 
frequently used for machine learning and data mining, 
inspired by the architecture of the human brain cells and 
neural connections. 
2.5.1  Neural models 

The basic neural unit used in the present work is the 
perceptron, trained using a backpropagation algorithm. 
The perceptron has one output and a number of inputs, 
one for each input variable. When the perceptron receives 
some stimuli in the inputs, it shows a corresponding value 
in the output. To calculate the output, the value of each 
input is multiplied by a corresponding weight, as well as 
possibly summed to a bias value, and the sum of the 

weighted inputs and bias is adjusted through some 
mathematical function to generate the output. The output 
of each neuron is, therefore, proportional to the values of 
the weighted inputs. Neurons are trained by adjusting the 
weights given to the input variables, in a way that the 
error between the neuron’s expected output and the 
measured output value is minimized during a training 
process. The weights learnt by the neural network during 
training reflect the contribution of each variable for the 
output of each neuron. The analysis of the weights, 
therefore, is a method of data mining for finding patterns 
and correlations existing in some types of datasets, such 
as the present laboratorial experiments. 
2.5.2  Architecture of the ANN used 

The ANN used was a feed-forward model, created 
using Matlab™ (Matlab is a registered trademark of 
Mathworks. www.mathworks.com.) fitnet function. A 
sigmoidal transfer function, which is a universal 
approximator, was used in the hidden layer. A linear 
transfer function was used in the output layer. Training 
was performed using the Levenberg-Marquartd method. 
The mean squared error (MSE) method was used for the 
performance assessment. Performance of the models was 
also assessed calculating the correlation factor between 
values predicted by the neural networks and the 
experimental values measured in the laboratory. 

For simplicity of the analysis, each output variable 
was studied separately. An ANN model was created for 
predicting each output variable. All ANNs had just two 
neurons: one in the hidden layer and the other in the 
output layer. Hence, the number of weights to analyse for 
each output variable was equal to the number of input 
variables, which are inputs to the first neuron, plus one 
weight which is the input to the output neuron. The 
architecture of the ANNs used comprised one input layer 
with 11 neurons, one hidden layer and one output layer 
with one neuron.  
2.5.3  Characterization of the datasets and variables 

The quality of the neural model obtained depends on 
the architecture of the neural network and the efficiency 
of the learning process. In general, more samples used for 
training produce better models and the confidence in the 
results increases. In the present work, the number of 
experimental results available varied for different output 
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variables. The number of samples used for each of the 
models produced is as follows: 189 for total phenolic 
compounds (TPC) and for total anthocyanins (ANT) and 
182 for antioxidant activity (AOA). 

For each run, the Matlab script randomly selected 
approximately 70% of the samples for the train subset, 
15% for the validation subset and the remainder samples 
were used for the test subset. 

For better neural network fitting and analysis, the four 
input variables were expanded into a total of eleven 
Boolean inputs. Details of the encoding of the input 
variables are as follows: 

• Solvent (#1-3): 1 – Methanol (MET); 2 – Ethanol: 
water (EW); 3 – Acetone: water (AW) 

• Volume/mass ratio (#4-6): 4 – 5=25 mL/5 g 
(VMR5); 5 – 10=50 mL/5 g (VMR10); 6 – 20=  
100 mL/5 g (VMR20) 

• Order of extraction (#7-9): 7 – First extraction 
(E1); 8 – Second extraction (E2); 9 – Third 
extraction (E3) 

• Time (#10-11): 10 – 15 minutes (T15); 11 – 60 
minutes (T60) 

The result of the learning process depends on some 
initial random values. Namely, the convergence of the 
model can be faster, slower or even totally impaired 
depending on the initial weights and bias of each neural 
connection, as well as the subset of samples selected for 
training, testing and validation. Therefore, the final 
results obtained usually differ between experiments, 
because the starting point and data may also differ. 

The best neural network models will produce the best 
correlations between values predicted by the neural 
network and the experimental values measured in the 
laboratory. In the present work, the performance of the 
models is measured using the correlation factor (R) and 
mean squared error (MSE). 

For better confidence in the analysis, many 
experiments were performed in the present study. For 
each output variable, one hundred different models were 
trained. The results were sorted by the correlation factor 
R, from best to worst. The six best models were then 
selected for further analysis. 

The neurons’ input weights can be positive or 
negative. A positive weight means that the input variable 

contributes more to the output of that neuron. In a 
network with two layers, if the connection between the 
first and the second neurons also receives a negative 
weight, that inverts the result which comes from the first 
layer. Therefore, in the present analysis the signals of the 
input weights were mirrored when the weight of the 
second neuron was negative. The weights were also 
normalized into the interval [–1, 1]. The results showed 
are the average of the six best models, after this 
post-processing. 

3  Results and discussion 

3.1  Total phenolic compounds 
Table 2 shows the total phenolic compounds 

presented in the three extracts (E1, E2 and E3) of the 18 
different conditions under study. The total amount of 
phenolic compounds (TPC) extracted in the three extracts 
using methanol ranged from 10.4 to 31.0 mg GAE/g dw. 
The highest value was obtained for the ratio ‘volume of 
solvent: mass of sample’ (VMR) of 20 with extraction 
time of 60 min. Using ethanol: water as extracting 
solution, the TPC extracted ranged from a minimum of 
11.4 to a maximum of 29.8 mg GAE/g dw, while the 
extracts obtained with acetone: water contained 13.5- 
33.2 mg GAE/g dw of TPC. These values are higher 
when compared to those reported by Chen et al. (2015) 
(12.5 to 17.0 mg GAE/g dw), using different extractions 
conditions, such as acid ethanol, and temperature from 
20ºC to 60ºC for 30-90 min of ultrasonic-assisted 
extraction. 

The first extraction allowed to obtain 44%-56%, 
44%-65%, and 50%-62% of TPC quantified when using 
methanol, ethanol: water, and acetone: water, respectively. 
On average 29% and 19% of TPC quantified were 
obtained in the second and third extracts, respectively.   

Regarding different times of extraction, for all 
extracting solutions used, no significant effect was 
possible to be observed by increasing contact time from 
15 to 60 min. On the contrary, increasing the VMR led to 
higher values of TPC extracted. On average, a VMR = 
10% led to 58% more of TPC extracted when compared 
with a VMR = 5. The use of a VMR of 10 allowed 
obtaining 94% more of TPC when compared with the use 
of a VMR of 5.  
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Table 2  Total phenolic compounds in different extracts  
(mean ± standard deviation) 

TPC4 (mg GAE/g dw) 
Nº SOL1 VMR2 Time3 

E15 E25 E35 

1 M 5 15 7.29±0.06 3.74±0.03 2.87±0.25

2 M 5 60 5.77±0.13 2.79±0.08 1.79±0.09

3 M 10 15 8.96±0.34 5.66±0.58 4.58±0.51

4 M 10 60 8.63±0.48 5.43±0.11 4.50±0.21

5 M 20 15 15.05±0.14 10.36±0.12 4.48±0.39

6 M 20 60 13.54±0.24 10.48±0.20 7.00±0.26

7 EW 5 15 7.39±0.24 2.78±0.05 1.18±0.21

8 EW 5 60 7.39±0.24 2.78±0.05 1.86±0.03

9 EW 10 15 9.54±0.55 5.51±0.29 2.27±0.25

10 EW 10 60 9.54±0.55 5.51±0.29 4.95±0.55

11 EW 20 15 13.18±0.91 9.63±0.26 4.80±0.59

12 EW 20 60 13.18±0.91 9.90±0.29 6.72±0.22

13 AW 5 15 7.77±0.10 3.22±0.04 2.55±0.14

14 AW 5 60 8.56±0.19 3.35±0.04 1.79±0.02

15 AW 10 15 11.32±0.27 5.96±0.18 4.45±0.20

16 AW 10 60 11.26±0.08 5.45±0.30 4.02±0.15

17 AW 20 15 16.51±0.31 10.81±0.65 5.86±0.41

18 AW 20 60 16.62±0.22 10.50±0.15 5.91±0.22

Note: 1 M = methanol; EW = ethanol: water; AW = acetone: water; 
2 VMR = volume/mass ratio (mL/g); 
3 Time (min); 
4 TPC = total phenolic compounds (expressed in mg gallic acid equivalent/g dry 
weight); 
5 E1 = 1st extract; E2 = 2nd extract; E3 = 3rd extract. 

 

3.2  Antioxidant activity 
The antioxidant activity (AOA) of three extracts (E1, 

E2 and E3) obtained under different conditions of solvent 
(methanol, ethanol: water and acetone: water), 
volume/mass ratio (VMR) and time of extraction (15 and 
60 min) are shown in Table 3. The total amount of 
antioxidant activity quantified as the sum of the three 
extracts using methanol ranged from 136.0 to 176.3 µmol 
TE/g dw, and from 132.7-170.5 µmol TE/g dw when 
acetone-water was used. On average using ethanol: water 
as solvent, lower values (115.7-150.2 µmol TE/g dw) 
were quantified. The compounds present in the first 
extracts were responsible for 61%-93% of the total 
antioxidant activity.  

Increasing the volume/mass ratio allowed to reach 
higher values of antioxidant activity, 12%-22% in case of 
VMR equal to 10, and 28%-35% in case of VMR equal to 
20, when compared to the values obtained for VMR equal 
to 5. On the contrary, two times of extraction originated 
different effects depending on the extraction conditions, 
thus not allowing establishing a definite pattern.  

 

Table 3  Antioxidant activity in different extracts  
(mean ± standard deviation) 

AOA4 (µmol TE/g dw) 
Nº SOL1 VMR2 Time3

E15 E25 E35 

1 M 5 15 91.17±8.52 38.52±3.70 6.26±1.08

2 M 5 60 109.91±0.55 26.19±0.73 15.47±1.42

3 M 10 15 122.61±10.98 36.17±4.38 7.23±1.37

4 M 10 60 119.98±5.05 25.94±1.73 12.25±1.46

5 M 20 15 159.36±13.09 16.98±0.85 0.00±0.00

6 M 20 60 127.64±6.57 24.63±2.47 13.57±3.77

7 EW 5 15 79.07±3.77 27.74±2.64 4.64±0.81

8 EW 5 60 101.87±4.67 26.19±0.73 15.47±1.42

9 EW 10 15 115.52±9.49 17.07±2.78 2.72±0.35

10 EW 10 60 70.08±8.18 29.51±2.43 16.09±3.62

11 EW 20 15 138.98±10.17 11.24±4.20 0.00±0.00

12 EW 20 60 114.83±5.30 15.30±3.77 7.83±2.44

13 AW 5 15 101.06±5.76 29.25±0.52 2.42±0.73

14 AW 5 60 114.95±2.56 31.82±4.08 5.32±1.15

15 AW 10 15 128.35±4.46 20.04±1.45 0.62±0.28

16 AW 10 60 108.15±5.41 19.71±1.11 6.00±1.18

17 AW 20 15 141.49±6.97 29.02±1.84 0.00±0.00

18 AW 20 60 113.01±4.45 36.88±1.24 9.65±0.76

Note: 1 M = methanol; EW = ethanol: water; AW = acetone: water; 
2 VMR = volume/mass ratio (mL g-1); 
3 Time (min); 
4 AOA = antioxidant activity (expressed in µmol torlox equivalent/g dry weight); 
5 E1 = 1st extract; E2 = 2nd extract; E3 = 3rd extract. 

 

3.3  Total anthocyanins content 
The total of anthocyanins (ANT) present in the 

extracts ranged from 1.9 mg Mv3G/g dw, obtained with 
ethanol: water during 60 min with a volume/mass ratio of 
5, to 6.2 mg Mv3G/g dw, extracted with methanol during 
15 min with a volume/mass ratio of 20 (Table 4). On 
average, 84% of anthocyanins were recovered in the first 
extract. Unlike in the previous cases, the results obtained 
did not allow to conclude a significant effect of the 
different conditions (solvent, volume/mass ratio or time 
of extraction) on the quantification of anthocyanins.  
3.4  Results of ANN modeling 

Table 5 shows the MSE and the correlation 
coefficient R obtained for each subset of the datasets used 
to predict each output variable. The parameters show that 
the models are very good, since R is always above 0.93 
for all subsets and the MSE is in general very low for the 
type of data. The output values were not normalized, so 
the MSE = 1.742 for AOA reflects the fact that the data 
for that particular variable presents values in the range 
[–1, 22.4], while TPC and ANT show smaller amplitudes, 
namely [0.13, 2.09] and [0, 0.77]. 
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Table 4  Anthocyanins indifferent extracts  
(mean ± standard deviation) 

ANT4 (mg Mv3G/g dw) 
Nº SOL1 VMR2 Time3 

E15 E25 E35 

1 M 5 15 3.27±0.19 0.90±0.12 0.17±0.09

2 M 5 60 2.67±0.03 0.41±0.00 0.23±0.04

3 M 10 15 4.07±0.44 1.26±0.06 0.27±0.09

4 M 10 60 3.43±0.12 1.19±0.03 0.48±0.20

5 M 20 15 4.79±0.14 1.11±0.06 0.29±0.06

6 M 20 60 5.26±0.21 0.49±0.04 0.32±0.06

7 EW 5 15 3.39±0.03 0.64±0.01 0.21±0.04

8 EW 5 60 1.96±0.05 0.58±0.01 0.11±0.02

9 EW 10 15 3.92±0.14 0.51±0.01 0.11±0.02

10 EW 10 60 3.27±0.05 0.38±0.05 0.00±0.00

11 EW 20 15 4.18±0.09 0.22±0.11 0.10±0.05

12 EW 20 60 3.45±0.50 0.36±0.11 0.00±0.00

13 AW 5 15 4.41±0.10 0.68±0.02 0.35±0.07

14 AW 5 60 5.53±0.26 0.68±0.02 0.00±0.00

15 AW 10 15 1.84±0.03 0.02±0.01 0.00±0.00

16 AW 10 60 5.28±0.02 0.44±0.16 0.03±0.01

17 AW 20 15 4.27±0.93 0.45±0.04 0.00±0.00

18 AW 20 60 6.06±0.11 0.58±0.11 0.02±0.02

Note: 1 M = methanol; EW = ethanol: water; AW = acetone: water; 
2 VMR = volume/mass ratio (mL g-1); 
3 Time (min); 
4 ANT = anthocyanins (expressed in mg malvidin-3-glucoside/g dry weight); 
5 E1 = 1st extract; E2 = 2nd extract; E3 = 3rd extract. 

 

Table 5  Quality parameters of the models used 

Output R - Train set R - Test set R - Validation set R - All dataset MSE

TPC 0.975 0.971 0.972 0.974 0.010

AOA 0.977 0.974 0.976 0.976 1.742

ANT 0.948 0.933 0.949 0.945 0.005
 

Figure 1 illustrates the average neural weights of the 
input variables. One immediate conclusion is that the 
third extraction has a negative impact on all the 

dependent variables, which is according to the 
observation that the first and second extractions remove 
most of the phenolic compounds, anthocyanins and 
antioxidants. 

The chart also illustrates the fact that higher 
volume/mass ratios are more important predictors, which 
is notorious for TPC. In fact, TPC is very dependent on 
VMR20 and E1. Also, the chart shows that time 
influences TPC and AW is a more influential extract. 

As for AOA, the weights learnt for all extracts, as 
well as volume/mass ratio, are very similar and they are 
all important – all the weights vary between 0.32 and 0.46. 
The order of the extract is, however, more important, 
since E1 and E2 receive very large weights and E3 
receives a very large negative weight. That means E1 and 
E2 give an important positive contribution and E3 gives 
an important negative contribution to the value predicted. 
On the other hand, T15 and T60 receive negligible 
weights. That means the AOA is mostly indifferent to the 
time. If the independent variables T15 and T60 were 
removed the model would still show similar accuracy. 

ANT exhibits a behavior which is very similar to 
AOA. However, ANT is mostly indifferent to E2, which 
shows that the first extraction is much more effective than 
the second, while the third will be much less effective 
than the previous ones. Another difference is that EW 
receives a weight close to zero, which means that ANT is 
much more affected by MET and AW (MET and AW 
scored weights of 0.42). 

 
Figure 1  Average neural weights calculated for the models 

 

In view of the observed results, it was possible to 
establish a relation between the extraction conditions and 
the quantification of phenolic compounds and antioxidant 

activity in beetroot, thus confirming the research 
hypothesis formulated. The extraction variables showed 
that a higher influence on the output variables were 
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volume/mass ratio and order of extraction, and therefore 
these could be identified to optimize the extraction 
procedure as to maximize the bioactive properties of 
beetroot.    

4  Conclusions 

The results showed that the amount of quantified TPC 
in the extracts was not much affected by the type of 
solvent or extraction time, but was influenced by the 
volume/mass ratio and by the order of extraction, being 
higher for higher VMR and lower order of extract.  

Regarding antioxidant activity, the effect of solvent 
was noticed, being the ethanol: water mixture less 
efficient in extracting compounds with antioxidant 
activity from beetroot. The influence of the extraction 
time was variable according to the conditions, and 
therefore no decisive trend was observed for its effect on 
AOA. In the neural model a longer time received a 
slightly lower weight. Regarding the effect of the 
variables VMR and order of extract, their influence on the 
AOA was similar to that previously described for TPC, 
although AOA seems to be less sensitive to VMR than 
TPC. 

As for anthocyanins, it was concluded that the order 
of extraction influenced the results, with higher values in 
the first extract, and decreasing successively to the third 
extract. The neural model showed it was less affected by 
EW and slightly more affected by higher VMR, while 
almost indifferent to time.  
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