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Abstract: A novel method to estimate the contact area and contact volume was developed with molding the tire footprint by 
liquid plaster and converting these molds to three-dimensional models using a 3D scanner.  A 12.4-28, 6 ply tractor tire was 
operated under three levels of vertical load, three levels of inflation pressure and three levels of soil moisture content.  To 
analyses the obtained data regression and artificial neural network (ANN) models were used and the accuracy of predicted 
results were compared with measured data.  A multi-layer perceptron feed-forward ANN with back propagation (BP) learning 
algorithm was employed.  Two hidden layers were used in network architecture and the best number of neuron for each hidden 
layer was selected with attention to minimum root mean square error (RMSE) criterion.  The results showed that tire contact 
volume is a better parameter than tire contact area to predict rolling resistance.  The comparison of the results of regression 
and ANN models to predict the contact area, contact volume and rolling resistance showed that ANN predictions had a closer 
agreement with the measured data than the regression model predictions. 
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1  Introduction  

A tire is a ring-shaped vehicle component that covers 
the wheel’s rim to protect it and enable better vehicle 
performance. Most tires provide through interaction 
between the vehicle and the terrain while providing a 
flexible cushion that absorbs shock. They also must 
perform functions such as supporting the weight of the 
vehicle, cushioning the vehicle over surface irregularities, 
providing sufficient traction for driving and braking, and 
providing adequate steering control and direction stability 
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(Wong, 2001). Since pneumatic tire do these tasks 
effectively, they are widely used in off-road vehicles and 
agricultural machines. Due to common use of these tires, 
many scientific studies have been performed on the 
interaction between the tire and the road surface. Tire-soil 
interaction in agricultural works is a very important 
subject because soil compaction, rolling resistance, loss 
of energy, and wheel slip are the result of soil - tire 
interactions (Taghavifar and Mardani, 2013a). Knowing 
that the power efficiency of pneumatic tires on concrete 
surfaces is about 90%, while it is sometimes less than 
50% in loose or sandy soils, increases the importance of 
the issue and attention should be paid to fuel consumption 
(Gill and Vanden Berg, 1968; Wulfsohn et al., 1988). 

Rolling resistance is defined as the difference 
between gross traction and net traction (ASABE, 2009) or 
the force resisting the motion when a wheel rolls on a 
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surface. It is mainly caused by non-elastic effects. Two 
forms of them are hysteresis losses in tire materials due to 
the deflection of the carcass while rolling, and permanent 
(plastic) deformation of the surface (e.g. soil surface). In 
the farmland in which deformation capacity of soil is 
greater than tire, rolling resistance force is greater due to 
the energy requirement for the soil deformation (Bygdén 
et al., 2004; Taghavifar and Mardani, 2013a).  

Various parameters affect rolling resistance including 
tire load, tire inflation pressure, tire diameter, tire width, 
tire construction, tire tread, speed, surface adhesion, 
sliding, and relative micro-sliding between contact 
surfaces (Wong, 2001). Taghavifar and Mardani (2013a) 
studied the effect of inflation pressure, vertical load and 
velocity on rolling resistance for a small towed tire in a 
soil bin. Their obtained results showed that rolling 
resistance was a function of vertical load and tire inflation 
pressure and velocity was not significant. They also 
found that rolling resistance could be a function of 
contact area. Botta et al. (2012) studied the rolling 
resistance and soil compaction in agricultural traffic. 
They assessed the impact of two tractors with different 
tire sizes and axle loads on the motion resistance and the 
cone index for three different soil mechanical conditions. 
They also determine the existing relationships between 
motion resistance and ground pressure parameters and 
sinkage. In farmland that soil sinkage and soil 
deformation capability is high, it can be assumed that 
rolling resistance is a function of soil deformation. The 
contact area and contact volume is known as two criteria 
of soil deformation in tire-soil interaction, so various 
mathematical algorithms have been presented to predict 
tire contact area with the stiff ground (Grečenko, 1995) 
and many researchers have attempted to express the super 
ellipse shape of the tire surface in contact with the soil 
(Hallonborg, 1996; Keller, 2005; Roşca et al., 2014; 
Schjønning et al., 2015). In a number of studies image 
processing techniques was used to evaluate the effect of 
various tire-soil parameters on contact area (Diserens, 
2009; Diserens et al., 2011; Taghavifar and Mardani, 
2013a, 2013b). In image processing method after placing 
the tire on the ground, in order to distinguish between tire 
contact area and the non-contact surface of the soil, white 
powder is sprays around the tire and a photo is taken after 

lifting the tire off the ground by a camera at a fixed 
distance and finally contact area is obtain by processing 
the photo in an image processing software. Low tire 
inflation pressure or high vertical load can lead to 
overloaded tires and soft surfaces, result in high sinkage 
(Hallonborg, 1996). Thus, due to sinkage in soft surface 
and the effect of tire-soil parameters on soil sinkage, it 
can be assume that contact volume is a better parameter 
than contact area for evaluating tire-soil interaction. In 
some studies the finite element method (FEM) was used 
for the analysis of tire-soil interaction (González Cueto et 
al., 2016; González Cueto et al., 2013), and in similar 
studies a combination of FEM for modelling tire and 
deeper layer of soil and the discrete element method 
(DEM) for modelling surface layer of soil were used 
(Michael et al., 2015; Nakashima and Oida, 2004). But in 
the field conditions, Mohsenimanesh and Ward (2010) 
estimated the 3D tire-soil footprint using dynamic contact 
pressures. They used six miniature pressure sensors, three 
on the tire lug surface and three on the region between 
two lugs. In their suggested method, maximum rut depth 
was considered to be coincident with the highest contact 
pressure and the sinkage of the other points were obtained 
according to the contact pressure ratio. So in their method, 
contact pressure was used as mediator parameter to 
estimate the depth of tire penetration on the soil, and the 
rut depth was not measured directly. Pierzchała et al. 
(2016) measured the wheel ruts and volume of the 
displaced soil using the close-range photogrammetry. 
Photogrammetry is the science of making measurements 
from photographs, especially for recovering the exact 
positions of surface points. In this study, they used an 
aerial image of wheel rutting. In order to calculate the 
volume of the displaced soil, they reconstructed the 
original terrain surface. Finally, they visually identified 
the surface that altered by the wheel rutting and clipped it 
from the surface model. The extraction trail model was 
compared with the pre-rutting terrain surface and using 
the software calculations, and thus the volume of soil 
deformation was obtained. Kenarsari et al. (2017) used 
the close-range digital photogrammetry to create 3D 
models of tractor tire footprints in the static and rolling 
condition of soil bin. They used the obtained models to 
estimate the tire footprint depth, area and volume. They 
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also evaluated the accuracy of the results obtained from 
this method and concluded that photogrammetry is a 
relatively strong technique in modelling the complex soil 
deformations in both static and rolling conditions. Also 
they concluded that lighting conditions are important 
especially for the dark organic soil. 

Artificial neural networks (ANN) are widely applied 
to solve accidental and complex problems in a variety of 
science and engineering disciplines. The goal of the 
neural network is to solve problems in the same way that 
the human brain would. ANNs are able to learn 
incomplete data, deal with nonlinear problems and when 
trained, they can carry out predictions satisfactorily, also 
they have successfully been applied in the fields of 
pattern recognition, modelling, and control. Therefore, 
the use of ANN data analysis has increased in recent 
years. Alimardani et al. (2009) applied ANN model for 
prognostication of draft force and energy of subsoiling 
operation. They used three different algorithms for 
network training and finally due to higher accuracy of 
Levenberg-Marquardt (LM) algorithm than other 
algorithms, they used this algorithm. They also compared 
the accuracy of results from neural network models with 
the results obtained from the regression model and the 
advantages of neural network model to predict draft force 
and energy of subsoiling operation was concluded. 
Taghavifar et al. (2013c) applied a feed-forward ANN 
with back propagation (BP) learning algorithm and one 
hidden layer for estimation of tire rolling resistance by 
using input variables of vertical load, inflation pressure 
and velocity in clay-loam soil. Their results showed that 
the increasing of vertical load resulted in the increment of 
rolling resistance whereas the increase of inflation 
pressure had a reverse effect on rolling resistance. 
Taghavifar and Mardani (2014b) applied a supervised 
ANN method to prediction of driven tire energy 
efficiency indices. They used a feed-forward ANN with 
standard back propagation algorithm and two hidden 
layers to construct a supervised representation to predict 
the energy efficiency indices of driven wheels on a soil 
bin. The modelling performance revealed that ANN is a 
powerful technique to prediction of the stochastic energy 
efficiency indices. Thus, the aim of this study is 
measuring tire contact area and contact volume using a 

unique method, and measuring the tire rolling resistance 
in various condition of vertical load, inflation pressure 
and soil moisture content in soil bin. Finally develop 
ANN and regression models to predict tire contact area 
and contact volume by using vertical load, inflation 
pressure and soil moisture also prognostication of rolling 
resistance by using contact area and contact volume as 
independent variables and compare the results of ANN 
and regression models. 

2  Materials and methods 

2.1  Tire test apparatus 
A single wheel tester (SWT) was used for testing the 

tire in the soil bin (Figure 1). To supply tire motion power, 
a combination of 11 kW three-phase electric motor 
(model 160L4A; MOTOGEN Corporation., Tabriz, Iran) 
and gearbox with the reduction ratio of 1:104 was used to 
reduce the rotation velocity and increase the torque 
delivered to the tire. An alternating current (AC) motor 
speed controller (model LS600-2020; MAXTHERMO- 
GITTA Group Corp., New Taipei City, Taiwan) 
providing variable frequencies powered the electric motor, 
allowing the intended wheel rotational velocities to be 
attained. A torque transducer (Series 420 PTO system; 
PTO shaft torque and power system, Datum Electronics, 
East Cowes, United Kingdom) with a capacity of 1800 N 
m was installed between the electric motor and gearbox 
to measure torque, rotational velocity, and power 
delivered to the wheel. A hydraulic system with the 
output pressure of 1.5 MPa was used to provide vertical 
load on the tire. To power the hydraulic system, a 2.2 kW 
three-phase electric motor (model 112M6; MOTOGEN 
Co., Tabriz, Iran 2.2 kW; 112M6) with a gearbox was 
used. A compression load cell (model CLP-30KNB; 
Tokyo Sokki Kenkyujo Co., Ltd., Tokyo, Japan) with a 
30 kN capacity was calibrated and then placed between 
hydraulic cylinder and frame to measure the vertical load 
on the tire. Also, a fifth wheel was mounted on the frame 
to measure the forward velocity using a digital encoder 
(model RS-58; RS Components Ltd., Corby, United 
Kingdom). 

SWT was mounted on a soil bin in the laboratory of 
Iranian Agricultural Engineering Research Institute 
(AERI). The soil bin was 20 m long, 1.7 m wide, and  
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1.3 m deep, and filled with clay-loam soil. Soil textural 
composition and some mechanical characteristics are 
shown in Table 1. The soil is classified as CL-ML (i.e. an 
inorganic clay-loam soil with low plasticity) according to 
the Unified Soil Classification System (ASTM D 2487-83). 

The experiments were conducted to investigate the 
effect of tire-soil interface on contact area, contact 
volume, and rolling resistance changes under different 
conditions of vertical load, inflation pressures, and soil 
moisture content with factorial layout at three replications 
by using of a Goodyear 12.4-28, 6 ply tractor tire. The 
soil bin is equipped with a soil processor system. 
Different levels of soil compaction can be achieved by 
adjusting the pressure of a compaction roller or the 
number of rolling passes on the soil layers. In preparing 
the soil for each test, the soil was added in 5 cm depth 
layer. After rolling the surface with a combination of a 
flat roller to compact the soil and a spike roller to lock the 
layers together, water was sprayed on the soil surface to 
achieve the desired moisture content. The tests were 
carried out in a certain range of soil moisture and 
according to the plastic limit of the soil. Accordingly, the 
soil with three moisture content of 0.46 PL (11.20% d.b.), 
0.61 PL (14.86% d.b.) and 0.77 PL (18.68% d.b.) were 
prepared to perform the desired tests. Every layer was left 
for some minutes in order to allow the water to drain 
down and then the next layer was added. Tire rolling 

resistance was measured in an approximately constant 
forward speed of 0.45 m s-1. A summary of the 
experimental dependent and independent variables is 
shown in Table 2. Regression models was achieved by 
using SPSS version 23 (IBM, Armonk, New York) 
statistical software. 

 
Figure 1  A schematic view of wheel tester and its components 

 

Table 1  Textural composition and some mechanical 
characteristics of the experimental soil 

Characteristic % 

Clay 29 

Silt 33 

Sand 38 

Organic matter 1.7 

Textural 
composition 

Organic carbon 0.6 

Plastic limit (PL) moisture content 24 

Liquid limit (LL) moisture content 32 Mechanical  
characteristics 

Shrinkage limit (SL) moisture content 11 
 

 

Table 2  Summary of examined parameters 

Independent parameters 

Inflation pressure (kPa) Vertical load 
(kN) Recommended inflation pressure (kPa)a Actual inflation pressures used (kPa) 

Soil moisture 
content (%d.b.) 

Dependent 
parameters 

6 32 80 (Overinflated) 120 (Overinflated) 160 (Overinflated) 11.20 Contact area 

9 109 80 (Underinflated) 120 (Overinflated) 160 (Overinflated) 14.86 Contact volume

12 181 80 (Underinflated) 120 (Underinflated) 160 (Underinflated) 18.68 Rolling resistance

Note: a For tire used as a single tire at a maximum speed of 40 km h-1. Source (Titan International, 2017). 
 

2.2  Tire contact area and contact volume 
measurement 

A new method was used to measure tire contact area, 
and the contact volume of soil deformation. At first, soil 
was prepared with the intended soil moisture content. 
Then, for every treatment, the tire with the intended 
vertical load and inflation pressure was placed on the soil. 
After a few seconds, the tire was removed from the soil. 
An example of tire footprint on soil is shown in Figure 2 

(left). Because of the difficulty in the use of 3D scanner 
in soil bin and time saving, tire footprint on the soil was 
molded by liquid plaster and finally the mold was 
scanned together. At this stage, liquid plaster was used to 
mold the tire footprint. For this purpose, a sufficient 
amount of plaster mixed with water and finally liquid 
plaster was poured into the tire footprint (Figure 2, right). 
The liquid plaster covered the footprint with a 5 cm thick 
layer. The edge surface of footprint is known as the 
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non-deformation surface and considered as the reference 
plane. After the plaster dried, the dried plaster mold was 
removed from the soil and the extra soil was cleaned from 
the mold. 

 
Figure 2  Tire footprint on the soil (left); molding of tire footprint 

with liquid plaster (right) 
 

The obtained molds were converted to 3D models 
using a 3D scanner (model Rexcan 4; Solutionix Co., 
Seoul, Korea) (Figure 3, left). This scanner uses the 
phase-shifting optical triangulation technology and 
employs high resolution twin CCD cameras to achieve 
high-accuracy data. With the 3D model obtained from 
this method (Figure 3, right), we managed to extract 
information such as tire footprint volume and contact area 
relative to a reference plane. 

 
Figure 3  Scanning a plaster mold samples using a 3D scanner 

(left); 3D model from scan (right) 
 

The 3D models obtained from scan of plaster molds 
were analyzed by the Geomagic Studio 2014 SR3 
software (3D Systems, Inc., Rock Hill, USA). Using this 
software and taking into consideration the soil surface as 
a reference plane, contact area, and soil deformation 
volume (footprint volume) were calculated. Equation (1) 
was used to calculate the tire contact area. 

1

n

i
i

S S
=

= ∑                  (1) 

where, Si, is the resulted area at different portions of the 
contact surface (cm2) (Figure 4); and S, is the total 
contact area (cm2). Using a reference plane, the volume 
of soil deformation was considered as the volume that 
was placed at the top of the reference plane or under the 
undisturbed soil surface. 

 
Figure 4  Reference plane with protrusion of the tire tread 

downward from the undisturbed soil surface shown inverted here, 
as upward protrusions. Numbers denote data points used in 

analysing the contact surface 
 

2.3  Tire rolling resistance measurement 
Based on Figure 5 the rolling resistance (also called 

motion resistance) of a wheel is equal to the difference 
between gross traction (GT) and net traction (NT) 
presented as follows (ASABE, 2009). 

 
Figure 5  Basic forces on a wheel, including resultant soil reaction 

force 

Rolling Resistance (RR) = Gross Traction (GT) – 
Net Traction (NT)                         (2) 

Part of the gross traction is required to overcome 
motion resistance which is the resistance to the movement 
of the wheel through the soil and the remainder is equal 
to net traction. In this study, net traction value applied to 
the single wheel tester was zero, therefore the tire rolling 
resistance force can be calculated by measuring the 
electric motor torque. Electric motor torque measured 
data from the torque transducer using TorqueLog 1.6 
software (Datum Electronics, Ltd., East Cowes, United 
Kingdom) was stored on the computer in the Microsoft 
Excel spreadsheet format. Rolling resistance was 
measured at the distance of approximately 4 m for each 
treatment. To obtain the rolling resistance force, the 
Equation (3) was used. 
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where, RR, is rolling resistance force (N); EMT 
(electromotor torque), is measured torque from the torque 
transducer (N m); 104, is gearbox reduction ratio; GE, is 
gearbox efficiency and; R, is rolling radius of the tire at 
zero condition (m) (ASABE, 2009). At the start of the tire 
movement, the force applied to the tire showed variable 
values, but after a few seconds, its value became 
relatively stable (Figure 6). To analysis of the data, the 
mean value of rolling resistance in the stable region was 
used. 

 
Figure 6  An example of the graph obtained for rolling resistance 

and stable region 
 

2.4  ANN development 
In this study two separate ANN algorithm in order to 

predict the intended parameters were used (detailed in 
Table 3). MATLAB R2014b software (Math Works, Inc., 
Natick, Mass., USA) was used to develop ANN models. 
Input data of variables were randomly divided and 
shuffled into three different sets for training, 
cross-validation and testing the neural networks. In 
training step the network is adjusted according to its error 
and in validation step data used to measure network 
generalization and to halt training when generalization 
stops improving and finally in testing step that have no 
effect on training and so provide an independent measure 
of network performance during and after training. In 
training, validation, and testing step, 70%, 15%, and 15% 
portions of input variables were considered respectively. 
For regression models, variables were divided into two 
portions 70% and 30% for training and testing step. In the 
field of data analysis, the best results are often obtained 
by a multilayer perceptron (MLP) with back BP 
algorithm (Jevšenak and Levanič, 2016), therefore a 

feed-forward ANN with BP algorithm was employed. 

 training function that updates weight and bias 
values based on the LM and often considered as the 
fastest BP algorithm and highly recommended as a 
first-choice supervised algorithm, was used (MATLAB, 
2014). Since increasing number of hidden layers may 
increase efficiency of the system (Taghavifar and 
Mardani, 2014b), therefore two hidden layers was 
assumed for implementations. In the other hand, for 
determination number of neuron in each hidden layer (N1 
and N2) the number of neurons in hidden layers were 
increased from 1 to 10. Finally for selecting of 
appropriate structure of network two criteria of Root 
Mean Square Error (RMSE) and R2 was used (Equation 
(4) and (5)). 

 

Table 3  Summary of ANN Algorithm structures 

Network 
number Input (s) Unit Output (s) Unit Algorithm 

structure

Load kN 
Contact area cm2

Inflation kPa 1 

Soil moisture content %d.b 
Contact volume cm3

3-N1-N2-2

2 Contact volume cm3 Rolling resistance kN 1-N1-N2-1
 

In every two hidden layers of network tangent 
sigmoid (transig) transfer function and in the output layer 
a linear transfer function (purelin) was used. Transig  
transfer function generates values in the range of –1 to 1, 
and purelin transfer function produces results in the range 
of –∞ to +∞. 
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where, Ymeasured and Ypredicted are measured and predicted 
values by the developed models, respectively. To achieve 
fast convergence to minimal RMSE, the input variables 
was normalized in the range of –1 to 1 due to deference in 
input variables range by using of Equation (6) 
(Taghavifar and Mardani, 2014a). 

,min

,max ,min
2 1r r

n
r r

X XX
X X

−
= −

−
           (6) 

where, Xn, is normalized input variable; Xr, is the raw 
input variable; and Xr,min, and Xr,max, define the minimum 
and maximum of the input variable. 
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3  Results and discussion 

3.1  Effect of vertical load, inflation pressure, and soil 
moisture content on contact area and contact volume 

The 3D models obtained from scanning of plaster 
molds were analyzed by the Geomagic Studio 2014 SR3 
software. Obtained value of contact area and contact 
volume from analysis of 3D scanned mold were shown in 
Figure 7. Results showed that minimum and maximum 
contact areas were achieved in the soil moisture levels of 
11.20% and 18.68% d.b., and for the treatments of      
6 kN-160 kPa and 12 kN-80 kPa, respectively. It can be 
seen that by increasing the soil moisture content, the tire 
contact area was increased. Such trends in increasing 
contact area were also been mentioned in other 
experimental studies (Wong, 2001). Also at each soil 
moisture level, with increasing the vertical load at 
constant inflation pressure, the tire contact area was 
increased, which agree with the results reported by other 
researchers (Mohsenimanesh and Ward, 2010; Taghavifar 
and Mardani, 2013a, 2013b). In each soil moisture level 
for constant vertical load, with increasing the inflation 
pressure, the tire contact area was decreased. Such results 
have been obtained by other experimental studies 
(Diserens, 2009; Schjønning et al., 2008; Taghavifar and 
Mardani, 2013b). Wong (2001) mentioned that with 
increasing soil moisture content, the rut depth become 
deeper, and in current study by increasing the soil 
moisture content, rut depth and afterward tire contact 
volume was increased (Figure 7). In the other hand at 

each level of soil moisture content, by increasing the 
vertical load at constant inflation pressure, the contact 
volume was increased, which is consistent with previous 
research results (Mohsenimanesh and Ward, 2010). 
Therefore maximum and minimum values of contact 
volume were achieved at soil moisture contents of 
18.68% and 11.20% d.b., respectively. Mohsenimanesh 
and Ward (2010) reported that inflation pressure had a 
reverse effect on tire contact volume, while in this 
experiment it was confirmed that the increment of 
inflation pressure increased soil sinkage and finally tire 
contact volume. Several reaserchers (Bygdén et al., 2004; 
Kurjenluoma et al., 2009) referred that vertical load and 
inflation pressure had a significant effect on rut depth, 
and in the current study, effect of rut depth increament on 
increasing the contact volume with increasing vertical 
load, inflation pressure and soil moisture content 
approved (Figure 7). 

Figure 8 showed the tire contact area and tire contact 
volume changes versus tested variables of inflation 
pressure, vertical load and soil moisture content for all 
examined treatments. 

Based on Figure 8 the quadratic relationship between 
tire contact area and tire contact volume with all tested 
parameters are shown, so it seems more reasonable to 
describe their relation as a second order regression 
equation. The variables of vertical load, inflation pressure 
and soil moisture content were used to predict the contact 
area and contact volume by using multiple regression and 
ANN models. 

 
Figure 7  Contact area and contact volume changes for all examined treatment 
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Figure 8  Tire contact area and tire contact volume changes versus input variables for all treatments 

 

The multiple regression resulting models to predict 
the contact area and contact volume based on 70% of data 
are shown in Equation (7) and (8), respectively. The 
adjusted R square value of 0.974 and 0.922 achieved for 
contact area and contact volume in testing step 
respectively. 

CA = –2.168L2
 + 65.443L – 0.001P2

 – 0.702P + 4.508M 
2

 – 

73.962M + 443.234                       (7) 
 CA = –8.275L2

 + 226.858L – 0.057P2
 + 20.093P – 

18.108M 
2

 –368.459M – 488.666             (8) 
where, CA, is contact area (cm2); CV, is contact volume 
(cm3); L, is vertical load on tire (kN); P, is tire inflation 
pressure (kPa); and M, is soil moisture content (% d.b.). 
The resulting regression function for contact area has a 

weak relation with variables of inflation pressure that 
agree with previous obtained results (Taghavifar and 
Mardani, 2013b), but the obtained model for contact 
volume has a greater relation with variable of inflation 
pressure that shows the effect of this parameter on soil 
sinkage (Bygdén et al., 2004; Kurjenluoma et al., 2009) 
and finally tire contact volume. 

A neural network with three variables of vertical load, 
inflation pressure and soil moisture content in the input 
layer and variables of contact area and contact volume in 
the output layer was created. Also two hidden layers was 
used for creating neural network structure. To select the 
number of neurons in each hidden layer (N1 and N2), the 
RMSE criterion was used. Figure 9 shows the RMSE 
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changes against the number of neurons in each hidden 
layer. Based on the lowest RMSE value, the best number 
of neuron for first and second hidden layer was achieved 
in 4 and 8, respectively. It can be seen that, the low 
number of neurons in each hidden layer, increases the 
RMSE value, so that the highest value of the RMSE was 
achieved in 9 and 1 respectively for N1 and N2. The 
correlation coefficient for the training, validation and 
testing were 0.999, 0.997 and 0.999 respectively. 

Distribution of predicted values versus measured 
values obtained by regression and ANN models for 
dependent variables of contact area and contact volume 
was shown in Figure 10. The R square values of 0.967 
and 0.979 was achieved for all data by using ANN model 
to contact area and contact volume respectively based on 
variables of vertical load, inflation pressure and soil 
moisture content. With attention to Figure 10, it can be 
seen that ANN model has a closer predicted data to actual 
data in comparison with the regression models. 

Figure 11 and Figure 12 shows a comparison between  
measured and predicted value by using regression and 
ANN models for all treatments. With attention to these 
figures it can be seen that ANN model has a performance 
better than regression model that mentioned by Jevšenak 
and Levanič (2016). 

 
Figure 9  Changes of RMSE versus changes on number of neuron 

in each hidden layer for parameters of contact area and contact 
volume network 

 
Figure 10  Distribution of predicted values versus measured values obtained by regression and ANN models 
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Figure 11  Comparison between measured and predicted values of contact area by using of regression and ANN models 

 
Figure 12  Comparison between measured and predicted values of contact volume by using of regression and ANN models 

 

3.2  Effect of contact volume on rolling resistance 
The impact of vertical load and tire inflation 

pressure on the accelerated growth of tire rolling 
resistance was obvious at the soil moisture content of 
14.86% and 18.68% d.b., due to the increment of soil 
sinkage and tire contact volume. Variables of vertical 
load, tire inflation pressure, and soil moisture content 
affect contact area, contact volume and subsequently tire 
rolling resistance. Therefore, it can be assumed that 
rolling resistance is a function of tire contact area and 
tire contact volume. So two separate univariate 
regression model were used to obtain the relationship 
between the parameters of rolling resistance with tire 
contact area and tire contact volume. Bygdén et al. 
(2004) have considered reducing the rut deformation as 
a major factor in reducing rolling resistance. In the other 
hand due to vertical soil deformation or volume 

deformation, contact volume could be consider as a 
better parameter than contact area for estimating the 
rolling resistance. The resulting regression model is 
based on 70% of data to predict rolling resistance with 
contact area and contact volume is presented in Equation 
(9) and (10) respectively. The adjusted R square value of 
0.613 and 0.933 were achieved for contact area and 
contact volume based equation to predict of rolling 
resistance. 

RR = 3.062CA + 1394.268           (9) 
RR = 1.253CV + 2304.136          (10) 

To estimate rolling resistance based on contact 
volume, a neural network with variable of contact volume 
in the input layer and rolling resistance in output layer 
and two hidden layers were used for creating neural 
network structure. In this network to determine the 
number of neurons in the first and second hidden layers 
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the RMSE criterion was used and the best number of 
neuron for N1 and N2 was achieved 7 and 9 respectively 
in the minimum value of RMSE (Figure 13). The 
correlation coefficient for the training, validation and 
testing were 0.991, 0.826 and 0.945 respectively. 

Scatterplot of predicted values versus measured 
values obtained by regression and ANN models for 
rolling resistance are shown in Figure 14. The R square 
values of 0.960 was achieved for all rolling resistance 
data by using ANN model that was a little more than the 
value obtained using regression model (R2=0.933). The 
comparison of ANN model and regression model to 
predict the rolling resistance shows that ANN data were 
more close to actual data than the regression model  

(Alimardani et al., 2009) that could be seen in Figure 14 
and 15. 

 
Figure 13  Changes of RMSE versus changes on number of 

neuron in each hidden layer for rolling resistance network 

 
Figure 14  Distribution of rolling resistance predicted values versus measured values obtained by regression and ANN models based on 

contact volume 

 
Figure 15  Comparison between measured and predicted values of rolling resistance by using of regression and ANN models 

 
 

Rolling resistance variation versus the change of 
vertical load and inflation pressure parameters for three 
soil moisture content levels are shown in Figure 15. It can 
be seen that increasing of vertical load and soil moisture 

content increases rolling resistance. Increasing of 
inflation pressure causes in increase of rolling resistance 
that decline obtained results by Taghavifar et al. (2013c) 
because by increasing inflation pressure, tire contact 
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volume and energy expended to soil deformation that the 
main reason to create rolling resistance (Wong, 2001) 
was increased. 

4  Conclusions 

In this study a unique method based on molding the 
tire footprint by liquid plaster and converting these molds 
to three-dimensional models using a 3D scanner was used. 
This method lacks the disadvantage of estimating the area 
of the tire footprint due to the difficulty of manually 
setting the boundary of the footprint. The detection of the 
contact area between the tire and the soil is performed by 
defining and using a reference plane. Another advantage 
of this method is the possibility of point-to-point 
comparison of 3D footprint models for two different 
operating conditions. Linear regression and ANN 
methods to investigate the tire-soil parameters on contact 
area and contact volume also prediction of rolling 
resistance by using contact area and contact volume were 
used and the following conclusions were obtained. By 
increasing the vertical load and soil moisture content, 
contact area and contact volume parameters were 
increased and by increasing the inflation pressure, contact 
area decreased and contact volume increased. The 
regression analyses of contact area and contact volume 
revealed a high correlation with vertical load, inflation 
pressure, and soil moisture content (R2= 0.974 and 0.922 
respectively). Also rolling resistance showed a high 
correlation with contact volume (R2= 0.933) that shows 
the rolling resistance as a dependent variable of tire 
contact volume. Generally increment of neuron numbers 
leads to reduction of RMSE in all analyses. Increasing in 
number of neurons increases quality of network 
modelling, however, enhances complexity of the 
developed network. ANN models predicted values were 
very close to measured data compared to results obtained 
from linear regression models. So it can be concluded that 
ANN could be a more effective method than regression 
models, which produces better results and can be properly 
used for rolling resistance prediction. 
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