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Localization and controlling the mobile robot by sensory data fusion 
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Abstract: Localization of a mobile robot with any structure, work space and task is one of the most fundamental issues in the 
field of robotics and the prerequisite for moving any mobile robot that has always been a challenge for researchers.  In this 
paper, Dempster-Shafer (D.S.) and Kalman filter (K.F.) methods are used as the two main tools for the integration and 
processing of sensor data in robot localization to achieve the best estimate of positioning according to the unsteady 
environmental conditions and a framework for Global Positioning System (GPS) and Inertial Measurement Unit (IMU) sensor 
data fusion.  Also, by providing a new method, the initial weighing on each of these GPS sensors and wheel encoders is done 
based on the reliability of each one.  The methods were compared with the simulation model and the best method was chosen 
in each situation.  In addition to obtaining the geometric equations governing the robot, a Proportional Integral Derivative 
(PID) controller was used for the kinematic control of the robot and implemented in the MATLAB Simulink.  Also, using 
these two Mean Absolute Deviation (MAD) and Mean Square Error (MSE) criteria, the localization error was compared in both 
K.F. and D.S. methods.  In normal Gaussian noise, the K.F. with a mean error of 2.59% performed better than the D.S. method 
with a 3.12% error.  However, in terms of non-Gaussian noise exposure, which we are faced with in real condition, K.F. 
information was associated with a moderate error of 1.4, while the D.S. behavior in the face of these conditions was not 
significantly changed. 
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1  Introduction  

Currently, agricultural automation is inevitable in 
order to save on costs and produce more per unit area. 
Robotics can also meet the goals of automation in 
agriculture, by minimizing the tough, risky, deadly and 
long working conditions, along with precise monitoring 
and control. Between 1750 and 1900, a revolution in the 
agricultural industry was formed at the same time as 
fundamental changes in American agriculture. The basis 
of this revolution was the entry of machines in the 
industry. The idea of self-driving agricultural vehicles is 
not very new, and the prototype of a non-driver 
agricultural tractor, controlled through a cable, dates back 
to the 1960s (Roberts et al., 1998). In the 1980s, with the 
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development of computer science and the ability to use 
sight sensors, they created new situations for 
self-contained robots, which were first used by 
researchers at the University of Michigan and the 
University of Texas. In the decade for the first time, an 
orange harvesting robot was designed and developed by 
researchers at the University of Florida (Edan, 1995). 
With the development of research in this field and the 
development of tools used to guide robots, including 
optical, ultrasound and radio sensors, the problem of 
increasing the accuracy and speed of the robots was 
considered (Murakami et al., 2006). Data fusion is a 
method for combining the data from several sources of 
information used to obtain a brighter picture of the 
problem being investigated and measured. Data fusion 
systems are currently being used in a variety of fields, 
including sensor networks, robotics, photo and video 
processing, and smart system design. A lot of researches, 
especially in recent years, has been done in the field of 
data fusion, but there is still a long gap between 
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intelligent systems in this area with the ability of 
organisms, especially the ability of the human brain (Hall 
and Llinas, 1997). Klein (1993) provided a definition of 
the integration of sensor data, which combines sensor 
data, from one type to different sources of data.  Both 
definitions provide a general form in the use of sensors 
and can be used in a variety of applications, including 
remote sensing. The authors have reviewed many of the 
methods of data fusion and discussed each one. Based on 
the strengths and weaknesses of previous work, a basic 
definition of information integration is presented as 
follows: information integration is an effective way to 
automatically or semi-automatic conversion of 
information from different sources or at different time 
points into an effective output that in the decision-making 
process, acts automatically or supports human 
decision-making.  In their research, the neural network 
tool is used in data fusion and describes different levels of 
data fusion. Ghahroudi and Fasih (2007) have used the 
fusion of sensor data by using fuzzy logic utilization at 
the decision level in the driver assistance system. 
Subramanian et al.(2009) used a combination of optical 
and visual sensors via a fuzzy system to auto routing 
agricultural vehicles in specific routes of citrus orchards, 
where the routing error improved in comparison with the 
use of separate sensors. In this research, the results of the 
data fusion prior to the decision were refined by the 
Kalman filter. Akhoundi and Valavi (2010) used fuzzy 
systems to integrate sensor data and showed that 
aggregation of sensor data by this method is more 
efficient than the sum of sensor data separately. This 
fuzzy system included a fuzzy rule base based on sensors 
that were complementary in accuracy and bandwidth. In 
studies for localization, the combination of the global 
positioning system and other sensors such as inertial 
measurement sensors, position detection sensors (digital 
compass), camera, radar and laser sensors, have shown 
more accurate results than the use of only the global 
positioning system (GPS) (Keicher and Seufert, 2000; 
Subramanian et al., 2006; Li et al., 2010). In numerous 
studies, differential global positioning system (DGPS) 
has been used to determine the position with a precision 
of a few centimeters in agricultural conditions. The 
combination of GPS speed with the inertial navigation 

systems (INS) sensor was used to measure the slip angle 
of the vehicle and the tire when it was turned (Bevly et al., 
2001). In other research, Zhang et al. (2002) equipped an 
agricultural tractor with an intelligent navigation system 
with machine vision sensors and optical fiber gyroscope. 
The results of this assessment showed that the intelligent 
navigation system, combined with several navigation 
sensors, could drive agricultural machinery in the field of 
row crop without crossing the product. Also, Nagasaka et 
al. (2004) used this navigation system for automatic 
transplantation in rice fields. Their experiments showed 
that the precision of folding with this method was 
favorable, but it was not sufficiently accurate for spraying 
and mechanical weeding operations because of the 
movement among the rows. In a research conducted by 
Mizushima et al. (2011) positioning sensors were 
combined with three vibrational gyroscopes and two 
inclinometers. Park (2016) for safe and comfortable 
mobile robot navigation in dynamic and uncertain 
environments, extended the state of the art in analytic 
control of mobile robots, sampling based optimal path 
planning, and stochastic model predictive control. Self 
locating method was used based on fuzzy three 
dimensional grid by Shi et al. (2017), in which, with 
reduced computing, accuracy was increased.  

Shafer (1976) introduced the theory of evidence, later 
known as the Dempster-Shefer theory. The basis of this 
approach is to integrate data into evidence or beliefs that 
can manage information deficiencies. This was a 
reinterpretation of Arthur Dempster's research in the 
1960s, which, according to Dempster, has been largely 
modified by Shafer (Shafer et al., 2003).  

The Dempster-Shafer theory is a generalization of 
Bayesian theory, widely used in computer science and 
artificial intelligence, and resembles fuzzy sets 
(Rakowsky, 2007). These three aforementioned theories 
and the capabilities of each one are compared widely in 
the sensor data fusion, and in some applications, the 
Dempster-Shafer theory is used to link other data fusion 
methods (Betz et al., 1989; Boston, 2000; Fenton et al., 
1998; Murphy, 1998; Pagac et al., 1998). Denoeux et al. 
(2018), provided two new division methods, along with 
simulation of some applications in the Dempster method. 
Liu et al. (2018), in their research, proposed a new 
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weighting method in Dempster-Shafer theory by a fuzzy 
algorithm that could use the evidence obtained from 
different methods to classify the target.  

Despite extensive research in the field of robotics and 
control, the implementation of plans and methods of 
localization in the agricultural industry have been less 
studied due to the fundamental difference in the 
laboratory environment with real conditions. Because 
highly accurate sensors such as DGPS, in addition to the 
high cost, have access restrictions, In this paper, various 
methods of integrating global positioning unit and inertia 
measurement unit are utilized by Dempster-Shafer theory 
as well as Kalman filtering, and the results were 
compared to select an accurate method for localization at 
an appropriate cost. Also, by introducing a new method, 
initial weighting has been made on the information of 
each of the GPS sensors and wheel encoders, based on 
the reliability of each one. In addition to obtaining the 
geometric equations governing the robot, a Proportional 
Integral Derivative (PID) controller was implemented in 
the MATLAB Simulink for kinematic control and 
evaluation of the robot localization algorithms. 

The rest of the paper is organized as follows: the 
kinematic modeling of the agricultural robot, the 
simulation of the robot in the MATLAB SimMechanic, 
the control of the robot with its results and localization by 
Dempster- Shafer (D.S.) and Kalman filter (K.F.) are 
given in Materials and method section. Comparing of 
these two methods and the results is presented in Result 
and discussions. Finally, some conclusions are 
highlighted. 

2  Materials and methods 

2.1  Modeling 
In this section, a model will be created for a robot that 

is a car-like robot. The typical model for the four-wheel 
robots is the bicycle model shown in Figure 1. The 
two-wheel drive model has a rear wheel mounted on its 
body, and the front wheel plate rotates around a vertical 
axis for steering. The position of the robot is represented 
by a moving coordinate system whose x-axis is in the 
direction of moving forward of the robot and its center 
corresponds to the center of the rear axle of the robot. The 
configuration of the robot is also defined by general 

coordinates q=(x,y,θ ∈) C in which, C, is an Euclidean 
two-dimensional space. In this coordinate system, the 
speed of the robot is along the x-axis, because the robot 
cannot slip sideways. Because of the low speed, 
longitudinal slip and centrifugal force can be ignored.  

vx = v, vy = 0     (1) 
The wheels cannot move in the direction of the dashes, 

and these two dashes cut off at one point, which is called 
the instantaneous center of rotation. This point is the 
center of the circle the robot tracks and the angular 
velocity of the robot is obtained from the following 
equation. 

1

vθ
R

=        (2) 

In which R1=L/tanγ and L is equal to the length of the 
robot.  

 
Figure 1  Bicycle model of four wheeled robot 

 

As can be imagined, the radius of the robot's circular 
path increases with increasing the length of the robot. On 
the other hand, the steering angle has a mechanical limit 
and its maximum value specifies the minimum R1 value. 
Thus, if the steering angle is constant, the robot runs a 
circular arc.  

According to Figure 1, R2>R1, which means that the 
front wheel must travel longer and therefore have a 
higher speed than the rear wheel. Also, in a four-wheel 
robot, the outer wheels are rotational with different 
radials from the inner wheels. Therefore, there is very 
little difference between the steering angle of the steering 
wheels, and this difference can be made using Ackerman 
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steering mechanism on the steering wheels. Similarly, in 
moving wheels, the speed of rotation varies. The speed of 
the robot is equal to (vcosθ, vsinθ) in the reference 
coordinate system. By combining it with Equation (2), the 
equations of motion are obtained as follows.  

cosx v θ=          (3) 

siny v θ=       (4) 

tanvθ γ
L

=       (5) 

This model is a kinematic model of the robot, because 
it is described by the speed of the robot, not the force and 
torque that speeds up. In the global or reference 
coordinate system: 

cos sin 0y θ x θ− =     (6) 
This is a non-holonomic motion control. Another 

important feature of this model is that when the robot 

speed is zero, then 0θ = . This means that the robot 

direction cannot be changed without moving. It comes 

from Equation (5). Because, θ  is the instantaneous 

velocity of rotation. Also the robot command is always 
less than π/2. 
2.2  Simulation 

In this section, according to the kinematic model of 
the robot, a simulation of the robot in the MATLAB 
software has been addressed. Figure 2 shows the 
implementation of Equations (3) to (5) in the Simulink 
environment. Linear speed and steering angle as input, 
and position and angle of the robot are considered as 
output of this model. 

In order to have a dynamic environment and visual 
representation of the robot’s motion, the robot model is 
interconnected individually in the SimMechanics of 
Matlab software to allow the robot’s behavior in dealing 
with various control algorithms observed by combining it 
with Simulink environment. In Figure 3, a plan is visible 
from this environment. 

 
Figure 2  Simulation of the kinematics model of robot 

 
Figure 3  Mobile robot simulation in the SimMechanics 
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In this simulation model, at first, different parts of the 
robot, which are designed in SolidWorks software, are 
brought to the SimMechanics environment by Solid 
blocks. Blocks are assembled in this environment by 
appropriate joints to show how well the robot behaves. 
By placing a sensor on a robot, in order to report its 
position and angles (such as the gyroscope sensor), these 
robot features are available throughout the path. The 
robot moves with constant velocity and the steering angle 

is the only control variable. 
The control commands to the simulated model have 

been implemented from controllers written in the 
Simulink. In addition, by reporting the amount of rotation 
of each joint, in fact, will be an encoder on the each 
wheel which produces output in radians per second. In 
Figure 4, simulation of the robot and the transfer of 
various parts of SolidWorks to the SimMechanics, along 
with an explanation of each part, are presented. 

 
Figure 4  Simulate a robot and transfer parts to the simulator SimMechanics 

 

2.3  Control 
This section firstly examined the robot movement 

from an initial point to a target point (x*, y*). A 
proportional controller has been used to apply the input to 
the kinematic model of the robot. To control the robot 
speed, the following equation was used (Corke, 2011):  

* 2 * 2( ) ( )Vv K x x y y= − + −       (7) 

Equation (7) calculates the velocity applied to the 
model of robot by the controller. Also, the angle of the 
robot at the target point and steering angle is also 
obtained from the following equations.  

*
* 1

*tan y yθ
x x

− −
=

−
    (8) 

*( )sγ K θ θ= −       (9) 

Also, tracking errors are obtained from reducing the 
current position of the robot from the optimal input value 
at any given moment and by the PID controller, these 

errors are pushed to zero. Another important task for 
robots is to move to a specific line and follow it. Consider 
the hypothetical ax+by+c=0 line. We need two controllers 
to control the steering. The first controller is designed to 
control the steering in tracking the line, and the second 
controller is designed to match the direction of the robot 
with the hypothetical line (Corke, 2011):  

2 2

( , , ) ( , ,1)a b c x yd
a b

⋅
=

+
  d dα K d=   0dK >   (10) 

* 1tan aθ
b

− −
=   *0( )h hα K θ θ= > −   0hK >   (11) 

The above equations are the mathematical relations of  
steering controllers for this maneuver. Finally, the steering 
angle is obtained according to the equation as follow: 

γ = Kdd + Kh(θ*– θ)       (12) 
Finally, the robot tracks the path that is generally 

defined on the x-y plane. This path can be obtained by 
sequencing the coordinates of the points that the robot 
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should go through. The robot’s motion control in this case 
is very similar to the one in which the robot moves to a 
target point, With the difference that in this case the 
target point changes (Corke, 2011):  

The robot is always at a short distance (d*) from the 
target point. Therefore, the error is calculated as follow:  

* 2 * 2 *( ) ( )e x x y y d= − + − −       (13) 

To control the speed at points where the error is zero, 
we use a PID controller.  

*
v i d

dev K e K edt K
dt

= − + +∫        (14) 

To control the steering angle, as before, we use a 

proportional controller. 
*

* 1
*tan y yθ

x x
− −

=
−

             (15) 

In Figure 5, tracking the path by the robot is 
simulated from a primitive point in the plane. In this 
block, Equations (18)-(21) are implemented in the 
Simulink toolbox of MATLAB, and the robot follows it 
after applying the optimal path. In Figure 6, the path of 
the robot from the red center point is shown in order to 
track the desired path. 

In Figure 7, the agricultural robot simulated in the 
MATLAB mechanical simulator is tracking the path. 

 
Figure 5  Simulate motion in a desired path 

 
Figure 6  Simulated path of robot movement 

 
Figure 7  Move the robot in the simulated path  
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2.4  Localization 
Now, the robot positioning in the simulation 

environment is performed using two methods, K.F. and 
D.S. Also, the initial weighing to the sensors' results will 
be explained and applied. 
2.4.1  Dempster – Shafer’s Theory  

Dempster-Shafer’s Theory of Evidence according to 
many credible references, is the most powerful method in 
data fusion. In fact, this method merges data at the 
decision level. This method has the ability to integrate 
any numerical, signal, and multi-dimensional data. One of 
the areas that this tool and its features are underused is 
the localization. In this paper, how D.S. Theory of 
Evidence can be used in precise positioning of moving 
objects was firstly shown, and then the performance of 
this method in localization was compared with K.F. 
method. D.S. theory is a generalization of the Bayesian 
method that can handle sensor information defects. In the 
event that all necessary information is available, all data 
fusion methods provide a comprehensive and acceptable 
approach. But in the face of lack of sensitivity and 
sensitivity data, they are not reliable. Because in this case, 
these methods should make assumptions about sensor 
data which may not match on real data. Consequently, 
conflicting results may be obtained. But D.S. theory is not 
limited by model defects or previous information defects. 
In this way, the evidence is determined solely on the basis 
of the data obtained, and not with the assumed data. Thus, 
this method is a quick and accurate tool for combining 
incomplete data. For sensory data fusion using the D.S. 
method, a given weight must be assigned to each data 
source at any given time. For this purpose, firstly, by the 
standard deviation of data, for the N last produced data, 
the amount of data validation for each sensor is 
determined. If the standard deviation of the N last data is 
smaller than the specified value α, there are fewer jumps 
and more confidence in that sensor, and if the standard 
deviation is greater than that value, reliability will be less. 
α and N values are empirically determined based on the 
behavior of sensor data or expert opinion. Initially, the 
variance of each sensor’s data is calculated:  

2 2
1

1 ( )N
ii

σ x μ
N =

= −∑             (16) 

2
1

2
2

Highly reliable level ( 1)     

Poorly reliable level ( 2)    

c σ α

c σ α

= ≤

= >
     (17) 

With each new data, the variance of the N last data is 
updated and the upper and lower levels of confidence are 
specified. These levels are used in Shannon entropy 
relations as follows: (Lu et al., 2016)   

1
1

1 2

tc
t

t t

c
P

c c
=

+
∫

∫ ∫
, 2

2
1 2

tc
t

t t

c
P

c c
=

+
∫

∫ ∫
   (18) 

And the entropy criterion for each of the sensors is 
obtained as follows (Lu et al, 2016): 

2
21

logc c
it it itc

H P P
=

= ∑            (19) 

Finally, by the entropy obtained for each sensor, and 
using the formula below, its weight will be determined 
(Lu et al, 2016):   

2 2
1

1
( ) ( )

it I
it iti

W
H H −

=

=
∑

          (20) 

The greater the entropy of a sensor's data, the lower 
the confidence level, and consequently the lower the 
weight assigned. 
2.4.2  Sensor Noise Simulation and Performance 
Analysis of fusion Tools  

Firstly, the positioning data of two sensor data 
sources- Sensor 1: the GPS data and Sensor 2: the total of 
inertial measurement unit (IMU) data and the rear wheel 
encoders- is received from sensor blocks in the Simulink 
toolbox, and re-simulated after adding noise and bias up 
to 10% of the turmoil to those. Then, in the first step, for 
a specific semicircular path, the sensor values are 
combined by K.F. and D.S. separately. There are three 
series of diagrams, each showing one of the robot 
position parameters. In each series of charts, the output of 
the simulated blocks of two sensor sources that are 
coupled with noise, and the results of applying two data 
fusion tools are shown. In Figure 8(a), the parameter x, in 
the Figure 8(b), the parameter y and in the Figure 8(c), 
the parameter θ are analyzed in MATLAB simulation 
toolbox. The performance of these two data fusion tools 
is shown in a given time period and path. As indicated in 
these diagrams, the red-dashed paths are the real robot 
motions in the simulation environment, which is expected 
to show by the ideal sensors. Purple and pale green colors 
are shown simulated sensor data after the noise 
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respectively for the first and second sensor sources. Also 
the blue color shows the fusion of two noisy sensor data 
by D.S. method and the dark green color shows the fusion 
by the K.F. method. It is clear that the Kalman method 
shows better performance in Gaussian noise.  

Figure 9(a) is the entropy graph of the two sensor 

sources, and Figure 9(b) is the obtained weight graph 
based on sensor data. As shown in these charts, the 
entropy of the Sensor 1 is greater than the Sensor 2, 
which indicates more disorder in GPS data than the 
encoder plus IMU data and so, the reliability of the data is 
less and the weight allocated to that sensor will be less.  

 
(a) 

 
(b) 
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(c) 

Figure 8  Noise simulation diagrams and the results of applying the fusion tool to the robot position parameters 

 
(a) 

 
(b) 

Figure 9  Entropy graph of sensor data and weight assigned to sensor sources  
 

 

3  Results and discussions 

As shown in Figure 8, K.F. seems to have a better 
performance than D.S., but according to Figure 9, the 
need to provide a benchmark for comparing the 
performance of these two data fusion tools seems to be 
necessary. For this reason, the mean absolute deviation 

(MAD) and mean square error (MSE) criteria have been 
used.  

The MAD, also referred to as the ‘mean deviation’ or 
sometimes ‘average absolute deviation’, is the mean of 
the data’s absolute deviations around the data's mean: the 
average (absolute) distance from the mean. ‘Average 
absolute deviation’ can refer to either this usage, or to the 
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general form with respect to a specified central point. The 
mean absolute deviation of a set {x1, x2, x3, …, xn} is  

1

1 | ( ) |n
ii

MAD x m x
n =

= −∑           (21) 

Which n is the number of values and m(x) is the mean. 
MAD has been proposed to be used in place of standard 
deviation since it corresponds better to real life. Because 
the MAD is a simpler measure of variability than the 
standard deviation. This method's forecast accuracy is 
very closely related to the MSE method which is just the 
average squared error of the forecasts. Although these 
methods are very closely related, MAD is more 
commonly used because it is both easier to compute 
(avoiding the need for squaring) and easier to understand. 

2
1

1 ˆ( )n
i li

MSE x x
n =

= −∑            (22) 

Which ˆlx  is predicted value.  
The numbers in the table below belong to the x 

variable in each simulation test and for each evaluation 
criterion.  

The simulation reported in the previous section has 
been carried out six times for two different paths (a linear 
path and a circular path). In the fifth and sixth tests, the 
noise level applied to the Sensors is non-Gaussian noise. 
Typical IMU/GPS integration approaches usually adopt 
the Gaussian error assumption. However, in practice, 
especially during off-road navigation and when several 
sources of GPS interference are present, this assumption 
does not hold. To this end, the best non-Gaussian noise 
model is the Huber estimator using a robust estimator 
algorithm, which is able to handle multipath GPS signals 
as well as intentional and unintentional interferences. 
Gaussian mixture models are based on the representation 
of any non-Gaussian distribution as the sum of multiple 
Gaussian densities with different weights (Karlgaard and 
Schaubt, 2007). 

For the IMU/GPS algorithm discussed here, the noise 
is assumed to be composed of two Gaussian components. 

The results presented in Table 1 showed that the 
performance of the D.S. method in sensor data fusion 
associated with non-Gaussian noise was better than the 
K.F. Since in real life the noise behavior was more 
non-Gaussian, it seemed that the Dempster method would 
perform better in dealing with real issues. 

 

Table 1  Comparison of the performance of two data fusion 
tools 

Test number Benchmarking Dempestre - Shaffer 
(percentage error ) 

Kalman filter 
(percentage error )

MAD 1.99 1.45 
1 

MSE 4.76 2.59 

MAD 2.23 1.59 
2 

MSE 6.02 3.22 

MAD 1.94 1.42 
3 

MSE 4.76 2.62 

MAD 1.77 1.49 
4 

MSE 4.01 2.85 

MAD 1.78 2.03 
5 

MSE 3.45 5.23 

MAD 1.43 1.59 
6 

MSE 2.77 3.22 
 

4  Conclusion  

In this paper, tried to simulate controlling of an 
agricultural tractor robot and it's localization in real 
condition using Dempster-Shafer and Kalman filter 
algorithms, as data fusion tools, in the MATLAB 
software. In the control part of the robot, various control 
scenarios were be carried out on the robot, including 
tracking, moving toward the target point and moving to a 
given line, and they are simulated in the mechanical 
simulator of MATLAB (SimMechanics). In the field of 
localization, the use of D.S. evidence theory as a tool for 
data fusion and exploiting the strengths of this method 
and comparing it with the K.F. for the best possible 
implementation of collecting and processing sensory data 
is one of the innovations of this paper. In this way, the 
evidence is determined solely on the basis of real data. 
This is a quick and accurate tool for incomplete data 
fusion. Also, the initial weighting of sensors by entropy 
method is one of the other innovations in this paper to 
determine the confidence coefficient of each sensor and 
to determine its weight. To apply the weight of each of 
the sensors in this method as evidence theory, at the 
decision level, entropy of sensor data is used. After the 
implementation of data fusion methods and in order to 
provide a scientific standard for comparing the above 
methods, the simulation was repeated with the application 
of Gaussian and non-Gaussian noise in different paths 
and the localization information of these two methods in 
these simulations was examined by two MAD and MSE 
criteria. The results showed a better performance of the 
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D.S. method when applying non-Gaussian noise which is 
the reliability validation of the D.S. method in conditions 
close to real conditions. The upcoming process is the 
practical implementation of the localization and control 
algorithms examined in this paper and use of the results 
obtained from it. 
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