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Abstract: The intensification of agricultural production systems demands power, supplied by agricultural machinery, besides 
more agricultural inputs such as fertilizers, pesticides and seeds.  Agricultural mechanization provides increase in the global 
production of food, fiber and bioenergy; and it brought economic benefits to producers, but causing larger energy consumption.  
Energy embodiment in agricultural machinery has been done in earlier studies, but data usually are from car industry.  This 
study aimed to determine the energy demand and water footprint in a plant that assembles five types of agricultural machinery 
from a multinational manufacturer located in Piracicaba municipality in Sao Paulo state, Brazil.  That plant assembled two 
types of sugarcane harvester, coffee harvesters, sprayers and planters.  Inputs taken into account were classified as direct 
inputs (electricity, liquefied petroleum gas - LPG, water etc.) and depreciated inputs (infrastructure, tools etc.), regarding how 
they are consumed over time.  Data about the physical demand were determined, providing the material flows, which were 
used to estimate the energy and water flows by multiplying them by their respective energy embodiment and water footprint 
indices.  Electricity accounted for the highest share (88.9%) in the total energy demand.  From depreciated inputs, buildings 
accounted for almost the full embodied energy, but this category had a minute participation on the total energy (<2.5%).  The 
industrial assembling required on average 13.49 GJ of energy and 12.29 m3 of water per machine assembled.  Labor’s 
embodied energy was very small, thus can simply be neglected from the energy analysis.  The indirect water footprint related 
to depreciated inputs was very minor and can be neglected without affecting the final result.  The direct water demand was 
from 5.60 to 15.70 m3 per machine compared to the average indirect water footprint of 1.2 m3.  In terms of per unit mass of 
assembled machine, the embodied energy demand varied from 1.22 to 2.36 MJ kg-1 and the water footprint varied from 1.17 to 
2.11 L kg-1. 
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1  Introduction  

Agricultural machinery industries are characterized as 
heterogeneous due to the market structure, in which are 
companies of different sizes, and technical and 
organizational features (Amato Neto, 1985). Being 
adopted for most of field operations, agricultural 
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mechanization is one of the tools that supported the 
increase in world food production, bringing many 
benefits to farmers, such as cost reduction and higher 
work rate of field operations (Oliveira et al., 2007). 

Energy and water security are one of the main 
challenges in the 21st century. The growth of either 
global population or the individual consumption, 
combined with climate changes requires coordinated and 
sustainable actions (MAPA, 2009). The use of resources 
is also a challenge to the paradigm of environmental 
sustainability, because it is based on the hypothesis of a 
social and productive model that does not threaten the 
survival and welfare opportunities of the coming 
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generations. Thus, it is important to develop and use 
renewable resources of energy and materials (Manzini 
and Vezzoli, 2002). 

Energy and water footprint analyses are necessary to 
manage the use of scarce resources in production systems. 
Through the identification of production practices, these 
analyses quantify the energy and water footprints. 
Besides, it determines the energy embodiment in each 
phases of the production system, giving proper attention 
to the environmental improvement to be achieved (Umar, 
2003). Moreover, the benefits of applying this kind of 
evaluation are not limited within the boundaries of the 
production system but it is extensive to the whole society 
(Boustead and Hancock, 1979). 

Energy is one of the main inputs of modern societies, 
mandatory to produce goods from natural resources 
exploitation to service providing (Hinrichs and Kleinbach, 
2009). It is defined as the ability to produce heat and 
work (Boustead and Hancock, 1979). It is important to 
understand energy not only as a service from the 
environment, transformed or not, but also as a product of 
work (Macedônio and Picchioni, 1985). However, energy 
is better described about what it can do rather than what it 
is. The thermodynamic laws that control the conversion 
of energy are first and second laws: the first law or the 
law of conservation states that energy cannot be created 
or destroyed, but can be changed from one form to 
another, the second law or law of entropy denotes about 
the irreversibility of all natural processes and can be seen 
as a measure of disorder or disruption of a system 
(Çengel and Boles, 2001). 

Determining energy demand has fundamental 
importance to managing production processes, identifying 
and quantifying all used and produced goods (Siqueira et 
al., 1999; Romanelli, 2009; Andrea et al., 2016). This 
evaluation considers as input energy not only the energy 
consumed directly (e.g. fuel and electricity) but that 
required by manufacturing processes and services 
supplies embodied in the goods the evaluated system 
uses. 

In energy embodiment analysis of the life cycle of 
sugarcane harvesters, the maintenance and repair phase 
require 72% of total energy (3.0 TJ) for the sugarcane 
harvester with rubber tires and 72.8% (total 3.5 TJ) for 

those with metallic tracks (Mantoam et al., 2014). These 
numbers are due to the amount of repair these machines 
necessary because this kind of machine operates on 
average 3100 h year-1. For tractors, total demand is from 
261 to 787 GJ, respectively, for tractors from 55 to   
246 kW (Mantoam et al., 2016). 

Machinery operators must be trained for energy 
conservation; since besides saving fuel they can postpone 
the machinery replacement (Abubakar and Umar, 2006). 
The decision making on machinery replacement is 
economically driven. In energy terms, extending the life 
cycle of machinery brings less environmental impact 
(Mantoam et al., 2016). 

Operations within assembly lines must be taken into 
consideration, but few industries monitor energy 
consumption individually on their production sections 
(Boustead and Hancock, 1979). Thus, this consumption is 
generally unknown in details. Knowing this consumption 
in distinct manufacturing phases is important because of 
energy cost (electricity and fuel). If a new production line 
or a modification in it is suggested, energy cost must be 
compared with the previously existent. Monitoring this 
cost would allow one to compared operators’ or plants’ 
performance among them. To do so, cost determination 
needs a method to indicate energy cost from distinct 
sources to keep comparisons on a realistic basis 
(Boustead and Hancock, 1979). 

Another reason for industries to have interest on 
energy analysis is the growing importance of 
environmental impact analyses. Industries are willing not 
only to run their production responsibly, but to reduce the 
gross energy amount necessary for production of goods 
and services, and consequently to reduce cost (Boustead 
and Hancock, 1979). This can be done through surveys of 
efficiency parameters to the storage of goods, waste 
management, and illumination in the industry, heating 
and cooling systems (Manzini and Vezzoli, 2002). 

Water is also a very important input in the production 
of goods and services. An increasing number of 
businesses recognize that reducing the water needed in 
the production of goods and services should be part of 
their corporate social responsibility. In order to optimize 
the water required in the production process, we need to 
measure the direct and indirect water used along the full 
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supply chain of the product. Water footprint is an 
indicator of how much water is consumed over the whole 
supply chain of a product (Hoekstra et al., 2011). 

This study aims at determining the material and 
energy demand, and water footprint of assembling 
agricultural machinery. The evaluated plant assembles 
sugarcane harvesters, coffee harvesters, self-propelled 
sprayers and grain drillers. 

2  Material and methods 

The evaluated industry produces five distinct products 
(Table 1). Each machine, it is produced in a unique 
manufacturing line; the amount of operators and the 
assembling time cycle are different for every machine. 

 

Table 1  Machinery produced in the industry surveyed 

Machine Power (kW) Mass (kg) Observation

Sugarcane harvester single row (M1) 260 14,863 
16,972 

Rubber tires
Metallic track

Small sugarcane harvester (M2) 128 8,000 Rubber tires

Coffee harvester (M3) 40 5,600 Rubber tires

Sprayer (M4) 147 10,100 Rubber tires

Row crop planter, no tillage (M5) Pull-type 5,119 13 rows 
 

The data surveyed to perform this study was done in a 
plant, from a multinational company, located in 
Piracicaba municipality, São Paulo state, Brazil. The 
steps taken were defined in a flow chart (Figure 1). 
Electronic spreadsheets (Microsoft Excel® 2007) were 
used for the material and energy flow determination. 

 
Figure 1  Flowchart of embodied energy determination in 

machinery assembling 
 

Common inputs (2) refer to inputs such as electricity, 
water, liquefied petroleum gas (LPG), because these 
inputs provide services to the production systems, being 
intangible in the final product although mandatory as well. 
These inputs do not have their consumption specified by 

every kind of machine produced, because the plant 
produces distinct kind of products, and consequently their 
demand varies. Identification and quantification of the 
required inputs (4) were made based on the survey of 
36-month production, from 2012 to 2015. Equations (1) 
to (3) indicate the average consumption per unit of 
machine produced. So, to determine the specific 
consumption for every produced machine, we determined 
the participation of each production line in the total plant 
consumption in a certain period (Equation (1)). Labor 
time required was surveyed on the database of the 
company. 

100
Σ

i i

i

UMP TGM
PMP

TP
× ×

=          (1) 

where, PMP = participation of the machinery in the total 
production in the ith year (%); UMPi = units of machinery 
produced in the ith year (unit yr-1); TGMi = time spent to 
produce a single machine (h unit-1); ∑TPi = sum of total 
time to produce all the machines in the ith year (h yr-1); i = 
year. 

With the data of the participation of the machinery in 
the total production, the annual input consumption and 
divided by units of machinery produced, we could 
determine the annual consumption of each input for each 
machine in a 1-year period (Equation (2)). 

100 i

i
i

PMP CIA
CMA

UMP
=              (2) 

where, CMAi = input consumption in the year (kWh unit-1; 
m³ unit-1; kg unit-1); CIAi = total consumption in the ith 
year (kWh yr-1; m3 yr-1; kg yr-1). 

The average annual consumption was determined 
(Equation (3)) considering the total annual consumption 
and the period of observation (2012 to 2015). This was 
further related to the units of machinery produced in each 
year (Equation (4)). Equation (4) also uses the energy 
embodied in every input to determine the energy flows. 

Σ iCMA
CMT

N
=                (3) 

where. CMT = total average consumption (kWh unit-1;  
m3 unit-1; kg unit-1); N = evaluated years; i = year. 

EIIC = CMT EIDI               (4) 
where, EIIC = embodied energy in the direct inputs (MJ); 
EIDI = embodied energy in direct input (MJ kWh-1,     
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MJ m-3; MJ kg-1). 
Similarly, the water footprint (WF) of the direct 

inputs is determined as follows: 
WFd = CMTwfd                (5) 

where WFd = water footprint related to the direct inputs 
(m3); wfd = the water footprint in each of the direct inputs 
(m3 unit-1). The indices for EIDI and wfi were collected 
from literatures (Table 2). 

 

Table 2  Energy embodiment indices 

Input Unit Embodied energy (MJ unit-1) Water footprint (L unit-1)** Reference 

Aluminum kg 231 13 Stodolsky et. (1995); Margolis and Sousa (1997) 

Carbon steel kg 51.5 2.97 Berry and Feld (1973)*; Margolis and Brindle (2000) 

Copper kg 140 93.2 Stodolsky et al. (1995); Tikana et al. (2005) 

Electricity kWh 15 0.68 Boustead and Hancock (1979); Sheehan et al. (1998) 

Building m² 3500 6300 Tavares (2006); Crawford and Treloar. (2005) 

Labor h 2.2 - Serra et al. (1979) 

Lead kg 17.3 37 Porameswaren and Nadkami (1975)*; European Commission (2017) 

LPG kg 58.9 2.5 Boustead and Hancock (1979); Francke and Castro (2013) 

Polypropylene kg 110.2 1.16 Boustead and Hancock (1979); Franklin Associates (2011) 

Water m³ 2.4 1 Leach and Slesser (1974)* 

Zinc kg 56.6 393 Porameswaren and Nadkami (1975)*; European Commission (2017) 

Note: * apud Boustead and Hancock (1979); ** for all the items the water footprint refers to blue water. 
 

The depreciated inputs (3) are infrastructure, machine, 
equipment and tools, used to manufacture the machines. 
These inputs do not have their consumption specified by 
every kind of machine produced. 

Identification and quantification (5) were made to 
determine the mass and lifecycle. The average 
consumption was determined through the utilization rate 
surveyed from 36-month production. It indicated the 
utilization rate for each input for unit of produced 
machine (Equation (6)). 

Σ 100iPMP
TUI

N
=              (6) 

where, TUI = Rate utilization of inputs (%). 
With TUI multiplied by the infrastructure used, such 

as shipment area; stock parts area; training center area; 
computer equipment mass, we could determine the 
consumption for each depreciated input per unit of 
produced machine (Equation (7)). 

100
TUICMD IEU=              (7) 

where, CMD = depreciated consumption (m2; kg); IEU = 
total infrastructure used (m2; kg). 

With data depreciated average consumption, life cycle 
and knowing the time of participation (7) that determinate 
equipment have in the production process, resulted in 
depreciated mass to manufacture the machinery. 
Equations (8) and (9) also use the energy embodied and 

water footprint in every input to determine the energy 
flows and water footprints. 

 DA
CMDEIDI TC EI
VU

=             (8) 

 i i
CMDWF TC wf
VU

=               (9) 

where, EIDI = embodied energy in depreciation of 
infrastructure (MJ); VU = life cycle in the ith year of tools, 
factory (h); TC = time cycle spent by tool, factory on 
manufacturing of a machine (h); EIDA = embodied energy 
in depreciated assets (MJ m-2, MJ kg-1); WFi = the water 
footprint in the depreciation of infrastructure (m3); wfi = 
the water footprint of each of the inputs (m3 kg-1; m3 m-2). 

The life cycle adopted for the infrastructure materials 
were those considered by the Brazilian income tax 
(BRASIL, 1998). Manual tools, devices for 
telecommunication and telephony present 43,200 h of life 
cycle (5 yr); electric, pneumatic and hydraulic tools and 
design devices present 86,400 h of life cycle (10 yr); 
buildings present 216,000 h (25 yr). 

The sum of embodied energy in direct inputs (8), and 
in infrastructure depreciated (9), provides the embodied 
energy and water footprint on industry (10) (Equations 
(10) and (11)). 

EII = EIIC + EIDI             (10) 
WF = WFd + WFi             (11) 

where, EII = embodied energy on industry (MJ) and  
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WF = the total water footprint of machine (m3). 

3  Results and discussion 

Table 3 presents the material flow in assembling 
phase, per unit of machinery produced. From the table, 
electricity and labor represents 1,113.8 kWh and 127.0 h, 
respectively per unit of sugarcane harvester machine, M1. 
Electricity is used for illumination, electric tools, air 
compressor; air conditioner and computer equipment. The 
labor hours are due to the manual work on the assembling 
phase of machines. 

Table 4 presents the embodied energy and water 
footprint of the direct inputs. While electricity is the 

largest energy demanding input with 88.9%, labor takes 
the largest share (97%) of the water footprint. Although 
water consumption per machine is high, it presents low 
energy value 0.2%. The water footprint of the labor is 
related to the water footprint of food and goods consumed 
by employee. 

 

Table 3  Material demand by produced machinery 

Machinery 
Electricity 

(kWh) 
LPG 
(kg) 

Labor
(h) 

Direct water
(m3) 

Sugarcane harvester single row (M1) 1113.8 30.1 127.0 15.7 

Small sugarcane harvester (M2) 559.5 16.7 66.6 8.6 

Coffee harvester (M3) 771.6 20.9 88.0 10.9 

Sprayer (M4) 1052.1 28.4 120.0 14.8 

Row crop planter, no tillage (M5) 394.6 10.7 45.0 5.6 
 

 

Table 4  Energy demand and water footprint by produced machinery 

Electricity LPG Labor Direct water Electricity LPG Labor 
Machinery 

--------------------------- MJ ------------------------- ---------------------------m3------------------------ 

Sugarcane harvester single row (M1) 16707 1773 280 37.1 0.76 0.08 32.0 

Small sugarcane harvester (M2) 8392 986 147 20.4 0.38 0.04 16.8 

Coffee harvester (M3) 11573 1228 194 25.7 0.53 0.05 22.2 

Sprayer (M4) 15782 1675 264 35.1 0.72 0.07 30.2 

Row crop planter, no tillage (M5) 5918 628 99 13.1 0.27 0.03 11.3 

Average 11674 1258 197 26 0.53 0.05 22.51 
 

Figure 2 summarizes the participation of direct inputs 
per unit of machine. Electricity is the most important one 
(~90%), while LPG, used as fuel to the forklift truck, 
represents around 9%. Labor and water may be neglected 
in further evaluations due to their minute participation in 
energy terms (Bridges and Smith, 1979; Mantoam et al., 
2014). 

 
Figure 2  Input participation on energy demand 

 

Table 5 presents the material flow to the depreciated 
inputs. The largest manufacturing area is assigned to 
machine M1, because it requires more area for its 
assembling line. Occupied area weights the building 
depreciation into the assembling lines it hosts. Assets 
used in the factory management, such as computers 
stratified due to their composition referenced in 
Microelectronics and Computer Technology Corporation 
(1996) and Itautec (2010), the life time of computers 
present 43,200 h (5 yr) and its use time regards its 
participation on the assembling cycle. 

 

Table 5  Infrastructure depreciation demand by factory 

Input Unit M1 M2 M3 M4 M5 

Building area m² 16308.9 1357.4 1526.2 4511.7 1514.1

Carbon steel kg 3592.4 173.1 135.5 159.1 113.8 

Aluminum kg 176.3 10.3 8.3 38.2 8.1 

Polypropylene kg 284.4 10.1 13.4 61.7 13.1 

Copper kg 87.6 8.4 4.1 19.0 4.0 

Lead kg 75.0 3.1 3.5 16.3 3.5 

Silica kg 289.8 2.7 13.6 62.8 13.4 

Zinc kg 26.1 0.9 1.2 5.7 1.2 
 

Table 6 presents the energy demand and water 
footprint in the infrastructural requirement in the 
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manufacturing of the machines. The machine M4 require 
higher energy and water consumption in the factory, 
followed by machine M1. The embodied energy in 
depreciated computers is low. 

 

Table 6  Infrastructure depreciation energy and water demand 
by factory 

M1 M2 M3 M4 M5 
Input 

----------------------- Embodied energy (MJ) -----------------------

Building 550.3 176 197.8 584.8 122.7 

Carbon steel 4.8 0.9 0.6 1.0 0.4 

Aluminum 2.0 0.3 0.4 1.6 0.2 

Polypropylene 1.5 0.2 0.3 1.3 0.2 

Copper 0.6 0.1 0.1 0.5 0.2 

Lead 0.1 0.0 0.0 0.1 0.0 

Silica 0.0 0.0 0.0 0.0 0.0 

Zinc 0.1 0.0 0.0 0.1 0.0 

 ------------------------- Water footprint (L) -------------------------

Building 991 317 356 1053 221 

Carbon steel 0.28 0.05 0.03 0.06 0.02 

Aluminum 0.11 0.02 0.02 0.09 0.01 

Polypropylene 0.02 0.00 0.00 0.01 0.00 

Copper 0.40 0.07 0.07 0.33 0.13 

Lead 0.21 0.00 0.00 0.21 0.00 

Silica 0.00 0.00 0.00 0.00 0.00 

Zinc 0.69 0.00 0.00 0.69 0.00 
 

The embodied energy in the industry is represented 
mostly by direct inputs 65.77 GJ (97.6%) – Table 7. 

Depreciated inputs account for the remaining 1.65 GJ 
(2.4%). The industry requires on average 13.49 GJ to 
manufacture a machine. The total water footprint per 
machine varies from 6.12 m3 for row-crop planter to 
17.53 m3 for sugarcane harvester, with an average water 
footprint of 12.29 m3 per machine. The direct water 
footprint (11.1 m3), accounts for 90% of the average 
water footprint and the indirect water footprint accounts 
for the remaining 10% (1.2 m3) (Table 7). 

Table 7 presents embodied energy demand on 
industry. The distinct magnitude between direct and 
depreciated inputs allows further research to ignore the 
latter. Similarly, the contribution of depreciated products 
to the indirect water footprint is very minor (see Table 6). 
Thus, we may safely neglect the water footprint related to 
depreciated products without underestimating the total 
water footprint. Although assembling contributes little to 
the embodied energy in the final product (Mantoam et al., 
2014), this kind of assessment is useful for the industry to 
be able to focus effort on reducing input consumption and, 
consequently, reduce negative environmental impacts and 
production cost.  

 

Table 7  Embodied energy and water footprint on assembling for distinct machinery 

Embodied energy (GJ) Water footprint (m3) 
Machinery 

Power 
(kW) 

Mass 
(kg) 

Depreciated inputs Direct inputs Total Indirect inputs Direct inputs Machinery Total

Sugarcane harvester (M1) 260 14863 0.56 18.79 19.36 1.83 15.70 17.53 

Small sugarcane harvester (M2) 128 8000 0.18 9.55 9.72 0.74 8.60 9.34 

Coffee harvester (M3) 40 5600 0.2 13.02 13.22 0.93 10.90 11.83 

Sprayer (M4) 147 10100 0.59 17.75 18.35 1.84 14.80 16.64 

Row crop planter (M5) - 5119 0.12 6.66 6.78 0.52 5.60 6.12 

Category average   0.33 13.16 - 1.17 11.18  

Category Total   1.65 65.77 67,42 5.58 55.60 61.46 
 

The individual and average numbers for the indicators 
considering energy demand on assembling and the 
machinery mass and power can be found in Table 8. 
Apparently, neither mass nor power has straight 
correlations with energy demand (Figure 3a) or water 
footprint (Figure 3b) on assembling. Energy demanded 
increases as mass increased, while water footprint is 
inversely proportional. Although, mass presents higher 
level of coefficient of determination than power did (R2 ~ 
0.51 for energy and ~ 0.38 for water footprint). 

Assembling energy requirements varies from 1.22 to 
2.36 MJ kg-1. This magnitude represents 1% to 3% of 
those found for tractors, which excludes assembling 
phase (62.7 to 122.7 MJ kg-1 from Mantoam et al. (2016)). 
Regarding the same machine, assembling is 1.3 out of 
202.6 MJ kg-1 (rubber tires) and 204.3 MJ kg-1 (metallic 
track) for sugarcane harvester (Mantoam et al., 2014). 
Similarly, for coffee harvester, assembling is 2.36 MJ kg-1, 
which turn the 71.8 MJ kg-1 (no assembling considered) 
for coffee harvester (Mantoam et al., 2017) into 74.2 MJ kg-1, 
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representing 3.1%. 
 

Table 8  Embodied energy and water footprint indicators for 
assembling machinery 

Embodied energy Water footprint 

Machinery per power  
(MJ kW-1) 

per mass  
(MJ kg-1) 

per power  
(L kW-1) 

per mass 
(L kg-1) 

Sugarcane harvester (M1) 74.4 1.3 67 1.18 

Small sugarcane harvester 
(M2) 76 1.22 73 1.17 

Coffee harvester (M3) 330.5 2.36 296 2.11 

Sprayer (M4) 124.8 1.82 113 1.65 

Row crop planter (M5) - 1.32  1.19 

Average 151.4 1.67 137 1.53 

 
a. Energy 

 
b. Water footprint 

Figure 3  Energy and water footprint of assembling by  
machinery mass 

4  Conclusions 

Due to high energy demand in manufacturing, 
electricity needs to be considered for energy embodiment 
in agricultural machinery industry, while due to low 
energy embodied in labor and infrastructure, both safely 
be neglected in the energy embodiment analysis. Water 
demand per unit on machine is high, although has low 
energy value. However, the contribution of labor in 
indirect water footprint is very significant and cannot 
simply be neglected in the water footprint assessment. On 

the other hand, the contribution of infrastructures in the 
total water footprint of machinery production is very 
minor. This kind of assessment is useful for the industry 
to be able to focus effort on reducing input consumption 
and, consequently, reduce negative environmental 
impacts and production cost. 
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m3 unit-1, kg unit-1) 
CIA = total consumption per year (kWh yr-1, m3 yr-1,   
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EIIC = embodied energy in the direct inputs (MJ) 
EIDI = embodied energy in direct input (MJ kWh-1,    
MJ m-3; MJ kg-1) 
TUI = Rate utilization of inputs (%) 
CMD = depreciated consumption (m2, kg) 
IEU = total infrastructure used (m2, kg) 
EIDI = embodied energy in depreciation of infrastructure 
(MJ) 
VU = life cycle of tools, factory (h) 
TC = time cycle spent by tool, factory on manufacturing 
of a machine (h) 
EIDA = embodied energy in depreciated assets (MJ m-2, 
MJ kg-1) 
EII = embodied energy on industry (MJ) 
WF = water footprint of a product (m3) 
wf = the water footprint in each of the inputs (m3 unit-1) 
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