
248   September, 2018           AgricEngInt: CIGR Journal Open access at http://www.cigrjournal.org           Vol. 20, No. 2  

 
Three-dimensional dense reconstruction of plant or tree canopy 

based on stereo vision 
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Abstract: Three-dimensional (3D) reconstruction of the plant or tree canopy is an important step to measure canopy geometry, 
volume, and leaf cover density for applications in precision agriculture, robotic harvesting, or plant phenotype.  In this 
research, binocular stereo vision was used to recover the 3D information of the canopy.  A revised camera calibration method 
was provided to calibrate the cameras in the world coordinate system.  Only two images were used to realize a dense 
reconstruction.  These two images were firstly rectified to make sure the corresponding feature points in the left and right 
images were on the same horizontal line.  An efficient large-scale stereo matching (ELAS) algorithm was used to find the 
disparity map.  The plant or tree canopy was finally reconstructed based on these calibrated camera matrices and the disparity 
map through a triangulation method.  In this research, a series of laboratory experiments were conducted to validate the 3D 
reconstruction and verify the dimensional accuracy of the reconstructed croton plant’s large leaves.  The measurements of the 
reconstruction were compared to manual measurement showing that this reconstruction was metric reconstruction.  In addition, 
two reconstructions were completed based on a side view of the croton plant, and a top view of the croton plant.  This was 
followed by a series of field experiments under uncontrolled lighting conditions in a citrus grove to demonstrate the algorithm’s 
robustness in ambient conditions.  Two reconstructions were completed based on a top view of a branch of a mature citrus tree, 
and a side view of a small citrus tree.  All four reconstructions gave a good 3D visualization of the objects.  The outcomes of 
this research have demonstrated the potential for metric reconstruction of 3D tree canopy using a traditional stereo vision 
camera pair, which provides a low-cost alternative that can operate on normal daylight conditions as compared to other 
approaches using LIDAR or Kinect RGB-D cameras, or TOF cameras. 
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1  Introduction  

Canopy width and height, and total surface area are 
important measurements for precision agriculture. 
Destructive and non-destructive methods are available to 
do this type of measurement. Usually, destructive method 
involved manually removing each leaf and manually 
doing measurements. This job could be time consuming 
and tedious. Ultrasonic sensor, laser, Bumblebee stereo 
camera, Microsoft Kinect RGB-D camera, and 
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time-of-flight camera could be used to do 3D 
reconstruction of the target (Schumann et al., 2005; Song 
et al., 2011; Tumbo et al., 2002; Wang and Zhang, 2013; 
Wei and Salyan, 2004; Xie et al., 2010). Then the results 
of 3D reconstruction could be used in non-destructive 
methods. However, these sensors are expensive and have 
difficulty in daylight condition. Use two regular webcams 
as binocular stereo cameras to do 3D reconstruction is a 
more-cost effective way. Scharstein and Szeliski (2002) 
summarized and evaluated different dense two-frame 
stereo correspondence algorithms. Different optimization 
methods were compared, such as winner-take-all, graph 
cuts, dynamic programming, and cooperative algorithm. 
All of these methods worked only at pixel level. To 
obtain sub-pixel level accuracy and make the disparity 
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map look continuous, Birchfield and Tomasi (1998) 
calculated disparity by pixel-to-pixel stereo. 

To realize a real-time computation, Geiger et al. 
(2010) provided a method called Efficient Large-Scale 
Stereo (ELAS). This could be realized on a single CPU, 
without GPU (Graphics Processing Unit) technology. 
Andersen et al. (2005) investigated the use of stereo 
vision on 3D analysis of plants and estimation of 
geometric properties. Simulated annealing method was 
used to find the dense matches. Plant height and leaf area 
of 10 young wheat plants under laboratory conditions 
were tested.  

Song et al. (2007) created a surface model of a plant 
from images taken by stereo cameras. The images of the 
plants were taken from top view. Three different 
optimization methods for stereo matching were 
investigated: 1) Pixel-to-Pixel method, 2) Graph cut 
method, and 3) Multi-resolution method. The height of 
the plant calculated by these three methods was compared 
to manually measured height. Then the surface of the 
plant was modeled by using Self-Organizing Map 
(Kohonen et al., 1996). Song et al. (2011) provided a 
non-destructive leaf area measurement by using both 
stereo and ToF cameras. Two images from stereo 
cameras and one image from ToF camera were provided. 
For the experiment, one leaf was reconstructed and 
measured its area after segmented manually. And only 
four leaves of used 44 plants in the foreground were used 
to calculate the leaf area for testing. 

The objectives of this research were: 1). Use stereo 
vision to make a 3D metric reconstruction of the object,  
2) Confirm that the reconstruction shows the real size of 
the object.   

In this paper, a revised 3D reconstruction method 
using stereo vision was introduced. Camera matrices for 
left and right cameras were calibrated in the world 
coordinate system. An image rectification method based 
on projective transformation was introduced. And a 
reliable and equally spread feature matching method was 
used to detect and match the key points used in image 
rectification. Then a fast disparity calculation method 
called ELAS was used to find the dense matches between 
rectified left and right images. Finally, the scene was 
reconstructed through triangulation method. In 

experimental results and discussion section, four tests in 
the lab and two tests in the field were performed. 

2  Materials and methods 

In this paper, two Microsoft LiftCam Studio web 
cameras were used as the stereo camera. They were 
assembled inside a wooden box, as shown in Figure 1. 

 

 
a. Whole view 

  
b. Inside view 

Figure 1  Setup of stereo camera 
 

2.1  Stereo camera calibration 
Camera matrix is composed of intrinsic parameters 

and extrinsic parameters. The purpose of camera 
calibration is to pre-determine camera matrix. The most 
used calibration method was provided by Zhang (2000), a 
checkerboard was used as a pattern. At least five images 
of the checkerboard would be taken at different directions. 
The checkerboard was assumed to be located on z plane. 
Different checkerboard has its own z plane, so the 3D 
coordinates of the corners were known as well as 2D 
images. The intrinsic and extrinsic parameters would be 
solved by minimizing the errors between actual 3D points 
and estimated 3D points. Bouguet (2008) provided a 
Matlab toolbox to realize this calibration for single 
camera or stereo camera. Through this method, camera 
intrinsic and extrinsic parameters were obtained. 
However, the extrinsic parameters were not related to the 
same world coordinate system. A 3D world coordinate 
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system was built to solve this problem, which consisted 
of a 2D x-z coordinate system plotted on a A0 paper 
(Figure 2, this figure was extended from the original scale 
in -z direction), and a vertical checkerboard (Figure 3) 
provided the y coordinates. Each line in this 2D 
coordinate system was at 50mm spacing. The line marked 
with numbers from 1 to 15 was rotated –100 around Oorig 

from the middle line, and the line marked with numbers 
from 31 to 45 was rotated 100 around Oorig from the 
middle line. The size of the squares in the checkerboard is 
50 mm×50 mm.  

 
Figure 2  2D x-z coordinate system 

 
Figure 3  Vertical checkboard providing y coordinates 

 

Then the checkerboard was placed at different 
locations along the left, middle and right lines. The actual 
3D coordinates (Xact) for each corner at different 
locations could be solved. All 45 left images and 45 right 
images were taken by the stereo camera. The whole 
system is shown in Figure 4, which includes stereo 
cameras, checkerboard, and 2D x-z coordinate system. 

The 2D coordinates for corner could be obtained from 
these 2D images.  

 
Figure 4  The setup of camera calibration system 

 

A method called Gold Standard algorithm was used to 
solve camera matrix from 2D and 3D correspondences 
(Hartley and Zisserman, 2003). The left camera matrix 
and right camera matrix were: 
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The estimated 3D points (Xest) are calculated from the 
camera matrix and 2D projections through triangulation 
method (Harris and Stephens, 1998). The reconstruction 
error was calculated from Xact - Xest. The errors in X, Y, 
and Z directions are within 3 mm, 2 mm and 9 mm when 
the distance is less than 800 mm in Figure 5. The 
statistical analysis of errors is shown in Table 1. The 
mean error in x, y and z direction is 0.42 mm, 0.36 mm 
and 2.78 mm. 

Camera centers (c = –RT·t) for both left and right 
images were obtained from camera matrix. The left and 
right cameras are shown in the world coordinate system 
as Figure 6. The results of 3D reconstruction will be 
based on this system. 
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a. Error in x direction 

 
b. Error in y direction 

 
c. Error in z direction 

Figure 5  Errors in x, y and z direction 
 

Table 1  Statistical analysis of errors between estimated and 
actual corners 

Axis Mean absolute error (mm) Standard Deviation (mm) 

X 0.42 0.35 

Y 0.36 0.31 

Z 2.78 1.74 

 

 
Figure 6  World coordinate system with left and right cameras 

 

2.2  Feature points detection and matching 
Feature points detection and matching methods 

include corner detector, blob detector, Laplacian-of- 
Gaussian (LoG) detector, etc (Harris and Stephens, 1998; 
Lindeberg, 1993, 1998). Based on these researches, 
Harris Affine detector and Hessian Affine detector were 
introduced (Mikolajczyk and Schmid, 2002, 2004). 
Experiment results showed that Hessian Affine detector 
outperformed Harris Affine detector (Mikolajczyk et al., 
2005).  

Based on LoG detector (Lindeberg, 1998), Lowe 
(2004) presented a method called Scale Invariant Feature 
Transform (SIFT) to detect and match image features. 
Difference-of-Gaussian (DoG) was used to approximate 
the scale-normalized LoG. The determinant and trace of 
Hessian matrix of DoG were used to detect features. To 
speed up SIFT, SURF (Speeded Up Robust Features) was 
introduced (Bay, 2006; Bay et al., 2008). Experiment 
results showed that SIFT outperformed SURF in the 
match ratio and the total number of correct matches, but 
SURF produced more correct matches per time interval, 
meaning SURF was faster in computation (Bauer et al., 
2007).  

Based on the original SIFT was scale invariant (Lowe, 
2004), affine invariant SIFT (ASIFT) was introduced 
(Morel and Yu, 2009). ASIFT was invariant in the change 
of rotation, translation, zoom, and two angles defining the 
camera axis orientation. ASIFT can provide many more 
matches while took more time for computation than 
SIFT.  

Sometimes, the sparse feature points were not enough 
to provide good matches, especially when only salient 
features were detected and matched. For those images 
without salient features, the detected features would be 
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only shown in some regions of the images, not evenly 
distributed over the images. The feature points generated 
by using quasi-dense matching method (qdmatch) can 
handle this problem (Lhuillier and Quan, 2005). This 
method used SIFT as seeds, the features were re-sampled 
after seeds propagated to generate quasi-dense matches. 
For two images, the image was subdivided into small 
regions, and an affine transformation will be fitted 
between corresponding sub-regions, the center point in 
the left sub-region and the affine transformed point in the 
right image will be matched. 

To determine which method is the best among these 
six methods, Harris affine, Hessian affine, SIFT, ASIFT, 
SURF, and qdmatch, comparisons were made among the 
time to detect features, the detected number of feature 
points, the time to do the matching, the number of 
matches between two images, and the distribution of 
feature points over the whole image (Mikolajczyk and 
Schmid, 2002, 2004; Lowe, 2004; Morel and Yu, 2009; 
Bay, 2006; Lhuillier and Quan, 2005). The left image was 
divided into 8×8 square grids. The grid will be tagged as 
used if one or more feature points were in a grid. The 
feature points’ distribution was defined as: the number of 
used grids divided by the total number of grids.  

Three sets of images were compared, the first set of 
images was taken from a potted aloe plant, which only 
occupied a small portion of the whole image (Figure 7), 
the second set of images is taken from a potted banyan 
tree, which has small leaves (Figure 8), and the last set of 
images is taken from a potted croton plant, which has big 
leaves and salient features (Figure 9).  

The testing code for Harris affine and Hessian affine 
was given by Robotics Research Group (Robotics 

Research Group, 2007). The code of SIFT was provided 
by Lowe (2005). The ASIFT code was given by Yu and 
Morel (2011) . The SURF code was provided by Bay 

(2006). The quasi-dense matching code was provided by 
Xu (2004), and a revised version using GPU in this paper. 
The test was performed on Ubuntu 12.04 on Lenovo 
IdeaPad 500 with Intel Core i7-3630QM CPU and 
GeForce GT 650M GPU. The comparisons results of aloe 
plant, banyan tree and croton plant were shown in Table 2, 
Table 3 and Table 4 indicated that qdmatch has the best 
distribution, which followed by ASIFT. The computing 
time of qdmatch outperformed the one of ASIFT. 
 

 
a. Left image b. Right image 

Figure 7  Aloe plant  

 
a. Left image b. Right image 

Figure 8  Banyan tree 

 
a. Left image b. Right image 

Figure 9  Croton plant 
 

Table 2  Comparisons of different features of ‘aloe’ 

Methods t1 (s) num1 t2 (s) num2 t (s) propagation (s) resample (s) num Distribution 

Harris affine 0.27 279 0.27 349 0.03 / / 31 0.42% 

Hessian affine 0.17 344 0.16 298 0.03 / / 36 0.58% 

SIFT 1.25 3284 1.28 3384 0.23 / / 609 9.54% 

ASIFT 15.04 20281 16.70 25704 1.56 / / 2377 18.98% 

SURF 0.23 401 0.24 447 0.09 / / 100 2.00% 

qdmatch1 0.15 5705 0.07 4823 0.06 2.76 3.40 1624 31.08% 

Note: t1 is the time to get feature points in the left image; t2 is time to get feature points in the right image; num1 is the number of feature points in the left image; num2 
is the number of feature points in the right image; t is time to match the feature points between left and right images; propagation and resample time are only used in 
qdmatch method; num is the matched feature points between left and right images; distribution is used to measure how feature points are distributed among the image.   
1 This qdmatch used SiftGPU to do sparse matching, and then used GPU to do parallel computation on resampling. 
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Table 3  Comparisons of different features of ‘banyan’ 

Methods t1 (s) num1 t2 (s) num2 t (s) propagation (s) resample (s) num distribution 

Harris affine 0.36 1137 0.35 1028 0.08 / / 19 0.31% 

Hessian affine 0.28 1367 0.28 1379 0.09 / / 34 0.54% 

SIFT 1.17 2307 1.34 3467 0.17 / / 148 2.35% 

ASIFT 18.38 3118 18.35 31358 2.41 / / 663 6.73% 

SURF 0.39 808 0.38 752 0.16 / / 64 1.25% 

qdmatch1 0.10 3772 0.08 4812 0.06 3.32 3.82 1423 27.25% 

Note: t1 is the time to get feature points in the left image; t2 is time to get feature points in the right image; num1 is the number of feature points in the left image; num2 
is the number of feature points in the right image; t is time to match the feature points between left and right images; propagation and resample time are only used in 
qdmatch method; num is the matched feature points between left and right images; distribution is used to measure how feature points are distributed among the image. 1 

This qdmatch used SiftGPU to do sparse matching, and then used GPU to do parallel computation on resampling 
 

Table 4  Comparisons of different features of ‘croton’ 

Methods t1 (s) num1 t2 (s) num2 t (s) propagation (s) resample (s) num distribution 

Harris affine 0.36 989 0.36 1006 0.06 / / 110 1.73% 

Hessian affine 0.29 1131 0.32 1306 0.07 / / 155 2.63% 

SIFT 1.12 2092 1.11 2012 0.13 / / 451 6.88% 

ASIFT 16.63 26960 17.03 27972 2.06 / / 4386 22.88% 

SURF 0.49 1039 0.51 1055 0.22 / / 326 6.27% 

qdmatch1 0.11 2418 0.05 2500 0.02 2.03 3.30 1546 28.08% 

Note: t1 is the time to get feature points in the left image; t2 is time to get feature points in the right image; num1 is the number of feature points in the left image; num2 
is the number of feature points in the right image; t is time to match the feature points between left and right images; propagation and resample time are only used in 
qdmatch method; num is the matched feature points between left and right images; distribution is used to measure how feature points are distributed among the image.   
1 This qdmatch used SiftGPU to do sparse matching, and then used GPU to do parallel computation on resampling. 
 

2.3  Image rectification 
The two-view epipolar geometry is shown in Figure 

10 (Hartley and Zisserman, 2003). Here X  is the 3D 

point expressed in homogenous form: ( ,  ,  ,  1)TX X Y Z= , 

and x  is the 2D point expressed in homogenous form: 

( ,  ,  1)Tx x y= . LC  and RC  are camera centers of left 

and right cameras. The line defined by LC  and RC  is 

called baseline. Lx  and Rx  are the projections of the 

3D point X  on the left and right images, respectively. 

The plane defined by LC , RC , and X  is called 

epipolar plane. Le  and Re  are called epipole, where 

Le  is the projection of the optical center of the right 

camera in the left image, and Re  is the projection of the 

optical center of the left camera in the right image. Given 

a projection Lx  in the left image, the corresponding 

point Rx  in the right image will be constrained on an  

epipolar line, which is the intersection of epipolar plane 
and the right image plane. The similar definition works 

for the epipolar line of Rx  in the left image plane.  

When both the epipoles are at infinity, the epipolar 
lines will be parallel to the baseline in both left and right 

images. The procedure of changing epipolar lines to 
parallel positions is called image rectification, so the 
searching of correspondence is limited on a horizontal 
line, which is 1-D search. 

 
Figure 10  Two-view epipolar geometry (Harris and Stephens, 

1998) 
 

A compact algorithm (Fusiello, 2000) was introduced 
to do image rectification. The stereo cameras should be 
pre-calibrated. The camera matrices before rectification 
were called old cameras. The camera matrices after 
rectification were called new cameras. The camera 
centers and intrinsic parameters were the same. Only the 

rotation was changed, which was expressed as
1

2
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Another algorithm called projective rectification 
didn’t require pre-computed camera matrices (Hartley, 
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1999). Fundamental matrix (F) for two-view geometry 
was required. F could be solved through RANSAC 
algorithm (Hartley and Zisserman, 2003). The feature 
points used in RANSAC algorithm were from 
quasi-dense matching algorithm (Lhuillier and Quan, 
2005).  

The target of projective rectification was to find a 
projective transformation of an image which transferred 
the epipole to a point at infinity (1, 0, 0)T. The procedure 
was summarized as following: 

1. Compute the epipoles Le  and Re  for two images; 

2. Compute the projective transformation tR which 

maps the epipole Re  to the point at infinity; 

3. Find the corresponding projective transformation tL 
which minimizes the least squares distance 

, ,( , )L L i R R i
i

d t x t x∑ . 

The results are shown in Figure 11. Figure 11a) shows 
the original left image with three feature points on it and 
Figure 11b) shows the original right image with three 
unparallel epiplolar lines corresponding to the three 
feature points in left image. Figure 11c) shows the 
rectified left image with transformed three feature points. 
Figure 11d) shows the rectified right image with three 
corresponding epipolar lines, which are parallel after 
image rectification. 

 
a. Original left image b. Original right image 

 
c. Rectified left image d. Rectified right image 

Figure 11  The results of image rectification 
 

2.4  Disparity calculation 
Once images are rectified, the search for 

correspondences in the other image will be constrained on 

a horizontal line. For a point (x,y)T in the left image, the 
corresponding matched point in the right image is 
(x–d,y)T. The difference (d) between the x coordinate of a 
point in the left image and the matched point in the right 
image is called disparity, which is illustrated in Figure 12. 
For a feature point in the left image, the matched feature 
point in the right image will be located in the same 
horizontal line (the blue line). The matched feature point 
is the intersection of the blue and green line in the right 
image of Figure 12. 

 
Figure 12  Disparity for rectified images 

 

The Efficient Large-Scale Stereo matching algorithm 
is used to calculate the disparity for each pixel, which is 
also called dense matching (Geiger et al., 2010). A value 
which is less than 0 means non- matching in this 
algorithm, and it doesn’t require pre-knowledge of the 
largest disparity, therefore, the resulting disparity is at 
sub-pixel level. The most important property is its fast 
computation, which can be used for real-time matching.  
2.5  Matches in the original images 

After image rectification and disparity calculation, the 
matches between left and right images were calculated. 
These matches are now expressed in the coordinate 
system of rectified images. The matches should be 
mapped back to the coordinate system of the original 
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images in order to do 3D reconstruction. Inverse 
projective transformation will be applied both on the left 
and right rectified matches. 
2.6  Image segmentation 

In order to make a clear reconstruction of the target, 
the image was segmented to separate the object from the 
background. An interactive foreground extraction 
algorithm (GrabCut) using Iterated Graph Cuts (Rother et 
al., 2004) was provided. The matlab code (Irena and 
Aviad) was also available. 

By using this method, the user only needed to draw a 
rough region to mark the foreground, then the foreground 
would be separated from the background. 
2.7  3D reconstruction 

For a pinhole camera, the 2D projection x  and 3D 

point X  are related through camera matrix as x PX= . 

For the left image, we have L leftx P X= . And for right 

image, we have R rightx P X= . From Figure 10, we can 

see that the left camera center ( LC ) and the 2D projection 

( Lx ) form a line, and the right camera center ( RC ) and 

the 2D projection ( Rx ) form another line. These two lines 

would intersect at a common point ( X ), if there wasn’t 
noise or error. This 3D point can be solved through 
triangulation method (Hartley and Zisserman, 2003). 
2.8  Algorithm 

The algorithm for stereo dense reconstruction is 
summarized in Figure 13. 

 
Figure 13  The algorithm for stereo dense 3D reconstruction 

 

3  Results and discussion 

Test 1 (Laboratory Test on Potted Plant): In this test, 
a plant called croton is used to build the 3D 
reconstruction. Images of two separate leaves, a side view, 
and a top view are taken for reconstruction trials. The 
original stereo-view images are shown in Figure 14, 
where the images in the left column are taken from the 
left camera, and the images in the right column are taken 
from the right camera. The 1st leaf is shown in row 1, the 
2nd leaf in row 2, the side view in row 3, and the last row 
is the top view. 

 

  
a. Left and right images of leaf1 

  
b. Left and right images of leaf2 

 

   
c. Left and right images of side view 

 

  
d. Left and right images of top view 

Figure 14  The original left and right images for laboratory test 
 

Once the images are taken, image reconstructions are 
generated using the steps described in the algorithm 
section (Figure 13). The results of these steps are shown 
in Figure 15, where the rectified left and right images are 
shown in the first and the second columns, and the 
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reconstructions are shown in the last column of Figure 15. 
There are some holes in the leaves because of some 

mismatches, but overall it has a reproduction of original 
3D plant.  

 

     
a. Leaf1 

     
b. Leaf2 

     
c. Side view 

     
d. Top view 

Figure 15  Rectified left image, rectified right image, and reconstructed 3D result for leaf1, leaf2, side view, and top view 
 

Test2 (Field Test on Citrus Tree): In this experiment, 
image scenes are taken from citrus trees in the field. 
During this stage of the development process, it found 
that the web-cameras has a limited field of view and that 
it will be best to limit the target scene. The first pair of 
images are taken from a branch segment of a mature 
citrus tree. The original left and right camera images are 
shown in Figure 16, and the well reconstructed of leaves 
are shown in Figure 17.  

 

  
a. Original left image               b. Original right image 

Figure 16  A branch of a mature citrus tree 
 

Then a stereo pair of images from the side view of a 
small citrus tree is taken. The original images are shown 
in Figure 18, then these two images are rectified and the 

scene is reconstructed. The 3D well reconstructed result 
of the small citrus tree is shown in Figure 19.  

 

 
Figure 17  3D reconstructed citrus branch 

 

To measure the estimated width and length of croton 
leaf from the 3D reconstructed result, Experiments were 
conducted on two marked croton leaves (Figure 20). 
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a. Original left image b. Original right image 
 

Figure 18  A small citrus tree in the field 
 

 
Figure 19  3D reconstructed small citrus tree 

 

 
a. Left image of leaf1   b. Right image of leaf1 

 
c. Left image of leaf2 d. Right image of leaf2 

 

Figure 20  Left and right images of two experimental leaves 
 

After 3D reconstruction, the width and length of these 
two leaves can be measured in Meshlab (a free source 
software, available at http://meshlab.sourceforge.net/). 
The width and length of leaf1 is 94.46 mm and    
156.24 mm, the width and length of leaf2 is 87.04 mm 

and 144.00 mm (Figure 21). The actual width and length 
are measured using a plastic ruler, and are shown in 
Figure 22. The actual width and length of leaf1 is    
97.0 mm and 160.0 mm, the actual width and length of 
leaf2 is 86.0 mm and 145.0 mm, which indicated that 
results of the 3D reconstruction and the hand 
measurement are very similar. When comparing these 
results with other reconstruction methods, this approach 
is identified as a metric reconstruction method (Kohonen 
et al., 1996; Schumann and Zaman, 2005). 

The results from two experiments indicated that the 
objects were well reconstructed using only two images. 
One of the strengths of a good feature matching algorithm 
is that, a good basis for dense matching. The employed 
algorithm called quasi-dense matching (Lhuillier and 
Quan, 2005), which provides an evenly distributed set of 
feature points, comparing favorably with SIFT, a popular 
and robust sparse feature matching algorithm (Lowe, 
2004).  

The limitations of this approach are that stereo vision 
is insufficient, of itself, to insure a complete 3D 
reconstruction of the plant. Leaf occlusions and smooth 
features may cause inaccurate disparity, which limits 
feature point selection, it indicated that some partial 
leaves were reconstructed due to occlusion in the third 
row (side view of croton) of Figure 15. In addition, in the 
last row (top view of croton) of Figure 15, one of the 
rightmost leaves wasn’t accurately reconstructed, may 
because there are an insufficient number of strong 
features found during disparity calculation to insure an 
accurate 3D reconstruction. 
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a. Measured width of leaf1 

 
  b. Measured length of leaf1 

 
c. Measured width of leaf2 

 
  d. Measured length of leaf2 

Figure 21  Measured width and length of two leaves in Meshlab 

 
a. The width of leaf1 is 97.0 mm 

 
  b. The length of leaf1 is 160.0 mm  

 
c. The width of leaf2 is 86.0 mm 

 
d. tThe length of leaf2 is 145.0 mm 

Figure 22  The actual width and length of leaf1 and leaf2 
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4  Summary and conclusions 

In this research, a series of laboratory experiments 
were conducted to validate the 3D reconstruction and 
verify the dimensional accuracy of the reconstructed 
croton plant’s large leaves. The comparison of 
measurements from the reconstruction and manual 
measurement showing that this reconstruction was metric 
reconstruction. In addition, two reconstructions were 
completed based on a side view of the croton plant and a 
top view of the croton plant, this was followed by a series 
of field experiments under uncontrolled lighting 
conditions in a citrus grove to demonstrate the 
algorithm’s robustness in ambient conditions. Then two 
reconstructions were completed based on a top view of a 
branch from a mature citrus tree and a side view of a 
small citrus tree. The results show that all four 
reconstructions gave a good 3D visualization of the 
objects. 

In this research, a 3D reconstruction method based on 
two-view dense stereo vision was introduced, and a 
camera calibration method based on the world coordinate 
system was utilized, which is applying the individual 
camera matrix to 3D reconstruction, the results could be 
projected onto and then measured in the same coordinate 
system. An image rectification method employing 
projective transformation was used with a quasi-dense 
matching algorithm to find evenly distributed feature 
points. A fast disparity calculation method was used to 
find dense matched features so that the canopy could be 
reconstructed through a triangulation algorithm. The final 
reconstructed scene was a metric reconstruction, which 
represented the actual dimension of the object. 
Three-dimensional reconstruction based on stereo vision 
is a kind of passive reconstruction. In some regions of the 
target image, insufficient features were found using stereo 
matching. This may have been due to leaf occlusion, 
highly saturated reflection, as well as other reasons.  

3D reconstruction of plant or tree canopy is an 
important step to measure canopy geometry, volume, and 
leaf cover density for applications in precision agriculture, 
robotic harvesting, or plant phenotype. The outcomes of 
this research have demonstrated the potential for metric 

reconstruction of 3D tree canopy using a traditional stereo 
vision camera pair, which provides a lower cost 
alternative that can operate during normal daylight 
conditions as compared to other approaches using LIDAR, 
Kinect RGB-D cameras, or TOF cameras. This approach 
can be adopted for most user applications, and has the 
potential to generate full view reconstruction using a 
multi-perspective viewing approach.   

In future work, images of multiple views could be 
taken and then merged together to form a full 360 degree 
reconstruction, this approach might minimize the 
negative influence of occlusions. 
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