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Abstract: The application of conservation tillage in recent years was due to the changing of attitudes from conventional 
agriculture to sustainable agriculture.  Soil and water quality have been affected directly by tillage and planting practices.  
Due to the different advantages of conservation tillage on soil, water and crop quality, these methods have been adopted by 
scientists and farmers quickly.  These advantages were consist of improving soil and water quality, prevention of wind and 
water erosion and also, reducing soil surface evaporation , greenhouse gases and fuel consumption.  By the definition, in 
conservation tillage, more than 30% of the soil surface covered by the left crop residues.  Generally, line-transect method has 
been used to estimation of crop residue cover (CRC).  In spite of the deriving accurate CRC data by line–transect method, the 
application of this method in large areas is extremely time consuming and costly.  Therefore, researchers found that the 
percentage of CRC can be estimated accurately by processing of satellite remote sensing data.  Tillage indices and textural 
features are two most applicable approaches in remote sensing CRC assessment.  The aim of this study was reviewing the 
conclusions of different researchers and assessment of remote sensing methods in order to finding the best method for 
estimating the CRC using satellite data. We found that hyper-spectral cellulose absorption index (CAI) has been the best fit 
with CRC.  Multi-spectral indices like normalized difference tillage index (NDTI) and simple tillage index (STI) also 
demonstrated a good fit with CRC. 
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1  Introduction  

Due to the rapid development of machine technology 
and necessity of maximum production conservation of 
soil, water and natural resources is a serious challenge. 
Since 1994, the topic of sustainable agriculture has been 
discussed by various researchers. The new agricultural 
approach is based on sustainable agriculture. Many 
definitions of sustainable agriculture have been expressed 
by various institutions, organizations and researchers. 
Finally, the U. S. congress in the 1990s provided a 
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comprehensive definition that sustainable agriculture is 
an integrated system of plant and animal production 
practices which, satisfy human food and fiber needs, 
enhance environmental quality and the natural resource 
base upon which the agricultural economy depends, and 
enhance the quality of life for farmers and society as a 
whole. One of the topics of sustainable agriculture is 
different tillage methods which severely effect on soil 
properties and water consumption. Therefore, 
conservation tillage was introduced as an alternative to 
conventional tillage. According to the conservation 
Technology Information Center (CTIC) in a conservation 
tillage system more than 30 percent of crop residue must 
be left on the soil surface after tillage and planting 
practices. In order to estimation of crop residue cover 
(CRC) different methods have been developed by many 
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researchers but in recent years, remote sensing methods is 
taken into consideration due to the significant reduction 
in time and labor costs. In this study, we aim to a) review 
the advantages of conservation tillage, b) study of the 
different CRC detection methods and c) concentrate on 
remote sensing methods in particular. 

2  Advantages of conservation tillage 

Saving water at soil in semi-arid regions is very 
important in rain fed cultivations. Generally, at a place 
that saturated of water vapor, crop residues are able to 
absorb water about of 80%-90% of its weight, while clay 
soils absorb 15%-20% at the same conditions (Arshad 
and Azooz, 1996).  

Existence of the crop residue on the soil surface also 
reduces soil compaction about two-thirds compared to the 
uncovered soil. Moreover, at the depth of 25-30 cm, the 
bulk density of plowed soil is less than unplowed soil 
(Osunbitan et al., 2005). Wang et al. (2012) demonstrated 
that conservation tillage (no tillage and reduced tillage) 
increases the bulk density on top of the soil surface 
compared to the conventional tillage, but it reduces it in 
subsurface layers.  

Residue cover on the soil surface also increases soil 
permeability about 25%-50% compared to the 
conventional tillage methods (Daniel et al., 1999).  

One of the problems related to farming at arid and 
semi-arid regions is SOM deficiency. Studies showed 
annually, 5-7 million hectares of agricultural fields 
lacked their fertility (Steiner et al, 1998). Bai et al. 
(2008) found that over 23 years about one fifth of 
agricultural fields lacked their fertility. Soil erosion in 
the conventional farming system is three times more 
than conservation tillage (Montgomery, 2007). Soil 
biological, physical and chemical attributes depended to 
soil organic carbons (Chan et al., 2008). Crop residue 
can improve content of SOM and soil nitrogen in a long 
term cultivation (Cassman et al., 1996). Anyanzwa et al. 
(2010) investigated effects of conservation tillage, CRC 
and cultivation systems on SOM at corn-bean 
cultivation system. They found that crop residue has 
been the most increasing on the content of SOM and soil 
nitrogen. 

3  CRC measurement methods 

There are different methods to estimation of the crop 
residue consist of computation method, line-transect 
method, photo comparison and remote sensing.  
3.1  Crop residue estimation using computation 
method 

This is a simple and not precise method to crop 
residue estimation without the presence of the farm. 
Al-Kaisi et al. (2002) developed this method for corn and 
soybean. Table 1 showed remained residues on the soil 
surface after practices. To reach to final crop residue, we 
should multiply remained residues of practices. 

 

Table 1  Remained crop residue after different practices 
(Al-Kaisi et al., 2002) 

Practice Corn, % Soybean, % 

After harvest 90-95 80-90 

Winter decomposition 80-90 70-80 

plow 02- 07 00-02 

Chisel (twisted shank) 40-50 10-20 

Disk (offset and deep) 25-40 10-20 

Para plow 65-75 35-45 

Chisel (straight shank) 50-60 30-40 

Disk (tandem, shallow) 40-70 25-35 

Anhydrous applicator 75-85 45-55 

Field cultivator 80-90 55-65 

Plant 80-90 80-90 

Till-plant 55-65 55-65 
 

3.2  Line-transect method 
Line transect is a simple and precise method to CRC 

estimation. The equipment for this method is a 30 m 
measuring tape which can be easily divided into 100 parts 
with 30 cm intervals (Figure 1). At each location, the tape 
was stretched diagonally across the rows and the number 
of markings intersecting the crop residue counted. This 
counting was repeated but in the perpendicular direction 
of the first state. Average counted marks in a location 
indicated the percentage of CRC (Al-Kaisi et al., 2002). 
3.3  Photo comparison method 

Photos can provide an estimate by comparing fields to 
percentages in photos that show a known percentage of 
crop residue. Perspectives from angles are misleading, so 
look straight down when comparing photos (Figure 2). 
Accuracy of this method is less than line transect  
method. 
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Figure 1  The schematic of line-transect method on wheat residue 

cover 
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Figure 2  Wheat CRC estimation using photo comparison 

3.4  Remote sensing from satellites and aircraft 
Primary efforts to use of remote sensing to CRC 

mapping refers to 1975. Thereafter possibility of remote 
sensing crop residue estimation has been investigated in 
laboratory and field scales. Since spectral reflectance of 
soil and residue are similar at the vision and near infrared 
(400-1900 nm) range (Figure 3), chemical absorption 
property recognition is obvious at the range of shortwave 
infrared (1900-2500) (Serbin et al., 2009a).  

 
Figure 3  Examples of field spectra for green vegetation, soil, and 

corn residue. Locations of Landsat-7 TM, advanced spaceborne 
thermal emission and reflection  (ASTER), and cellulose 

absorption index (CAI) bands are shown (Dauthery et al., 2005) 
 

Spectral reflectance is 400-1000 nm for vegetation 
and it is not appropriate for soil and residue recognition 
(Dauthery et al., 1997). Soil and crop residue are similar 
at the reflectance point of view and the only difference 
between them is in visible and near infrared wavelength 
range that this made difficult for residue recognition from 
the soil (Biard and Baret, 1997; Streck et al., 2002). Soil 
spectral properties are a function of multiple factors, 
including mineralogy and composition, water content, 
grain size, structure, and soil organic matter. Crop residue 
and soil can be very similar spectral below 1,920 nm 
(Figure 3), as shown by Daughtry et al. (2005), except for 
an absorption feature around 1,440 nm shared with 
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vegetation and atmospheric water vapor. However, above 
1,920 nm, the O-H bending and C-O stretches 
combination exists at 2,101 nm for cellulose and other 
sugars, which is not found in common soil minerals and 
provides a clear contrast between soils and crop residues 
(Serbin et al., 2009b).     
3.4.1  Tillage indices 

Tillage indices are including multi-spectral and 
hyper-spectral. Technically speaking, this classification 
depends on the type of passive sensor that installed on the 
platform of the imagery. The both sensors can produce 
spectral images with several bands (available 
multispectral and hyper-spectral sensors have 7-12 and 
220-250 bands, respectively) at visible, near infrared, 
shortwave infrared and long wave infrared (thermal). 
Table 2 shows tillage indices in order to detection the 
crop residue from the soil and vegetation.  

 

Table 2  Satellite indices in order to residue cover crop 
identifying 

Sensor Tillage 
indices Formula Description 

AVIRIS 
Hyperion CAI 100×[0.5(R2030+R2210)–R2100] 

R2030 and R2210 are the 
reflectance of the 
shoulders at 2030 nm and 
2210 nm, R2100 is at the 
center of the absorption

ASTER LCA 
SINDRI 

100(2×B6–B5–B8) 
(B6–B7)/(B6+B7) 

B5, B6, B7, B8: ASTER 
shortwave infrared bands 
5, 6, 7, and 8 

Landsat 
TM, 

ETM+ 
and OLI 

STI 
NDTI 
MCRC 
NDI5 
NDI7 

B5/B7 
(B5–B7)/(B5+B7) 
(B5–B2)/(B5+B2) 
(B4–B5)/(B4+B5) 
(B4–B7)/(B4+B7) 

B2, B4, B5, B7: Landsat 
bands 2, 4, 5, and 7 

ALI 
MODIS NDTI (B5–B7)/(B5+B7) B5 and B7 

 

In order to the estimation of CRC linear regression of 
the model were employed which are based on the 
multi-spectral and hyper-spectral tillage index.  consist 
of normalized difference tillage index (NDTI) (Daugthry, 
2001), normalized difference senescent vegetation index 
(NDSVI) (Serbin et al., 2008) and normalized difference 
vegetation index (NDVI) are also remote sensing 
techniques for vegetation analysis.  

Landsat based indices could be used successfully in 
the diagnosis residue, while, these indices were less 
effective in areas with different soils (Daugthry et al., 
2005), due to weak dissimilarity between soil and residue 
and that, these indices were strongly influenced by green 
vegetation (Gill and Phinn, 2008). The results of Aguilar 

et al (2012) also indicated that hyper-spectral data are 
able to estimate CRC more accurately than multi-spectral 
data. CAI and shortwave infrared normalized difference 
residue index (SINDRI) are two spectral index that 
provided acceptable results of detection of the residue. 
Serbin et al. (2009b) found that due to the soils are 
content of mineral materials, CAI hyper-spectral index is 
able to detect the residue from the soil accurately, but 
excessive accumulation of minerals in the soil can lead to 
errors in the detection of residues. Eskandari et al. (2016) 
studied the relation between CRC and tillage indices 
through hyper-spectral spectrometer imagery. They 
investigated four tillage indices consist of CAI, NDTI, 
SINDRI and lignin-cellulose absorption (LCA) index. 
The results showed that CAI had a linear relationship 
with CRC, which the comparative intensity of cellulose 
and lignin absorption features near 2100 nm could be 
measured by it.  

There was another index based on Landsat spectrum 
wavelength known as minimum NDTI which evaluated at 
several areas and different times in order to CRC 
estimation. Results showed that this index was capable to 
estimate CRC. Accuracy of CRC estimation with use of 
minNDTI almost was equal to CAI results (Zheng et al., 
2012). At dry residue spectral reflectance, absorption 
features near 2100 nm is obvious entirely that these 
features could not be seen about the soil (Dauthry et al., 
2004; Nagler et al., 2000).  

Different remote sensing methods have been 
employed for quantification of crop residue consist of the 
CAI, NDTI, SINDRI and LCA. Serbin et al. (2008) 
designed an experiment to compare these indices to detect 
CRC that led to the following conclusions. CAI had the 
highest R2 and lowest Root Mean Square Error (RMSE) 
of any of the indices and it also had the highest accuracy 
for separating residue classes. However, NDTI was the 
best for Landsat-TM based indices, but was not as 
effective for residue cover estimation as CAI or LCA. 

In order to validate the accuracy of results, the results 
of each method validated against the ground control data 
which were collected by GPS in field operation.  
3.4.2  Textural features analysis 

Textural features analysis can apply to textural feature 
extraction through processing techniques. An image 
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texture is a set of metrics calculated in image processing 
designed to quantify the perceived texture of an image. 
Image texture showed the information about the spatial 
arrangement of color or intensities in an image or selected 
region of an image (Shapiro and Stockman, 2001).  

Textural features analysis accomplished by three main 
methods, including Wavelet Fourier based, Variogram 
based and gray level co-occurrence matrix (GLCM) 
based that GLCM most widely used for structural 
vegetation parameters (Wood et al., 2012; Blaschke et al., 

2014). The co-occurrence matrix captures numerical 
features of a texture using spatial relations of similar gray 
tones (Haralick and Shanmugam, 1973; Feizizadeh and 
Blaschke, 2013).  

Numerical features computed from the co-occurrence 
matrix can be used to represent, compare, and classify 
textures. In order to textural feature analysis using GLCM, 
first order statistics and second order statistics are applied 
(Wood et al., 2012). To calculate second order statistics 
(Table 3) pixel values come in the form of a GLCM matrix.  

 

Table 3  Textural features computed from a GLCM matrix with the statistic formula 

Index Formula Description 

Contrast 
1

2
,

, 0
( )

N

i j
i j

P i j
−

=

−∑  A measure of the amount of local variation in pixel values among neighboring pixels. It is
the opposite of homogeneity. 

Correlation 
1

, 2 2
, 0

( )( )
( )( )

N
i i

i j
i j i j

i μ j μP
σ σ

−

=

⎡ ⎤− −⎢ ⎥
⎢ ⎥
⎣ ⎦

∑  Linear dependency of pixel values on those of neighboring pixels. 

Entropy 
1

, ,
, 0

( ln )
N

i j i j
i j

P P
−

=

−∑  Shannon-diversity. High when the pixel values of the GLCM have varying values. 
Opposite of angular second moment. 

Standard deviation 2
i iσ σ=  

Gray level standard deviation of pixels in the GLCM window. In order to calculate of 
GLCM’s standard deviation, in the first step GLCM variance was calculated as following

12 2 2 2
,, 0

( ) ( )N
i i j i j ii j
σ P i μ σ j μ−

=
= − = −∑ . 

Mean 
1

,
, 0

( )
N

i i j
i j

μ i P
−

=

= ∑  Gray level average in the GLCM window. 

Dissimilarity 
1

0 1 1
( , )

N N N

n i j
n p i j

−

= = =

⎧ ⎫⎪ ⎪
⎨ ⎬
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∑ ∑∑  Similar to contrast and inversely related to homogeneity. 

Homogeneity 2
1 ( , )

1 ( )i j
p i j

i j+ −∑ ∑  A measure of homogenous pixel values across an image. 

Angular second moment 2{ ( , )}
i j

p i j∑ ∑  High when the GLCM is locally homogenous. Similar to Homogeneity. 
 

To identify CRC using textural features method, very 
few studies has been accomplished. Jin et al. (2015) 
studied correlation between textural features and CRC 
using Landsat images. They found that all eight textural 
features indicators in this study, including mean, variance, 
homogeneity, contrast, dissimilarity, entropy, correlation 
and second moment have correlation with CRC, but the 
strongest correlation was belong to mean band 3 with R2 

of 0.71.  

4  Conclusions and future 

Conservation agricultural systems due to improving 
soil and water quality, increasing soil organic carbon and 
reducing wind and water erosion, evaporation, soil 
surface temperature greenhouse gases and fuel 
consumption have been considered seriously by scientists, 

experts and farmers.  Remote sensing methods are 
non-destructive methods that can use satellite data to 
provide a lot of information about different situations that 
can be applied in the detection of soil and crop conditions. 
In recent years, satellite data widely used in agricultural 
experiments and activities. According to the obtained 
results from the estimation of the residues using 
hyper-spectral CAI and multi-spectral NDTI, it is 
expected that in the future, the method of remote sensing 
replaces with other methods for estimation of CRC 
especially in large areas. Nowadays, landsat8 and sentinel 
2a produce comprehensive coverage images in fixed time 
periods. Also, these images are up to date and free for 
civilization and research activities. Results of this study 
are important for identifying the most effective remote 
sensing based indices for CRC analysis. Results are also 
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important for developing new insight in this field of 
sciences by means of applying new methods, comparing 
results and identifying the most effective techniques.       
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