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Abstract: Applying solar collectors is a popular tool to harness solar energy.  In this research, a flat plate solar air collector 
with two types of glass cover, including slatted and flat, was investigated under direct solar radiation.  The study was 
conducted to evaluate the capability of perceptron neural network for modeling and predicting the efficiency of heat collectors 
by input parameters, input fluid mass flow, inlet and outlet air temperature from collector, temperature of the absorber, its 
thickness and porosity, and also solar energy.  Values obtained from tests were compared with the predicted values of the 
neural network.  According to obtained coefficient of determination, for flat (0.98) and slatted (0.99) glass cover, it has been 
concluded that using artificial neural networks is an accurate method to predict the thermal performance of solar air collectors. 
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1  Introduction  

Nowadays due to high energy consumption and 
diminishing of the supplying resources, it has been 
expanded to use sustainable energies effectively 
especially solar energy. Applying solar collectors is one 
of the most popular methods for harnessing of solar 
energy. Solar air collector is simple in construction and 
maintenance. Lack of corrosion in air path, no air leakage, 
absorber conductivity, non-icing fluid are among the 
advantages of solar air collector to the liquid-type ones. 
The main problem of these collectors is low thermal 
efficiency that is because of the low heat transfer 

coefficient between the absorber and the air (Mohamad, 
1997). So far, two types of absorber have been used in 

solar air collectors’ porous absorber and nonporous one. 
The main disadvantage of nonporous absorber is 
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diminution of complete heat transfer between absorber 
and fluid that leads to the low thermal efficiency because 
the convective heat transfer coefficient between air and 
the absorber plate is quite low; therefore, the temperature 
of the absorber plate would be high and radiation loss is 
quite large. These absorber plates are suitable for natural 
or private flow collectors, as it provides a low pressure 
drop and does not prevent the fluid moving (Duffie and 
Beckman, 1991). 

In porous type, absorbing of the solar radiant heat and 
the heat convection between air and the absorber can 
effectively strengthen the air that passes through the 
collector absorber. It improves the quality of heat transfer 
coefficient and thermal efficiency. Also due to the cool 
air on the absorber plate, air passing losses from 
convection and radiation under a suction reduce heat 
(Fechner and Bucek, 1998). 

Porous absorber plates have been studied in different 
studies such as absorber made of aluminum foil cut 
(Chiou et al., 1965), wire nets (Beckman, 1968; Hamid 
and Beckman, 1971), retail glass (Collier, 1979), pages 
made of black synthetic fiber (Bansal et al., 1983), and 
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thick black cotton fabric (Zomorodian et al., 2001). Due 
to absorption and penetration depth of solar radiation the 
benefit of porous absorber is attributed to the lower 
thermal energy dissipation to environment (Duffie and 
Beckman, 1991). 

Whilier (1964), studying solar air collector, found that 
the use of a transparent coating layer is necessary to 
increase the economic efficiency of the collector. 

In a study conducted by Zomorodian et al. (2001), a 
thick black cotton fabric absorber and slatted glass cover 
with vertical distance between the slatted glass sheets 
(transpired cover) for 3, 5, 7 and 9 mm were used to 
reduce heat loss from the upper part of collector and to 
increase the thermal efficiency. 

Sotudeh (2002) studied the effect of wind direction on 
thermal performance; it was shown that the thermal 
efficiency raised when the wind was perpendicular to the 
direction of grooves and the lowest one occurred when 
the wind was blowing along the grooves. The effect of 
the wind direction change was about 10 to 20 percent on 
thermal efficiency. 

In another research, the FLUENT software was used 
to evaluate the numerical grid plates with heat transfer in 
parallel flow to the suction, and it was determined that 
thermal performance was dependent on the six 
dimensionless parameters. One of these dimension groups 
was x = t/D, the ratio of thickness to hole diameter. 
Increasing of the parameter raised the heat transfer 
surface area within the hole thus more heat transfer into 
the absorbing plate and resulted an increase in the thermal 
efficiency of the absorber (Razavikhosroshahi, 2003). 

In a research by Zomorodian and Barati (2010), three 
perforated aluminum sheets were used with different 
porosities and thickness of 1.25 mm to enhance the heat 
transfer coefficient between the absorber and the air. To 
reduce heat losses from the upper surface, we used one 
layer of plain glass sheet cover. The results of the study 
introduced two better porosities (0.0177) & (0.0314) of 
absorber sheets for better thermal efficiencies under 
different operating conditions. 

An artificial neural network (ANN) was trained to 
predict the useful energy extracted from domestic 
thermosyphon solar water heating systems and raise the 
temperature of stored water. The results showed that 

proper training of a neural network could be used to 
predict the performance of these systems under any 
weather conditions (Kalogirou et al., 1999a). 

Two types of air solar collector with two different 
absorbers were used to forecast the complex nonlinear 
relationship between thermal performance and input 
parameters. The comparison between the predicted values 
and test data inferred that Levenberg-Marquardt (LM) 
model has the ability to understand the relationship 
between inputs and outputs. Also, the statistical error 
analysis suggested that LM model with three neurons in 
the hidden layer is optimal because the maximum 
coefficient of determination 0.9971 & 0.9985 and 
minimum root mean squared error (RMSE) 0.0418 & 
0.0262 for two types of collectors was obtained that is 
satisfactory (Benli, 2013). 

Sharma et al. (2012) had an overview about the 
application of artificial intelligence techniques in solar 
energy systems. For example, the use of ANN to predict 
the global solar radiation in the areas where direct 
measurement was not applicable (Alawi and Hinai, 1998). 
They predict on a daily basis the useful energy inferred 
from a complete solar system (Qout) and the temperature 
rise of the water in the storage tank (Tdmax) (Kalogirou 
et al., 1999b). Furthermore, they have used long term 
performance anticipation of domestic hot water systems 
with good precision (Kalogirou and Panteliou, 2000). 

In other applications, the building was evaluated 
through simulation by ANN and it was combining with 
genetic algorithm to optimize thermal comfort and energy 
consumption in residential buildings (Magnier and 
Haghighat, 2010). And we used fuzzy logic to control the 
rolling drive performance as a regulator to ensure and 
guarantee the expected intensity to develop and design a 
fuzzy controller to control the rolling position with 
respect to solar radiation available (Lah et al., 2006), 
which are instances of ANN solar systems application in 
the study. In summary, ANN has been becoming 
increasingly popular in thermal engineering applications 
recently. Some studies have been reported about using 
ANN in thermal applications (Kalogirou, 2006; Mellita 

and Kalogirou, 2008; Sözen et al., 2005; Yang et al., 

2003). 
As a result, it can be said that artificial intelligence  
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techniques are suitable for significant improvements in 
efficiency and they predict the optimal set of operating 
parameters for solar energy systems. In these systems, 
there are many areas for using a combination of these 
methods with other optimization techniques to improve 
system performance. In addition, solar energy systems are 
used to save the Life Cycle (LCS) and Life Cycle 
Assessment (LCA). After running this way and training, 
the ANN model is capable of predicting satisfactory 
results for unknown data. 

The objectives of the research are designing, building 
and evaluating a solar collector with porous absorber, 
slatted and flat glass cover and the effect of glass cover 
type and input parameters (input fluid mass flow, inlet 
and outlet air temperature from collector, temperature of 
the absorber, thickness and porosity of it and also solar 
energy) on thermal efficiency of the collector, and also 
the investigation of the efficiency by using the neural 
network models. 

2  Materials and methods 

In this study, two types of transpired solar air 
collector were tested and the effect of design parameters 
on the thermal efficiency was evaluated by the neural 
network. The tests were conducted in three replications 
on very clear sky days during 11 to 13 o’clock (average 
solar energy was reported to be 1040 W m-2 during the 
interval).   
2.1  The solar air collectors 

Collectors were evaluated with ANN in this study, 
shown in Figures 1 and 2 (Zomorodian and Barati, 2010), 
and as it is evident from figures, two porosity, σ1= 0.0314 
& σ2=0.0177, was considered for porous aluminum 
absorber sheets to be considered as the effect of porosity 
on output, also dimensions of 110×75 and thickness of 
2.5 mm for absorber sheets was considered (2 mm pore 
diameter and 1 cm distance, σ1= 0.0314, and the other 
with 3mm diameter and 2 cm distance, σ2=0.0177, has 
been used). The arrangement of poles on both sides was 
in square shape. In Figure 1, each page’s porosity is 
obtained from the following equation (Arulanandam, 
1995). 

2

24
hole

plate

A πDσ
A P

= =                 (1) 

where, D is hole diameter (m) and P is holes iteration 
step. 

 
Figure 1  Absorber plates and their porosities 

 

2.1.1  Characteristics of measuring systems 
Smart temperature sensors (SMT-160 ±0.5°C) were 

used for measuring of the temperature in different 
locations of the absorber, inlet and exhaust air. 

 
a. Flat glass cover 

 
b. Slatted glass cover  

Figure 2  An overview sketch of the solar collector 
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The air flow velocity which is one of the important 
parameters to calculate the thermal efficiency of the solar 
collector, was measured using an anemometer (Lutron 
(YK-2001A), Taiwan). The air flow velocity was 
converted to air flow rate by the following equation: 

2 2
1 22 3

kg m kg(m ) / (m )
m s s m

m V A ρ A⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = ∗ ∗⎜ ⎟ ⎜ ⎟ ⎜ ⎟⋅⎝ ⎠ ⎝ ⎠ ⎝ ⎠
  (2) 

where, m  is air mass flux per unit area of collector   

(kg s-1 m-2);  is inlet air speed (m s-1); A1 is air crossing 

area at the location of the anemometer (m2); A2 is 

evaluated surface of absorber (m2) and  is air Inlet 

density (kg m-3). 
A constant speed centrifugal fan (Parma, 50 Hz,  

1400 rpm, Italy) was used as an air flow source connected 
to an inverter (N50-015SF, 1.5 KW, Korea) to change the 
air flow rate. Besides, a silicon type pyranometer (Cassela, 
0-2000 ±1W, UK) was used to measure solar radiation 

intensity. 
2.1.2  Experimental procedure 

The test rig was located on Faculty of Agriculture at 
Shiraz University. The inclination of collector and 
pyranometer by considering Equation (3) and according 
to 30-degree latitude of Shiraz, was set on 45 degrees 
towards the south (Duffie and Beckman, 1991),  

α = local altitude + 15              (3) 

To calculate the thermal efficiency of collector, 
Equation (4) was applied (Biondi et al., 1988), 

0( )i
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where, m  is air mass flux per unit area of collector   

(kg s-1 m-2); Cp is air specific heat capacity (J kg-1 °C-1), 
T0 is outlet air temperature (°C); Ti is inlet air temperature 
(°C) and GT is the radiation flux on the collector (W m-2). 
2.2  ANN: a smart model 

The main preference of ANN compared to other 
specialist systems is its speed, easiness and ability of 
modeling a multivariable problem to solve complex 
relationships between the variables and can elicit the 
nonlinear relationships through training data (Mellita and 
Kalogirou, 2008). 

The data were divided randomly into three categories, 
80% were given as training set, 10% as validation set and 
10% as test Set (all data for a collector is 72). To control 

the number of training iterations and prevent overtraining 
problem, we used the validation dataset. In addition, we 
randomly choose 10% of the whole data set as the 
validation dataset. The training continued until the error 
of the validation dataset reached the minimum and the 
validation error failed to decrease for 5 iterations.  

For modeling, the Multilayer Perceptron Neural 
Network (MLP) was used; this type of neural network 
produces output vector via the input vector, as showed 
Figure 3. The aim was adopting the correct parameters for 
the network to achieve real output close to their 
corresponding output as much as possible 
(Vakil-Baghmisheh, 2002). In network training, we have 
employed Backpropagation (BP) algorithm and 
Levenberg-Marquardt (LM) method. Furthermore, to 
implementing the ANN models, a computer code was 
developed in MATLAB software. To find the optimal 
weights between neurons, the LM training algorithm was 
used. The weights were updated using the Equation 5.  

( 1) ( ) ( ( ) ( 1))ij ij ij ij
ij

Ew n w n η α w n w n
w

∂
+ = − × + − −

∂
 (5) 

where, η is the learning rate adjusted between 0 and 1;   
α is the momentum factor at interval [0, 1]; wij is the 
connection weight between nodes i and j, also n is the 
number of iterations. 

To evaluate the performance of a model some criteria 
have been defined in the literature. Among of them, root 
mean squared error (RMSE), mean absolute percentage 
error (MAPE) and coefficient of determination (R2) 
(Rohani et al., 2011) (The coefficient of determination of 
the linear regression line between the predicted values 
from the neural network model and the actual output) are 
the most widely used performance evaluation criteria and 
may be used to compare the predicted and actual values 
which will be used in this study. They are defined as 
follows: 
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where, dji is the ith component of the desired (actual) 
output for the jth pattern; pji is the ith component of the 
predicted (fitted) output produced by the network for the 

jth pattern; d  and p  are the average of the desired 

output and predicted output, respectively; n and m are the 
number of patterns and the number of variable outputs, 
respectively. A model with the smallest RMSE, MAPE 
and the largest R2 is considered to be the best. 

 
Figure 3  Configuration of the MLP 

3  Results and discussion 

To achieve the best ANN structure in order to 
evaluating the capability of perceptron neural network to 
modeling and predicting the efficiency of heat collectors 
by the input parameters, due to the constant number of 

inputs, the number of hidden layers (Haykin, 1999), we 
change the number of output neurons and each neuron 
activation functions and the number of neurons in the 
hidden layer. According to general approximation 
theorem, neural network with a hidden layer and with a 
sufficient number of neurons is able to approximate any 

optional continuous function (Haykin, 1999), so one 
hidden layer was selected for neural network. The 

number of hidden layer neurons has been obtained by 
using trial and error method. If there is not adequate 
number of neurons in the hidden layer, the network will 
not be able to learn well. Despite, this leads to weakening 
of the extended features of the network (Wang and Elhag, 
2007). The results showed that the MLP neural network 
with 10 neurons in the hidden layer was able to learn the 
thermal performance over time (by foreseeing α = 0.9,   
η = 0.01, epoch = 1000). To achieve better performance 
and accelerate the convergence of network, the 

momentum factor (α) was used (Gupta et al., 2003). 

Because of the interaction between these two parameters 
on network performance, finding optimal values is 
difficult (Vakil-Baghmisheh and Pavešic, 2001). Besides, 
optimal values of the parameters were selected through 
trial and error method.  

Considering the optimal number of neurons in the 
training phase, the results of the training data, validation 
step, trials stage and total, the best neural network models 
was determined for flat and slatted glass cover collectors. 
3.1  ANN results statistical analysis 

The prediction results of trained neural network based 
on input parameters has been shown in Table 1. The 
purpose of this stage is assessing generalizability features 
and merits of selected neural model. So, it was evaluated 
by using data other than the data collection of training 
model (a set of test data). According to the table, ANN 
has more desirable performance in the solar collector with 
slatted glass cover, because it has the maximum R2 and 
minimum amount of standard error RMSE and MAPE. 

 

Table 1  Performance indicators of training, validation, and 
testing data for the best estimated models 

Collector type Criteria Train Validation Test Total* 

R2 0.999 0.9794 0.9407 0.9898 

RMSE 0.0058 0.0282 0.0513 0.019 Flat glass 
cover 

MAPE (%) 0.8779 5.7294 7.9981 2.0418 

R2 0.9998 0.9907 0.9562 0.9914 

RMSE 0.0027 0.0228 0.0547 0.0186 Slatted glass 
cover 

MAPE (%) 0.3413 3.89 4.6079 1.1011 

Note: * training, validation and test data set. 
 

Actual data and network forecast data were compared 
statistically. The results of the neural network model 
based on p-values in three phases: training, validation and 
test are given in Table 2. It can be said that in all cases 
P-value > 0.7, so it can be said that there is no significant 
difference between mean, variance and statistical 
distribution of experimental and predicted neural network 
data. These results show that we can trust on such 
networks because the generalizability of trained neural 
network is acceptable. 

Also, according to R2 for all three stages of network, 
it can be estimated the pattern of thermal performance 
variation by neural networks. In addition, according to the 
results we can say that collector with the slatted glass 
cover is more appropriate. 
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Table 2  Statistical comparisons between the actual and predicted values by the ANN 

 Test phase Validation phase Train phase 
 

 Distribution Variance Mean Distribution Variance Mean Distribution Variance  

P 0.4232 0.6667 0.7701 0.9998 0.9642 0.93 0.9987 0.9728 Mean 
Flat cover 

R2   0.9407   0.9794   0.9814 

P 0.4232 0.5304 0.8743 0.8827 0.87 0.9886 0.9987 0.9546 0.999 
Slatt cover 

R2   0.9562   0.9908   0.9998 
 

Neural network convergence diagram to predict the 
thermal performance of slatted and flat glass cover 
collector is shown in Figure 4. RMSE becomes lower 
than 10 for the entire training, testing and validation set 
gradually by increasing the frequency and after 7 and 9 
repeating for flat and slatted glass cover respectively, 
RMSE increases for validation data. Increasing in the 
number of algorithm iterations for training set reduces the 
amount of RMSE while after the seventh and ninth 
repeating will be useless but also increases the amount of 
RMSE in the validation set. 

 
a. Flat cover  

 
b. Slatted cover 

Figure 4  Neural network convergence diagram to predict the 
thermal performance of flat and slatted cover collector. Mse: Root 

mean square error and Epochs: The number of iterations 

Figure 5 shows R2, as well as linear regression 
between the actual thermal performance of slat and flat 
glazing cover of solar air collector versus thermal 
performance predicted by the neural network. Based on 
these two criteria, best results are obtained when linear 
equation has lowest intercept and slope close to one 
(Output = 0.000, Efficiency = 1.000) between actual 
performance and the predicted one by the network in 
addition to high R2. It is clear that R2 between measured 
and predicted data in any case is very high (R2>0.9). Also, 
the linear regressions between them have nearly the same 
slope close to one and relatively small intercept, so we 
can be sure to such networks. Assessing the ability of 
ANN techniques as an alternative method to predict the 
thermal performance of the solar air collector showed that 
ANN has high ability to provide reliable and accurate 
forecasts for thermal performance. 
3.2  Collector performance 

By using statistical analysis of the results of the 
impact of various parameters on the thermal efficiency of 
solar air collector, it can be said that inlet air flow, 
glazing, porosity and thickness parameters showed a very 
significant impact (p=0.01) on efficiency. By Figure 6, it 
can be said generally at low rates (mass flow rate less 
than 0.01 kg m-2 s-1), for two charts with two different 
covers efficiency is almost equal which result in that at 
lower flow rates kind of cover does not have a significant 
effect on performance.  

However, it was found from Figure 6 that at high 
flow rates, changes in minimum and maximum efficiency 
at collector with slatted cover is more than collector with 
flat cover. The reason can be stated as follows that on 
slatted type compared to flat one, on average, temperature 
difference between the air inlet and different parts of 
absorber is more. In other words, intake air of different 
parts of the slatted cover cools the absorber more 
uniformly. Also, at slatted glass cover, because the air 
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enters chamber from the gaps between glasses, hence it is 
cooled and absorbed heat by them is transferred. 
Therefore, compared with flat glass cover, it can be said 

as absorber and glasses are cooler in slatted glass cover 
and consequently convective and radiative heat losses 

decreases thus higher efficiency is achieved. 

 
Figure 5  The relationship between actual performance and forecast values for collector for flat and slatted glass cover collector at the 

process of training, validation and test of network for training algorithm. Output: Predicted thermal performance by the network, Efficiency: 
Actual performance. (a-c) Flat glass cover, (d-f) Slatted glass cover 

 
Figure 6  The effect of various parameters on the performance of solar air collector 

(a-c) Flat glass cover collector (d-f) Slatted glass cover collector 
 

Referring to Figure 6, it can be concluded that thermal 
efficiency increases by increasing the air flow rates due to 
greater contact volume of air flow rate which results in 
high rate of heat transfer coefficient and this reduces heat 

losses by radiation and convection that results in increase 
in efficiency. 

In addition, the diagram of Nusselt number compared 
to Reynolds has been determined in Figure 7. As we see 
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with increasing Reynolds number, Nusselt number for 
heat transfer fluid increases which showed an increase in 
convective heat transfer coefficient (h) by increasing the 
air mass flow rates as we reached the same conclusion. 

 
Figure 7  Changes in Nusselt number for Reynolds number 

 

It is remarkable that variations of Nusselt number 

with Reynolds is linear (Incropera and Dewitt, 1996). 

 
                  (8)

 
hLNu
k

=                   (9) 

Referring to the experimental results which indicate 
that absorber with lower porosity shows a better thermal 
efficiency at lower air mass flux. In fact, higher porosity 
and low flow cause the air to pass the lower part of the 
absorber and to rise the temperature of the parts near the 
exit of hot air. In other words, less porous absorber with 
the low flow rates have been the best heat transfer and 
minimal heat losses. This is because of the uniform 
passage of air from the absorber, but with increasing the 
air flow rate, air passing from the absorber become more 
uniform and porosity factor have been more effective. 
These differences agree with studies done by Zomorodian 
and Barati (2010). In other words, high efficiency of 
more porous absorber at high air flow rates can be caused 
by high porosity of this page that is due to more air 
contact with absorber. Moreover, maximum efficiency 
occurs when the thickness of the absorber plate is 
maximum. In fact, at maximum thickness, greater mass of 

material (aluminum) is heated by the sun 
(Razavikhosroshahi, 2003), or in other words while the 
air is crossing through the absorber, it covers more 
distance of pores and greater mass of absorber and cools 
the sheet. Accordingly, the exhaust air is warmer.  

According to the results of charts, by increasing the 
temperature difference between the ambient and collector 
output air per unit of solar radiation, the thermal 
efficiency is reduced in both collectors that relevant to 
low air mass flow rate. In fact, by increasing the air mass 
flow rate, the temperature difference between the outlet 
air from the absorber compared to ambient air 
temperature decreased in all collectors which reduced the 
temperature difference between the exhaust air from the 
absorber and the environment per unit of solar radiation 
and increasing the thermal efficiency of the collector. 
According to the results, in general, it can be said that 
slatted glass cover collector has a higher performance. 

4  Conclusions 

Application of ANN to predict the relationship 
between the thermal performance of the solar air collector 
and two types of input variable was successful. The 
comparison between the predicted values and the values 
obtained from tests showed that this model was capable 
to predict the basic relationship between the input 
variables and the thermal performance of the collector. 
Also, statistical analysis of errors, showed reliability and 
accuracy of the model. R2 of this model was obtained 
0.98 for flat cover collector and 0.99 for slatted one 
which is desirable. Results indicate that the results 
predicted by the neural network and Backpropagation 
algorithm can accurately predict the performance of used 
solar air collector, which gives faster and simpler 
solutions to estimate the thermal performance of solar 
systems compared to limited laboratory methods. 

As a result, we can say it is possible to train suitable 
neural network model for solar systems to be able to 
predict system performance under natural weather 
conditions. 
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Nomenclature: 

Ahole Surrounded level by every hole (cm2) 
Aplate The total absorber surface (cm2) 
A1 Air crossing area at the location of the anemometer (m2) 
A2 evaluated surface of absorber (m2) 
D Hole diameter (m) 
EF Thermal efficiency of collector (%) 
H Convective heat transfer coefficient (W m- 2 K-1) 
k Conduction heat transfer coefficient (W m- 1 K-1) 
L The characteristics of desired surface (m) 
P Holes iteration step 
T0 Outlet air temperature (°C) 
Ti Inlet air temperature (°C) 
Tmax Collector stagnation temperature (°C) 
V Inlet air speed (m s-1) 
σ Absorber porosity (m2/m2) 
m  Air mass flux per unit area of  collector (kg s-1 m-2) 
ρ Air Inlet density (kg m-3) 
α The tilt angle of collector and pyranometer (°) 

 Kinematic viscosity of the fluid (m2 s-1) 
Cp Air specific heat capacity (J kg-1 °C-1) 
GT The radiation flux on the collector (W m-2) 
dji The ith component of the desired (actual) output for the jth pattern 
pji ith component of the predicted (fitted) output produced by the network for the jth pattern 
p & d  the average of the predicted output and desired output respectively 

n & m The number of patterns and the number of variable outputs respectively 
 

 


