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Prediction of total solar irradiance on tilted greenhouse surfaces 
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Abstract: Solar radiation is the driving force for the surface energy balance in buildings such as greenhouses.  The 

greenhouses are generally tilted towards the sun in order to maximize the solar irradiance on the surfaces.  Precise 

computation of the solar radiation received on these surfaces assumes an important role in the energy simulation.  It is 

practical to calculate the total solar irradiance on the tilted surfaces based on the solar global and diffuse radiation intensities on 

horizontal surfaces.  In this work, a south-facing thermal box inclined at 26.5° from the horizontal was used for solar radiation 

measurements.  Additionally, the recorded solar radiation data were retrieved for the study location and used to develop an 

empirical correlation.  The derived 4th order polynomial correlation related the diffuse fraction to the clearness index.  The 

conversion factors for the beam, the diffuse and the reflected solar radiation components were essential in the prediction of the 

total solar irradiance on the tilted surface.  The measured solar radiation data were then compared with the simulated total 

irradiance on the tilted surface.  The model performance was assessed using both graphical and statistical methods.  Overall, 

the diffuse-to-global solar radiation correlation has proved to be a useful technique providing reliable results.  The locally 

calibrated data led to a clear improvement in the estimated total solar radiation.  Generally, reliance on indirect techniques of 

solar radiation estimation is gaining importance especially for data-scarce regions where measurement is quite infrequent. 
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1  Introduction 

Solar energy is nowadays one of the most promising 

renewable energy sources in the world (Sawin, 2013). 

Quantitative assessment of the solar irradiance incident 

on tilted surfaces is of critical importance for 

energy-efficient control of the indoor climate of buildings 

such as greenhouses (Gulin et al., 2013). The solar 

radiation incident on external greenhouse surfaces can be 

broken down into three main components (Figure 1): 

direct (beam) radiation emanating from the region of the 
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sky near to the sun’s disc, diffuse radiation from the sky 

vault, and radiation scattered or reflected by the ground 

(Garg and Prakash, 2000; Al-Ajlan et al., 2003). The 

beam radiation incident on a horizontal surface can be 

converted to the beam radiation incident on a tilted 

surface using a simple geometrical relationship between 

the two surfaces (Evseev and Kudish, 2009). However, 

this is not the case regarding the diffuse radiation 

component since the diffuse radiation rays have no 

defined source (Evseev and Kudish, 2009). Most solar 

energy systems (e.g. greenhouses) are designed with 

tilted collected surfaces (Pandey and Katiyar, 2013). In 

the northern hemisphere, the wide-span and the Venlo 

greenhouses are inclined to the south with an inclination 

angle of about 26.5° and 24° from the horizontal, 

respectively (Von Elsner et al., 2000). Therefore, it is 

necessary to have knowledge about the availability and to 

be able to estimate the solar radiation on tilted surfaces. 
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Figure 1  Solar irradiance components (source: modified after 

Gulin et al., 2013) 
 

The techniques for estimating the hourly global solar 

radiation on a horizontal surface have been elaborated 

and proposed by many researchers (Abdullah and Ali, 

2012; Gueymard, 1993; Davies and MacKay, 1989). 

These techniques are based either on the analysis of 

recorded data or on the analysis of meteorological data 

(Abdullah and Ali, 2012). The solar radiation reaching 

the earth’s surface is expressed in terms of the solar 

constant Isc. It is defined as the total radiation energy 

received from the sun per unit area in a unit time on the 

earth’s surface perpendicular to the sun’s rays at a mean 

distance of the earth from the sun (1.496 × 108 km). The 

Isc is valued at 1367 W m-2 (Sukhatme, 2003; Iqbal, 1983) 

and this is accepted by many standard organizations 

including the American Society for Standards and 

Measurement (ASTM). Although the National 

Oceanographic and Atmospheric Administration (NOAA) 

uses a value of 1376 W m-2, the fluctuations are normally 

small (Howell et al., 2011). 

Global solar radiation data is mostly available from 

the weather stations worldwide. However, in some areas, 

the solar radiation is infrequently measured (Shamim et 

al., 2015) and thus reliable radiation prediction models 

are essential. The diffuse-to-global solar radiation 

correlation is one such indirect technique which is 

gaining importance in terms of prediction. This 

correlation has been extensively used with high accuracy 

in simulations (Liu and Jordan, 1960; Jacovides, 2006). 

The correlation relates the diffuse fraction and the 

clearness index using global and diffuse radiation 

measurements on a horizontal surface. However, the 

correlation is location-dependent and the empirical 

coefficients need to be determined for every study 

location. Hence, based on the local calibration 

coefficients, this study aims at estimating the total solar 

irradiance on tilted greenhouse surfaces. 

2  Materials and methods 

2.1  Experimental setup 

A thermal box (Figure 2) was developed to simulate 

conditions similar to those of greenhouses in a realistic 

way. The box measured 2.4 m long, 1.9 m wide and   

1.2 m high. The cover material (4 mm normal single 

greenhouse float glass) was inclined at 26.5° to the south 

and had a length of 2 m and a width of 1.5 m with steel 

glazing bars. 86% of the total surface area was glass, 

while 14% of the area was all glazing bars. The box was 

placed outdoors at the Biosystems Engineering Section, 

Institute of Horticultural Production Systems, Leibniz 

Universität Hannover (52.39° N, 9.706° E and altitude 

52.3 m above mean sea level). This measurement site is 

located in Lower Saxony, Germany, and lies in the north 

of Germany. The box had no transpiration systems inside, 

so it represented absolutely dry greenhouses. It is worth 

mentioning that the thermal box was also useful for the 

longwave radiation exchange measurement (Ronoh and 

Rath, 2015). 

 

Figure 2  Thermal box system for thermal radiation measurements 
 

2.2  Data acquisition 

Upward and downward facing solar radiation 

components were independently measured with a CNR 4 

net radiometer (Kipp & Zonen, Delft, and The 

Netherlands). The CNR 4 measures the energy that is 

received from the whole hemisphere (Kipp & Zonen, 
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2009). Data acquisition and control was done with a 

USB-Datalogger LabJack U12 (LabJack Corporation, 

Lakewood, USA), a signal amplifier LabJack EI-1040 

(LabJack Corporation, Lakewood, USA) and a relay box 

ME-UBRE (Meilhaus Electronic GmbH, Alling, 

Germany). For the newly acquired CNR 4 net radiometer, 

the original calibration coefficients from the company 

Kipp & Zonen (Delft, The Netherlands) were used. For 

the shortwave detector (pyranometer), the sensitivity 

values of the upper and the lower sensors were     

13.58 μV Wm-2 and 10.83 μV Wm-2, respectively. 

The measured parameters were recorded in the range 

of 0 V to 10 V and the necessary calibration factors were 

applied to obtain the actual data. The measurements were 

carried out every 30 seconds during the months of 

January to April 2014. The hourly means were then 

computed from the collected data. An extra dataset of 

solar radiation was obtained from the Institute of 

Meteorology and Climatology, Leibniz Universität 

Hannover. 

2.3  Mathematical modelling of total solar irradiance 

Due to the elliptical orbiting of the earth around the 

sun, the distance between the earth and the sun fluctuates 

annually and this makes the amount of energy received 

on the earth’s surface fluctuate in a manner given by: 
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where, In is the radiation measured on the plane normal to 

the radiation at any given time, Isc is the solar constant 

(1367 W m-2) and nd is the day of the year (nd is one on 

1st January and nd is 365 or 366 on 31st December). 

The hourly extraterrestrial solar radiation on a 

horizontal surface Io in W m-2 for a period defined by 

hour angles ω1 and ω2 (where ω2 is larger) can be 

calculated using the following equation (El-Sebaii et al., 

2010; Duffie and Beckman, 1991): 
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where, φ is the latitude, δ is the angle of declination; ω is 

the hour angle, and β is the angle of inclination from the  

horizontal. 

The angle δ can be evaluated from the following 

expression (Sukhatme, 2003; Ezekoye and Enebe, 2006): 
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The hour angle ω is computed as a function of the 

hour of the day in 24 hour time Ht as (Sukhatme, 2003): 
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This means that the hour angle has a negative value 

before local solar noon, a positive value after local solar 

noon and is zero at local solar time (Abdullah and Ali, 

2012). According to Honsberg and Bowden (2012), the 

local solar time (LST) can be found by using two 

corrections to adjust the local time (LT). 

 60

TC
LST LT      (5)

 

The time
 
correction factor (TC), in minutes, accounts 

for the variation of LST within a given time zone due to 

the longitude variations within the time zone (Duffie and 

Beckman, 1991; Goswami et al., 2000; Honsberg and 

Bowden, 2012) and also incorporates the equation of time 

(EoT) (in minutes). 

TC = 4(Lst – Lloc) + EoT (6)
 

where, Lst is the standard meridian for the local time zone 

and Lloc is the longitude of the location. 

The EoT is calculated from the following expression 

(Honsberg and Bowden, 2012): 
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where, the coefficient B is given by:
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Due to a limited availability of diffuse radiation data, 

decomposition models have been developed to predict the 

diffuse radiation using the measured global data (Wong 

and Chow, 2001). These models are based on some key 

parameters which include the clearness index and the 

diffuse fraction. There is a need to recalibrate these 

parameters for the study location in order to account for 

local climatic differences (Jacovides et al., 2006). The 

relationship between the diffuse fraction Fd and the 

clearness index Ic was established by using daily diffuse 

and global radiation data for the five-year period (2009 to 

2013). The data was obtained from the Institute of 
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Meteorology and Climatology, Leibniz Universität Hannover.  

The hourly clearness index Ic can be estimated as the 

ratio of global radiation on the horizontal surface Ig,h to 

the extraterrestrial radiation on the horizontal surface Io 

(El-Sebaii et al., 2010; Abdullah and Ali, 2012): 

,g h
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       (9) 
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diffuse
 

fraction Fd expresses the ratio of 

diffuse-to-global solar radiation (Jacovides et al., 2006). 

The diffuse radiation is that portion of solar radiation that 

is scattered downwards by the molecules in the 

atmosphere. The diffuse radiation on a horizontal surface 

Id,h was therefore calculated as: 

, ,d h g h dI I F     (10) 

The beam radiation reaching a unit area of a 

horizontal surface on the earth in the absence of the 

atmosphere Ib,h can be expressed by Ibrahim et al. (2011): 

, , ,b h g h d hI I I        (11) 

According to Jawarneh et al. (2012) and Jacovides et 

al. (2006), the relationship between Fd and Ic can be 

expressed by a polynomial correlation. The following 4th 

order polynomial correlation was fitted to the data. 
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The coefficients a0, a1, a2, a3 and a4 are empirical 

constants which can be experimentally obtained for the 

study location. 

According to El-Sebaii et al. (2010), an estimation of 

total solar radiation incident on tilted surfaces can be 

expressed as: 
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where, It,t is the total solar radiation incident on tilted 

surfaces; Ib,h is the beam radiation on a horizontal surface; 

Id,h is the diffuse radiation on a horizontal surface; Ig,h is 

the global radiation on a horizontal surface; ρg is the 

ground reflectivity; Ψb is the beam radiation conversion 

factor; Ψd is the diffuse radiation conversion factor and Ψr 

is the ground reflected radiation conversion factor.
 

For a surface with a given orientation β, the daily 

value of Ψb is related to the time variation of incident 

beam radiation, the intensity of which on the ground level 

is a function of the atmospheric transmittance (Yang et al., 

2012). These radiation conversion factors are given by 

El-Sebaii et al. (2010): 
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where, θ is the incidence angle; θz is the zenith angle and 

β is the surface inclination angle. 

An overview of the solar angles involved in 

calculating the amount of solar irradiance on tilted 

surfaces is shown in Figure 3. The incidence angle θ for a 

surface inclined to the south towards the equator 

(northern hemisphere) is dependent on the inclination 

angle (Twidell and Weir, 2005). The zenith angle θz is the 

angle between the line that points to the sun and the 

vertical. At solar noon θz is zero, while in the sunrise and 

sunset this angle is 90°. The solar azimuth angle γ is the 

deviation of the projection on a horizontal plane of the 

normal to the surface from the local meridian, with zero 

due south, east negative and west positive (Sahin and Sen, 

2008). This angle is only measured in the horizontal plane 

and thus neglects the height of the sun. The solar altitude 

α (also known as solar elevation angle) is the angle 

between the horizon and the centre of the sun’s disc. 

 

Figure 3  Detailed description of solar angles for a tilted surface 

(source: modified after Twidell and Weir, 2005) 
 

The incidence angle, the solar altitude, the zenith 

angle and the solar azimuth angle are generally expressed 

as (Yang et al., 2012; Shamim et al., 2015; Twidell and 

Weir, 2005; Bolsenga, 1979): 
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The upwelling shortwave radiation is the reflected 

global radiation and is given by the relation: 
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where, Iref,t is the reflected radiation from a tilted surface, 

αs is the albedo of the earth surface and It,t is the total 

radiation incident on a tilted surface. 

An average albedo value of 0.2 was used in this study 

for sites which are not cultivated and have a low 

vegetation cover (Campbell and Norman, 1998; Scharmer 

and Greif, 2000). This value is therefore applicable for 

fields where grass is present. 

3  Results and discussion 

A comparison of the measured solar radiation incident 

on the tilted glass-covered surface, the horizontal global 

radiation on the horizontal plane and the diffuse solar flux 

from the sky is presented in Figure 4. The intensity of the 

measured solar radiation appears to increase with the 

change of season (from winter to early spring). This is 

revealed by relatively high solar radiation magnitudes as 

the hour number increased. The trend also shows that the 

total irradiance on the south-facing tilted surface It was 

always higher than the horizontal global radiation Igh. The 

diffuse horizontal solar radiation Id was notably close to 

the Igh values, especially after the 150th hour number. 

 

Figure 4  Variation of measured solar radiation incident on 

horizontal and tilted surfaces 

From individual daily global and diffuse solar 

radiation measurements, the diffuse fraction as a function 

of the clearness index was computed; the trend is shown 

in Figure 5. The figure shows the scatter plot of the data 

and the fitted line (dashed line) resulting from the 4th 

order polynomial correlation. The correlation fits well for 

the clearness index Ic in the range of zero and 0.75.  

 

Figure 5  Plot of the relationship between the diffuse fraction and 

the clearness index 
 

Figure 6 illustrates the comparisons between the solar 

radiation measured by the two pyranometers of the CNR 

4 net radiometer and the corresponding values calculated 

with the radiation models.  

 

Figure 6  Comparison between the simulated and the measured 

solar radiation components 
 

The total solar irradiance on the south-facing surface 

inclined at 26.5o included both the direct and diffuse solar 

radiation components. Simulation with the appropriate 

radiation conversion factors gave promising results, 

especially within the solar radiation range of 0 W m-2 to 

500 W m-2. The solar radiation of high magnitude 
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occurred towards the end of the measurement period, i.e. 

in the early spring period. As seen from the figure, the 

reflected solar radiation during the entire observation 

period was generally less than 155 W m-2. 

4  Discussion 

The diffuse-to-global solar radiation correlation, 

originally developed by Liu and Jordan (1960), has been 

used extensively as a technique providing accurate results, 

although it is latitude-dependent. This empirical 

procedure involves a one-parameter correlation between 

the diffuse fraction Fd and the clearness index Ic. The 4th 

order polynomial expression helps to establish the 

relationship between the hourly Fd and Ic using the 

measured data on a horizontal surface (Jacovides et al., 

2006). From the available dataset (2009 to 2013), this 

polynomial expression showed a good agreement for 0 ≤ 

Ic ≤ 0.75 (see Figure 5). Another important observation is 

that for Ic > 0.75, the diffuse fraction Fd does not decrease 

further. Despite a paucity of data for Ic > 0.75, Fd is 

relatively large at high Ic values. For Ic > 0.75, an average 

Fd value of 0.2 was found to be appropriate and this is in 

agreement with the value given by Miguel et al. (2001). 

During the day, solar radiation is the dominant flux 

under clear, dry skies (when Ic  0). The solar flux is 

also important with cloudy skies (when Ic  1) since 

cloudiness alters the solar radiation profile through 

scattering and absorption of the incident solar radiation. 

A portion of the energy reaching the surface is reflected 

skyward where it may again interact with the clouds. 

These radiative interactions constitute the surface cloud 

radiative forcing over a given area, a factor used to 

determine the impact of clouds on the irradiance (Key 

and Minnett, 2004). For any given location, the solar 

radiation reaching the surface decreases with increasing 

cloud cover. The larger insolation increases the surface 

temperature (Moene and van Dam, 2014) and this result 

in high longwave radiation emitted by the surface. 

The south-facing surface offers better solar irradiance 

energy collection and this is evidently true for the study 

site which is located in the northern hemisphere. The 

developed solar radiation models with the respective 

radiation conversion factors compared well with the 

measurements (see Figure 6). The values of coefficient of 

determination (R2) for total solar irradiance on the 

inclined surface and the reflected component were 0.962 

and 0.951, respectively. The results imply that it is 

practical to calculate the total solar irradiance on any 

surface (inclined or horizontal) for any location other than 

the measurement site considered in this study. Based on 

the global and the diffuse radiation data for any location, 

the coefficients of the 4th order polynomial correlation 

relating the diffuse fraction with the clearness index need, 

however, to be rechecked. It is worth noting that the 

findings from this study are in line with other results 

reported in the literature (Miguel et al., 2001; Jacovides et 

al., 2006; Evseev and Kudish, 2009). For inclined 

surfaces such as those used in this study, it is necessary to 

consider the radiation reflected onto the surface by 

adjacent surfaces. Modifications of the solar radiation 

models are generally recommended for estimating the 

hourly, the daily or the monthly averages of solar 

radiation (direct, diffuse, ground reflected and total) on a 

tilted surface. 

5  Conclusions 

In this paper, the solar radiation measurements at the 

tilted greenhouse surfaces are compared with simulations 

of the total solar irradiance with the 4th order polynomial 

correlation. The derived correlation relating the diffuse 

fraction and the clearness index yields promising results 

in the prediction of the total solar irradiance. Through a 

combination of statistical and graphical methods, a 

relatively high performance of the prediction model was 

achieved. For energy balance under daytime conditions, 

the solar irradiance on greenhouse surfaces plays a very 

important role and should therefore be accounted for 

precisely. Solar radiation data is readily available from 

most weather stations particularly for horizontal surfaces 

and this, together with other parameters, can be used in 

calculating the total irradiance on tilted surfaces with an 

acceptable accuracy. In particular, it is believed that the 

improved polynomial correlation relating the diffuse 

fraction and the clearness index can efficiently be used 

for the total solar irradiance computation in other parts of 

the world. Due to the difference in spatial and temporal 
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resolution, the derived correlation can be further assessed 

as to whether it is site-specific or generally applicable. 
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