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Abstract: Simultaneous to industrial automation, automating agricultural tasks would be affordable for efficiency 

improvement. To obtain an applicable fully automatic vehicle in the straight rows and headland turning, an autonomous 

system was developed and evaluated in three different modes.  The study was implemented on an actual sized, renewable 

energy based off-road vehicle called SAPHT (Solar Assist Plug-in Hybrid electric Tractor).  Experimental evaluations were 

conducted based on machine vision and teleoperation modes with various speeds. Vision system was developed based on 

random Hough transform and green plants were extracted from background using dynamic factors for each image. Statistical 

analysis of data in the straight plant rows illustrated the ability of vision-based guidance with maximum root mean square 

error of 5.7 cm without hurting any corn at the speed of 2 km/h. It’s concluded that the applied vision based guidance system 

was suitable for inter-row operations while in headland turnings and also emergency commands, teleoperational control 

would be recommended. 
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1  Introduction1 

Food production for predicted nine billion people of 

the world by the year 2042 and also resolving labor 

shortage needs automation technologies in agriculture 

(Tony  et al., 2008).  Agricultural automation and 

autonomous robots aim at efficiency improvement, 

environmental protection and labor saving (Pinto et al., 

2000).  Such systems have been applied to guide 

vehicle for spraying (Tangwongkit et al., 2006), weeding, 

cultivating and harvesting (Xue and Grift, 2011).  For 

all of these operations, a critical proficiency is accurately 

travelling along the crop rows.  Navigation is the most 

sophisticated part of automated vehicles which relieves 

drivers more than other functions, allowing them to 

concentrate on other managerial activities while the 

vehicle is accurately guided without driver effort.  The 
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navigation would be defined as auto guidance or auto 

steering.  The most common commercial solution for 

navigation problems is to use precision Global 

Positioning System (GPS) receivers to guide robots 

thorough plant rows (English et al., 2014).  Prior to 

precision GPS guidance, the farmer would steer 

manually using local observations of the rows.  But the 

high cost of these systems has led to research into vision 

based guidance (Tillett et al., 2002).  Inter-row 

operation and headland turning are the main expected 

maneuvers for an autonomous agricultural vehicle.  

Although many researchers have used all kinds of 

sensors, visual navigation has been a research hotspot 

due to its good performance and cheapness (Xue, 2014) . 

This method offers significant advantages over other 

sensors.  High-rate images provide rich and 

instantaneous information about the scene around the 

vehicle.  The greatest challenges are the computational 

loads of the processing algorithms needed and coping 

with outdoor illumination patterns.  In agriculture this 

method takes guidance from the crop row itself.  There 
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are, however, many complications as the condition of the 

crop changes through the growing cycle.  Initially the 

plants appear as rows of small dots among scattered 

random dots which are weeds.  The rows can be 

incomplete, i.e. there can be missing plants and plants 

can be at different stages of growth (size) along the field.  

Later they fuse to form a clear solid line.  However, the 

lines have thickened and threaten to block the laneways.  

Great tolerance in the vision algorithm is thus required to 

fulfill all the seasonal requirements (J. Billingsley  

1997, Åstrand and Baerveldt, 2005) . 

Several strategies have been proposed for crop row 

detection.  Many researchers used algorithms based on 

the Hough transform (HT) as a robust row recognition 

algorithm.  Some used the Improved Hough Transform 

to detect the margin lines between the end of the 

farmland and the suspected furrow.  However, to 

segment crop rows, segmentation algorithms have been 

used in another researches (Jiang et al., 2013).  The HT 

is widely used for localization of linear objects in images.  

This transform is quite robust against ‘noise’ and 

missing parts (Leemans and Destain, 2006).  The 

disadvantage of HT is that it needs lots of complicated 

calculation.  When processing a large number of 

images, the time-consuming algorithm is difficult to 

meet the real-time demand (Wu et al., 2011).  Astrand 

et al. (2005) described a new method for robust 

recognition of plant rows based on the HT.  They 

reported the accuracy of the position estimation relative 

to the row, proved to be good with a standard deviation 

between 0.6 and 1.2 cm depending on the plant size 

(Åstrand and Baerveldt, 2005).  Ji et al. (2010) 

compared gradient-based Random Hough Transform 

(RHT) versus HT algorithms in order to detect crop rows.  

They reported while RHT takes 0.8 s, HT takes 1.7 s and 

finally it was concluded RHT improves the detection 

speed effectively (Ji and Qi, 2011).  Montalvo et al. 

(2012) proposed a new method, oriented to crop row 

detection in images from maize fields with high weed 

pressure.  They captured some images in real condition 

and processed them in three steps: image segmentation, 

double thresholding based on the Otsu’s method
2
 , and 

crop row detection.  They compared this method 

against HT and they found it 8% more effective and one 

second faster than HT, that takes 1.34 seconds 

(Montalvo et al., 2012).  Xuewen et al. (2011) studied a 

weed detection method based on position and edge 

features.  They used the pixel histogram method to find 

centerline of crop rows.  In this method the centerline 

was set as the starting point and crop rows edge as the 

ending point.  They reported that this algorithm was 

successful by 95% approximately (Wu et al., 2011). 

Although each system uses different technologies to 

guide the vehicle, most of the systems use the same 

guidance parameters: heading angle and offset of the 

vehicle, to control the vehicle steering.  Offset is the 

departure of the vehicle gravity center from the desired 

path.  Heading angle is the angle between the vehicle 

centerline and the desired path (Tillett, 1991).  Up to 

date almost all studied navigation systems were as 

autopilot, where the driver had to be present in-the-cab 

to perform some turns at the headlands, actuate some 

implements, and execute some maneuvers.  

Considering this, the aim of this project was developing 

a multi-purpose navigation system to be implemented in 

an actual sized renewable energy based tractor named as 

SAPHT (Solar Assist Plug-in Hybrid electric Tractor) 

without any driver in-the-cab.  Experimental evaluation 

of the developed system based on machine vision is 

other objective of this study.  

2  Materials and methods 

Automating conventional vehicles needs special 

requirements.  Continuous Variable Transmission 

(CVT), auto- steering, automatic braking and Power 

Take Off (PTO) and Three Point Hitch (3PH) actuation 

are some capabilities of an autonomous vehicle.  

Considering this, SAPHT was used in this project due to 

                                                 
2
A well-known thresholding method which is widely used 

in image processing algorithms. This method is used to 

automatically perform clustering-based image thresholding. 
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its basic capability of being automated. The SAPHT was 

an “I” category
3
 ranged tractor for light‐duty operations.  

Two different sources supply the SAPHT with electric 

energy: (i) onboard Photovoltaic (PV) arrays, and (ii) 

electricity from the grid.  The SAPHT uses two 14 hp 

DC series motors on the rear axles for propelling, while 

another DC motor provides approximately 22 hp to 

activate 3PH and a standard PTO system in 540 and 

1000 r/min (Mousazadeh et al., 2011).  The material is 

categorized in three main steps.  First step explains 

equipping the SAPHT with some automatic features.  

In the next stage the navigation algorithm is presented 

and finally evaluation technique is described.  

2.1 Design of auto-navigation system 

To operate the SAPHT in autonomous mode, the 

steering system enhancement was the first important step.  

The steering system was reformed from mechanical 

design to an electrically controlled system for driverless 

operations.  An approximated 800 W DC motor with a 

gearbox on it, actuates steering system.  To control the 

steering DC motor a power board based on full H-bridge 

was constructed which provide soft start and variable 

response frequency.  As it shown in Figure 1, lateral 

offset (y) and angle offset (ϴ) are two parameters 

                                                 
3Category: Maximum drawbar power of 15-35 kW 

extracted from vision system installed on the SAPHT 

which are input signals for control structure.  These 

signals are compared with expected values for lateral 

offset (yd) and angle offset (ϴd) for lateral error (ey) and 

angle error (eϴ) estimation. The controller also takes the 

propelling speed into account to adjust the steering 

sensitivity and sends proper order for steering motor 

rotation (ωms). 

The left front wheel was equipped with a rotational 

potentiometer to fed-back turning information (ϴw) into 

the closed-loop steering control.  The designed system 

has a wide range of sensitivity with a resolution of 

approximately 0.29 degrees per step. 

The potentiometer on the front wheel also sends a 

signal for differential controller which controls the speed 

of both left and right propelling motors (ωml and ωmr) 

in turns and causes accurate navigation of vehicle.  

Modelling and simulation of the controller at MATLAB 

Simulink with P, PI and PID strategies resulted to 

choose PID type controller as the most suitable strategy 

due to its ability to eliminate the error and retain on the 

path.  The results for PID control scheme was proved to 

be satisfactory having chosen suitable parameters for 

gain coefficient (Kp), integral coefficient (Ki) and 

 

Figure 1 Block diagram of autonomous navigation structure 
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derivative coefficient (Kd).  From numerous 

experimental and simulation test results, values of 320, 

350 and 40 respectively for Kp, Ki and Kd indicated the 

best response.  Also, it was found that the P control 

creates a steady state error and changing the P control 

Kp is not able to eliminate this error.  In PI control 

mode, although the steady state error is completely 

eliminated, its overshoot and settling time will not be 

able to satisfy the aim of the design either.  However, 

the nonlinear control methods are usually quite complex 

in applications and the computation effort is too large to 

be executed on an economic micro-controller in 

real-time applications (Chwa, 2010). 

In order to send emergency commands such as force 

stop as well as controlling parameters like speed and 

steering in teleoperation mode, one remote control 

device was developed and tested.  

2.2 Navigation algorithm based on machine vision 

For machine vision based navigation, a standard 

industrial CCD camera (EyeVision EYE-700P-IRIR) 

was mounted in front of the SAPHT.  Camera setting 

was: pitch, roll and yaw angles of 30
o
, 0

o
 and 0

o
 

respectively at a height of 1.3 m from the ground (Figure 

2).  The focal length of the lens was 3.5-8 mm and the 

data were imported to a laptop using standard LAN port.  

The on-board PC on the SAPHT was a personal laptop 

with 1 GB installed memory (RAM) and 1.8 GHz 

processor that operated under Windows 7 ultimate 32-bit 

OS.  Since in machine vision mode, online navigation 

by means of machine intelligence is required, the images 

must be processed on-the-go.  So a robust and dynamic 

algorithm is required for accurate and agile navigation.  

An application program was developed in Visual C# 

environment for this purpose.  First of all this program 

receives video streams using RTSP (Real Time 

Streaming Protocol) and plays it on the developed 

graphical user interface (GUI) with frame rate of 25 fps.  

Then each frame is digitalized and converted to a 24-bit 

RGB
4
 color space image.  As illustrated in the Figure 3, 

for first five images the algorithm seeks for plant rows in 

whole of the image (800 * 600 Pixels) as Region of 

Interest (ROI).  To accelerate the algorithm, after five 

frames the ROI box becomes dynamic.  The width of 

this trapezoidal box is equal to 100 pixels; 50 pixels right 

and 50 pixels left the target line (Figure 2).  In other 

words in the five first image the algorithm searches all 

the pixels to find a line with the same color in the image 

and after it finds, just seeks around of the line for the rest 

of images.  Depending on outdoor illumination the 

background lighting was varied, so for each frame, 

average brightening of pixels inside the ROI area was 

redefined as a threshold to find the line in next images.  

Line detection method in different condition needs a 

factor depending on the color characteristics of each 

pixel on the line.  As an example for extracting a white 

line inside the black background 0.3*R + G/2 can extract 

the white pixels accurately where R and G are red and 

green matrix of the image in RGB color space 

respectively but kG-R-B is a suitable factor for 

extraction of green plants rows which k is a coefficient 

that varies between 1-2.5 depending on light, 

background and plant circumstances.  All the pixels 

inside the ROI area was compared with the threshold 

value and the pixel more than threshold value was set as 

the probable points that the line can lie on them.  The 

main stage of this algorithm was line fitting to 

determined points (the right blue line in the Figure 2b).  

This task was performed using RHT that is not sensitive 

for outliers.  Since there were more than one row in 

each image so according to distances between rows and 

lines slope, the line inside a particular area was selected 

as reference foe guidance system.  These parameters 

may vary from field to field based on planter setting and 

need to be set for each field.  

                                                 
4Red-Green- Blue 

http://www.rahyabshenas.com/Products/Security-Cameras/IP-Camera/Box-Camera/1_89_-1_3.action
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Although the HT is a robust method for line fitting 

but it can’t satisfy online demand in robots.  To solve 

this problem, RHT method using line slope was used.  

In this method some points among all detected points 

were selected randomly and line was fitted on them 

using HT by considering the slope of the last fitted line.  

In other words, RHT fits the line on some random points 

instead of all of the points but considering the slope of 

the line for avoiding any mistake in line fitting.  This 

method acted five times faster than HT method and 

speeded line detection up to 0.2 second without 

decreasing accuracy significantly.  Figure 3 shows the 

flowchart of the line detection and navigation algorithm. 

 

Figure 2 The SAPHT in the test course (a), developed line detection program interface (b). 

 

 

Figure 3 Flowchart of navigation algorithm in machine vision mode 
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Two main features of the line; slope and intercept 

were extracted for calculation of offset and heading 

errors.  The slope of straight line was 90
o
 and 

acceptable slope range was between 40
o
 and 140

o
.  Also 

the absolute value of slopes in two consecutive frames 

would not be more than a special threshold depending on 

the field characteristics and forward speed.  The offset 

error was calculated as the departure from the desired 

path.  Without applying slope impact on the offset error 

the vehicle fluctuates in the high speeds.  So according 

to the given flowchart, final error was derived after 

applying slope effect on it.  The effect of slope was 

applied by ratio of four that was determined 

experimentally.  Considering vehicle speed, two 

consecutive errors would not be more than a predefined 

threshold.  Finally for correction of steering wheels, 

error value flows to the ECU via RS232 interface using a 

USB to RS232 converter.  At each iteration, some data 

include time, offset error, heading and steering signals 

were saved in an excel file.  Although the algorithm can 

be updated by a frequency of 10 Hz, sending data to 

ECU decreases the speed and finally the steer was 

refreshed by frequency of 3 Hz approximately. 

2.3 Experimental evaluation 

The designed system was evaluated by comparison 

of navigation results in three different modes: 

teleoperation, machine vision and manually guidance.  

Experimental evaluations were performed in a standard 

test course that is provided by the American Society of 

Agricultural and Biological Engineers (ASABE) titled as 

X587 Dynamic Testing of Satellite-Based Positioning 

Devices Used in Agriculture (ASABE, 2007).  Due to 

existed limitations in campus dimension, the standard 

was applied with some changes.  Standard X587 

provides two straight segments each 90 m long, that 

linked by a turn of radius 5-10 m, traveling speeds of 0.1, 

2.5, and 5 m/s, test durations of under an hour, and four 

repetitions per combination of speed and direction.  

Considering dimension of the test campus, two straight 

lines each by 40 m length that were linked by a turn of 5 

m were sketched using white color (Figure  4).  These 

tests were performed from March to July 2014 under 

different condition of illuminations. 

To evaluate the accuracy of designed system based 

on machine vision, and to measure the offset drift, the 

SAPHT was navigated on the sketched lines as 

hypothetical plant rows.  In this mode offset from 

desire path were measured as an error in four different 

speeds: 2, 2.5, 3 and 4 km/hr, each with three 

replications.  Increasing speed of more than 4 km/hr 

leads to miss the line due to fast changes in the direction 

and slope, especially in curved tracks due to hardware 

slowness. The response frequency of steering system 

was evaluated by shifting it from 1 Hz to 3 Hz as well in 

speeds of 3 and 4 km/hr.  A user interface is developed 

in visual C# for video streaming and images are 

processed for real-time data mining.  The developed 

program extracts offset and heading errors from desired 

path and sends these data to controller. 

Evaluation in teleoperation mode was performed in 

the same test course as well.  In this mode, the accuracy 

was not acceptable for speeds above 2 km/hr (e.g. in 4 

km/hr the vehicle fluctuated by maximum error of one 

meter approximately).  Therefore, the travelling speed 

was limited to 2 km/hr, but in three different positions: 1) 

two meters far from the corner of the field by 

approximately two meter in height, 2) from the center of 

the field, and 3) 10 meters far from the center of the field 

by approximately five meters in height.  The SAPHT 

speed was accurately read by an encoder on the drive 

wheel.  Offset data was extracted in teleoperation mode 

using another digital CCD color camera.  This camera 

saves video from course information and data was 

extracted offline.  Another application program was 

developed in Visual C# environment for this data mining 

that was based on HT. 

At the end an actual corn field was cultivated in 

rows with 90 cm space between them in July of 2014 

and the tests were conducted until September 2014.  
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Figure 4 shows satellite view of test course and field in 

the university. 

 

Figure 4 Satellite view of 1) standard test 

course 2) corn field 

Evaluation in manual mode (driver in-the cab) was 

performed as well, for comparison.  In the manual 

mode, the travel speed was set to 2, 4 and 6 km/h, with 

three replications for each speed. 

To compare the accuracy of each experimental test, 

offset and heading errors were calculated in straight and 

turning paths separately.  The test variables were 

different navigation modes, different speeds and steering 

system frequency.  ANOVA analyses were performed 

using the well-known statistical software SPSS V17. 5. 

3  Results and discussion 

Evaluation tests were carried out in various modes 

and speeds between 2 and 4 km/h.  To compare the 

error of navigation system in straight path and also in the 

curved test track, all data were separated in two lines and 

turning data categories that respectively refers to straight 

path and curved test track.  Then, all data were 

classified in Microsoft Excel before analysis.  Table 1 

shows a summary of test planning and Root Mean 

Square Error (RMSE) of extracted data obtained from 

combination of all replications.  According to this table 

in machine vision mode, the RMSE of straight line (LIN) 

was obviously smaller than the RMSE of total path 

(TOT) that includes straight and curved path (10.09 cm 

versus 37.31 cm).  In comparison to teleoperation, 

navigation in vision mode had a better performance in 

straight paths, while in total path (sum of curved and 

straight path), the teleoperation resulted better.  In other 

word machine vision navigation was followed by the 

straight paths accurately but unlike teleoperation mode it 

had difficulties in following the curve paths.  These 

results also showed that the performance of vision mode 

in straight path was better than teleoperation mode both 

in full path and straight path. This result was completely 

expected due to HT conception. The HT which is the 

basic concept of the navigation algorithm in this research 

is applicable for line detection but it’s not suitable for 

fitting line on a curve.  On curve path, algorithm needs 

another method to detect the path.  Increasing the offset 

error on curve path resulted from the weakness of HT 

and it’s obvious in table results as well as Figure 6. 

However curve test tracks in this research were 

interpreted as headland turnings which are negligible 

compared with row guidance for control system.

Table 1 Test planning and RMSE (cm) of evaluated experiments 

 
Manual Vision guidance Tele-P1 Tele-P2 Tele-P3 

Speed, km/hr TOT LIN TOT LIN TOT LIN TOT LIN TOT LIN 

2 3.02 2.15 37.31 10.09 20.70 13.88 18.58 12.84 25.66 28.07 

2.5 - - 42.50 13.51 - - - - - - 

3 - - 45.21 9.87 - - - - - - 

4 4.58 2.94 37.78 11.60 - - - - - - 

6 14.53 3.55 - - - - - - - - 
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The SPSS software was used for comparison 

of the obtained RMSE’s and assessment of 

significance of differences.  Analyzing the manual 

mode was performed in SPSS software by Duncan 

method at the 0.05 level and with speeds of 2, 4 and 

6 km/hr.  The results indicated that differences 

between replications were not significant but there 

were significant differences between various speeds 

in both full path as well as straight path.  For full 

path the differences between speeds of 2 km/hr and 

4km/hr was nonsignificant while speeds of 2 km/hr 

and 4 km/hr had significant difference with 6 km/hr.  

The Least Significant Difference (LSD) method had 

the same results for full path.  However in straight 

paths while there was no significant difference 

between various speeds by Duncan method, the 

difference between 2 km/hr and 6 km/hr was 

significant by LSD method. 

In the machine vision mode, tests were started by 

speed of 2 km/hr and steering frequency of 1 Hz.  The 

test was continued by the speed of 2.5 km/hr at the same 

frequency.  Since offset error increased quickly, 

consequent tests were continued by increasing the 

steering frequency to 3 Hz, at the speed of 3 km/hr.  

The last stage is performed by the speed of 4 km/hr and 

in steering frequency of 3 Hz.  

Statistical analyses in vision mode illustrated 

significant differences due to steering frequency.  It’s 

concluded that the frequency has an important effect on 

system performance.  According to Duncan test in full 

path there was no significant difference between various 

speeds while differences in straight paths were 

significant.  Figure 5 shows the summary of results 

extracted from mean comparison for vision mode.  In 

this figure letter ‘V’ refers to vision mode and 

subscripted numbers indicates the speed of vehicle.  

The line under the letters divides the symbols in different 

subsets which means the modes with same underline 

belong to the same subset and the difference between 

them is not significant. The results are arranged from 

good to bad at each figure. As illustrated in the Figure 5a, 

V3 gives best result which means that high frequency in 

low speed leads to accurate navigation.  The V2.5 with 

travelling speed of more than V2 and in the same 

frequency had worst result which confirmed the 

frequency and speed impact on control process.  As is 

shown, differences between V2 and V4 and also V4 and 

V2.5 were not significant.  This result could be 

interpreted as the importance of steering system 

frequency in vision based navigation.  Due to the 

impact of steering frequency, the V4 with the highest 

travel speed had no significant difference with V2 that 

had the lowest speed. 

To compare machine vision mode versus manually 

driving, an analysis was performed between V2, V4, M2 

and M4 (‘M’ refers to Manual mode and subscripted 

numbers show the travel speed).  The results illustrated 

that the differences between machine vision mode and 

Manual mode was significant at 0.01 levels with the 

predominance of manual mode (Figure 5b). 

Teleoperation mode was evaluated from three 

different positions (P1, P2 and P3).  As is shown in 

Figure 5c, in straight path there was significant 

difference at 0.01 levels between P3 and two other 

positions.  As P2 refers to the center of the course, it is 

concluded that this difference was resulted from the 

distance between operator and vehicle.  When operator 

stands in a far distance from the vehicle, due to optical 

illusions a biased error occurred from the desired path.  

However, analysis in full path and based on Duncan test, 

illustrates that three positions had significant difference 

at 0.01 levels. 
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Finally three different modes were compared in a 

constant speed of 2 km/hr (Figure 5d).  Results of 

analysis indicated that differences between three modes 

were significant in full path at 0.05 levels.  In full path 

the performance of Teleoperation mode was better than 

vision mode but worse than Manual mode.  While in 

straight path the performance of vision mode was better 

but the difference was not significant.  The Manual 

mode had significant differences with vision mode and 

Teleoperation mode in both full path as well as straight 

path. 

 Figure 6 shows test trajectory and results of 

evaluations in different modes.  In this figure the 

desired test trajectory is shown by green line and the best 

replication of traveled routes in speed of 2 km/hr are 

illustrated by different colors and symbols.  According 

to this figure in straight path vision navigation 

(red-square) follows the straight path accurately but 

encounters gross error in turning curved track. 

  

 

Figure 5 Mean comparison result of RMSE in different modes 

Note: a) Machine vision in various speeds and steer frequency b) manual and machine vision c) various positions in teleoperation 
d) manual, machine vision and teleoperation mode in speed of 2 km/hr. 
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As illustrated in Figure 6, and also according to the 

results of RMSE comparison, Teleoperation mode gives 

good results in turning curves in comparison to vision.  

However in straight paths that are more susceptible for 

agricultural fields the accuracy of vision based 

navigation is favorable.  Overall, comparing two 

evaluated methods for navigation between field rows, the 

machine vision has remarkable predominance.  

However, application of a combination of two evaluated 

modes would be affordable for a successful navigation.  

Between rows that crop line is detectable, the vision 

system could handle accurately, while in headland 

turnings that there is no guidance sign, teleoperational 

control would give good results, especially if the control 

is performed from a Graphic User Interface (GUI) in the 

farm office. 

SAPHT was passed 25 meter straight path between 

rows in actual field without hurting any corn with RMSE 

of about 5.7 cm.  Travelling speed in this test was set to 

2 km/h but excessive distance between corns (more than 

50 cm) and also weakness of some corns as it’s apparent 

in Figure 2b caused failure in the algorithm.  Extracted 

data from 25 m path were showed 1.7 cm mean error.  

Astrand et al. (2005) tested a row following robot with 

the speed of 0.1 m/s which could pass a 36 m path with 

maximum error of 2.3 cm (Åstrand and Baerveldt, 2005).  

However increasing speed and accuracy of a row 

following robots need more and more researches.  Row 

plan also has an important effect on the guidance quality 

that should be noticed.  

4  Conclusion 

Automatic navigation is one of the sophisticated tasks 

that were under consideration over the last century.  To 

obtain a full automatic vehicle that can be applicable in 

the straight rows and headland turning, an autonomous 

system was developed and evaluated in three different 

modes (machine vision, teleoperation and manually).  

The study was implemented on actual sized platform, 

titled as Solar Assist Plug-in Hybrid electric Tractor 

(SAPHT).  Experimental evaluations were conducted 

with various speeds, different steering frequency and 

several positions for teleoperation mode.  Offset and 

heading errors were extracted using RHT and dynamic 

thresholding in each images.  Test results were 

evaluated using SPSS software in straight path as well as 

 

Figure 6 Test trajectory and results of evaluations in different modes 
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curved test track.  RMSE analysis in the straight path 

illustrated the prominence of vision based guidance 

(10.09 cm).  While in the turning curves; 

teleoperational navigation showed good results (12.84 

cm).  However curve test track interpreted as headland 

turning which is negligible compared with row guidance.  

Test results indicated that increasing movement velocity 

increased the offset error and steering frequency had 

important impact on the navigation accuracy.  However, 

for an accurate navigation, combination of the two 

evaluated methods would be recommended, i.e. between 

rows that crop line is detectable, vision system could 

handle accurately, while in turning path that there is no 

guidance sign, teleoperational control would perform 

properly, especially if the control is performed from a 

GUI in the farm office. 
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Abbreviations: 

 

3PH   Three Point Hitch 

ASABE  American Society of Agricultural and Biological 

Engineers 

CCD   Charge Coupled Device 

CVT   Continuous Variable Transmission 

ECU   Electronic Control Unit 

PGS   Global Positioning System  

GUI  Graphic User Interface 

HT   Hough Transform 

Ki  Coefficient of Integral  

Kp  Coefficient of Proportional 

Kd  Coefficient of Derivative 

M  Manual mode 

P  Position 

PTO   Power Take Off 

PV   Photovoltaic 

RGB   Red-Green-Blue color space 

RHT   Randomized Hough Transform  

RMSE   Root Mean Square Error 

ROI   Region of Interest 

SAPHT  Solar Assist Plug-in Hybrid electric Tractor 

T  Teleoperation mode 

V  Vision mode 

ϴ  Current angle 

ϴd  Desired angle 

 

 

 

 


