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Abstract: This study employed artificial neural network method for predicting the sprayer drift under different conditions 

using image processing technique. A wind tunnel was used for providing air flow in different velocities. Water Sensitive 

Paper (WSP) was used to absorb spray droplets and an automatic algorithm processed the images of WSPs for measuring 

droplet properties including volume median diameter (Dv0.5) and Surface Coverage Percent (SCP). Four 

Levenberg-Marqurdt models were developed to correlate the sprayer drift (output parameter) to the input parameters (height, 

pressure, wind velocity and Dv0.5). The ANN models were capable of predicting the output variables in different conditions 

of spraying with a high performance. Both models predicted the output variables with R2 values higher than 0.96 indicating 

the accuracy of the selected networks. Therefore, the developed predictor models can be used in precision agriculture for 

decreasing spray costs and losses and also environmental contamination. 
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1  Introduction1 

One of the seminal agents of environment’s 

pollution is pesticide drift during agricultural operations 

(Gil and Sinfort, 2005). The effective factors on spray 

drift are the technique of spray application, canopy 

properties, meteorological conditions, and 

physicochemical properties of the spray liquid (De 

Schampheleire et al., 2008). In recent years, many studies 

have been performed to reduce the spray drift and 

optimize the spray deposition (Jamar et al., 2010; Wolf 

and Gardisser, 2014). 

Industry, technology, education, and research are 

being employed to address these concerns. Hence, several 

standards and protocols including laboratory tests, 
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modeling, and under field condition tests are used to 

evaluate sprays (Fritzet al., 2012). Using the mentioned 

methods and protocols, researchers have studied spray 

flow (Deleleet al., 2005; Endalew et al., 2010; Endalew et 

al., 2010), dispersion of droplets (García-Santos et al., 

2011; Han et al., 2014), roll and pitch angles (Khot et al., 

2008), spray characteristics (Guler et al., 2006; Hewitt et 

al., 2009; Jamar et al. 2010), drift risk (Balsari et al., 2007; 

Qi et al., 2008), and canopy size (Escolà et al., 2013). 

However, spray drift profusely is influenced by some 

other factors such as equipment, application technique, 

spray properties, operator skills, and environmental 

conditions (Gilet al., 2014). 

Therefore, the main reason of studies in this field is 

to determine the most important factors and appropriate 

measures for minimizing the drawbacks of spray 

applications (Baetenset al., 2009). Different analytical, 

numerical and predictive models have been used to 

understand and reduce the drift phenomenon within a 
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virtual environment based on the real data of equipment, 

weather conditions and spray characteristics (Baetenset 

al., 2007; Bartzanas et al., 2013; Endalew et al., 2010; 

Kennedy et al., 2012; Lebeau et al., 2011). However, just 

in few studies Artificial Neural Networks (ANN) 

technique for predicting spray process characteristics has 

been developed. Pandaet al. (2001), studied the influence 

of process parameters, drying conditions, impact 

velocities and physical properties of sprayed solutions on 

the kinetics of granulation and on the morphology of the 

end product. They modeled the droplet deposition 

behavior on a single particle in fluidized bed spray 

granulation process using ANN led to useful results in 

understanding the growth kinetics in spray-coating 

process (Pandaet al., 2001). Krishnaswamy and Krishnan 

(2002), predicted the nozzle wear rates for four fan 

nozzles by using neural network technique and compared 

the results with the regression technique. In another study, 

a precision herbicide-spraying system was developed for 

real-time image collection and processing, weed 

identification, mapping of weed density, and sprayer 

control (Yanget al., 2003). Heinleinet al. (2007), fitted 

neural network models to the experimental data for 

mapping the structure of a liquid spray system along the 

spray cone. They reported that the general trends could 

not be well predicted by the ANN models and they 

concluded that it was due to unsteady spray conditions or 

incomplete atomization (Heinleinet al., 2007). 

In the current study, spray drift was investigated using 

a wind tunnel. For this aim, the droplet diameter and drift 

were measured by image processing technique and 

predicted by artificial neural network. Also various 

conditions including different wind speed, spraying 

height and pressure were considered. 

2  Materials and methods 

The research was conducted at Mechanical 

Engineering of Biosystems Department, Ilam University, 

Ilam, Iran in October, 2014. 

2.1 Experimental station and conditions 

As the Figure 1 shows, a setup was used including 

wind tunnel, sprayer system and mobile parts. The setup 

was implemented on the ground. For stimulating the 

tractor movement, a DC electromotor was used to power 

the mobile parts. An air compressor provided various 

spray pressures. A plate was used to hold the nozzle and a 

rail was provided to support and facilitate its automatic 

motion. The spraying liquid, water, was supplied in a tank 

under the pressure of an air compressor. 

 

Figure 1 The equipment used for the experiments 
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A wind tunnel was set for providing air flow in 

velocities of 0, 4, 8 and 12 km/h. At the entrance of wind 

tunnel, an anemometer (AM-4206, Lutron, Taiwan) was 

used for monitoring the air velocity. The spray pressure 

was evaluated with a calibrated gauge that it was 

connected to a capillary before the nozzle. The 

experiments were performed for three different pressures 

of 3, 4, and 5 bar. Temperature and moisture were 

monitored using a digital thermometer (TM-917, Lutron, 

Taiwan) and a hygrometer (HT-3015, Lutron, Taiwan), 

respectively. Also the setup had an electrical box 

including start and stop keys and a contactor for 

switching the power. 

For all of the experiments, an 11003 flat fan nozzle 

(TeeJet, US) was used. Parameters of nozzle operation 

were opted based on desired field application rates, plant 

and products limitations and management practices. 

Three spraying heights of 35, 50, and 65 cm were chosen 

as the distance between the nozzle’s orifice and the 

ground.  

In order to provide high quality data, water sensitive 

paper (WSP) was utilized for absorbing the spray droplets. 

WSPs were situated in the positions of 1, 2, 3, and 4 m far 

from the nozzle orifice (Figure 2). All of the experiments 

were replicated three times.

2.2Image Acquisition and Processing 

Images of WSPs were scanned by a photographic 

scanner (CanoScanLiDe 110, Vietnam) to be processed. 

Figure 3a indicates the WSP after absorbing water. As the 

figure shows, the yellow paper has blue spots as droplets. 

An automatic algorithm was developed in MATLAB 

2010a software (The Mathworks Inc., USA) for images 

processing. In the first step, images were imported to the 

software and borders and interrupted edges were removed 

(Figure 3b). Then, the red channels of the images were 

obtained from RGB images (Figure 3c). After this, the 

images were converted to binary images (Figure 3d). 

The number of spray droplets were figured out and the 

image of each droplet were separated in a special name. 

After calculating area and equivalent diameter of droplets, 

the surface coverage percent (SCP) was computed for 

each place, e.g. SCP1, SCP2, SCP3 and SCP4 

respectively for 1, 2, 3 and 4 m horizontal distance from 

the nozzle.

  

 

Figure 2Details of WSPs situated in four different positions for absorbing spray droplets 
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Then, the algorithm classified the droplets into five 

different groups depending on the diameter of the spots. 

After multiplying each diameter group in corresponding 

coefficients (Nuyttenset al., 2007), the Volume Median 

Diameter (VMD, Dv0.5), a diameter which smaller 

droplets from that constitute 50 % of the total droplet 

volumes, 10
th

 and 90
th

 percentile (Dv0.1 and Dv0.9) of 

volume diameter and Relative Span Factor (RSF) were 

calculated. For calculating these factors, first droplets 

scattered on WSPs are arranged in order of droplets sizes. 

Then, volumetric diameter and mean diameter of each 

group are determined. VMD is the diameter that divides 

all diameters into equal groups. Droplet size and 

spectrum have been documented as the most influential 

factor on drift (Wolf and Minihan, 2001). This variable is 

expressed in microns and usually drift potential is 

identified as the number of droplets smaller than a special 

amount in microns. This variable can be used to 

determine some valuable statistics including the percent 

coverage, the spray deposition rate, droplet size 

uniformity, drift profile, and swath pattern width (Wolfet 

al., 2000). In addition, RSF and drift was calculated as 

following (Nuyttenset al., 2007): 

RSF = (Dv0.9 - Dv0.1)/ Dv0.5 (1) 

Drift = SC1+SC2+SC3+SC4 (2) 

2.3 Data Analysis 

To predict the drift and VMD data, artificial neural 

network (ANN) method was used. Thus, ANN technique 

was employed to describe the relationships among 

operating conditions of spraying pressure, wind velocity, 

nozzle height, and RSF to associate them with drift. The 

information about inputs and outputs of the models have 

been presented in Table 1. 

Table 1 The inputs and target variables of neural 

networks 

No. 

Inputs 

No. of 

neurons of 

input layer 

Output 

Net. 1 Pressure, Wind Velocity, 

Height 

3 
VMD 

Net. 2 Height, Wind Velocity, 

RSF, VMD 

11 
Drift  

 

The Levenberg-Marqurdt model was used for 

training the network and the transfer functions of ‘tansig’ 

and ‘purelin’ were chosen for hidden and output layers, 

respectively. All data sets were divided into three groups, 

randomly: 70% for training the networks, 15% for 

validation of the networks and the last 15% for testing the 

networks. For sophisticated and non-linear relationships 

appropriate number of hidden neurons is necessary to 

correctly approximate the desired input-output 

relationships (Safa and Samarasinghe, 2013). Therefore, 

a)  b)  

c)  d)  

Figure 3 Image analysis, a) the original image b) trimmed image c) obtained red channel image and d) binary 

image 
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many various types of network topologies were tested to 

achieve the best predicting networks. One hidden layer 

was considered and the number of its neurons was 

changed to find the best model. A range of 3-20 neurons 

were tested in the hidden layer. MATLAB 2010a (The 

Mathworks Inc. USA) was used for designing and 

running of all ANN models.  

Many various neural networks were developed and 

the optimum values of network’s performance were 

obtained by trial and error. In order to estimate the 

performance of trained networks, three factors including 

mean square error (MSE) of validation data, correlation (r) 

of test data, and coefficient of determination (R
2
) for 

prediction of all data were used. 

3  Results and discussion 

Different types of neural networks topologies were 

developed to model the relationships between the input 

and output variables to produce models for predicting the 

volumetric median diameter and drift phenomenon. The 

performance of ANNs was evaluated using the mean 

square error (MSE) of validation data, correlation (r) of 

test data and R-square of prediction of all data. Tables 2 

and Table 3 provide an overview of performance of the 

neural networks for the best cases of topology for 

predicting VMD and drift, respectively. 

The best topology for predicting the VMD at each 

distance was 3-20-4 that 3 is the number of input data 

(pressure, wind velocity and height), 20 is the number of 

neurons in hidden layer and 4 stands for the number of 

output data (VMD at 1, 2, 3, and 4 m distance from 

nozzle). The mean square error (MSE, Figure4a) of whole 

validation set was 53.141.The correlation (r) for whole 

test set was obtained as 0.9958. The coefficient of 

determination (R
2
) for predicting VMD in each WSP 

position, i.e. 1, 2, 3 and 4 m, was 99.99%, 99.07%, 96.36% 

and 96.55%, respectively (Figure5).

Table 2Performance of ANN model to predict VMD for different positions of WSPs 

Topology 
Mean square error (MSE) 

of validation set 

Correlation (r) 

for test set 

Coefficient of determination (R2) for each WSP position 

1 m 2 m 3 m 4 m 

3-3-4 783.373 0.9344   98.5938   36.4524   19.0087   31.8315 

3-4-4 508.723 0.9511   96.8247   73.3971   41.4875   48.7400 

3-5-4 496.594 0.9559   97.2570   59.0028   69.8364   42.6915 

3-6-4 498.378 0.9602   98.5644   69.7867   54.0582   41.6353 

3-7-4 332.283 0.9664   99.0765   68.8292   78.9285   48.9701 

3-8-4 394.421 0.9620   97.6985   66.6990   75.8429   57.8639 

3-9-4 279.170 0.9752   98.8367   82.6077   81.2075   58.8401 

3-10-4 201.502 0.9811   99.6010   86.2159   80.3423   72.1938 

3-11-4 246.313 0.9769   98.7730   86.5984   82.1377   68.3326 

3-12-4 179.143 0.9834   99.5984   85.8166   87.5802   79.3748 

3-13-4 142.803 0.9976   99.7099   89.2078   92.6103   76.9835 

3-14-4 94.958 0.9927   99.8756   94.0679   94.1962   92.0767 

3-15-4 104.680 1.0   99.8598   88.6212   95.2870   89.2454 

3-16-4 77.669 0.9933   99.9447   96.8720   94.5484   90.8686 

3-17-4 67.961 0.9948   99.9828   98.9752   95.3588   92.7042 

3-18-4 59.917 0.9951   99.9829   98.9433   96.0927   93.4531 

3-19-4 53.701 0.9959   99.9912   99.0713   96.3628   96.4807 

3-20-4 53.141 0.9958 99.9914   99.0748   96.3641   96.5476 
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According to Table 3, the best topology for predicting 

the drift was gained with 11-9-1 structure. Eleven is the 

number of input data (height, wind velocity, RSF at each 

situation and VMD at each situation), 9 is the number of 

neurons in hidden layer and 1 is the number of output 

data (drift, D). In Figure 4b, the mean square error (MSE) 

of validation set was presented as 0.0073.The correlation 

(r) for test set of the model was 0.999. The coefficient of 

determination (R
2
) was 99.81 % (Figure6). 

Table 3Performance of ANN models to predict drift 

Topology Mean square error (MSE) 

of validation set 

Correlation (r) for 

test set 

Coefficient of determination (R2) 

for drift 

11-3-1 0.0141 0.9918 98.9805 

11-4-1 0.258 0.9932 98.6601 

11-5-1 0.0101 0.9971 99.6048 

11-6-1 0.0226 0.9980 99.4143 

11-7-1 0.0349 0.9975 97.7931 

11-8-1 0.0273 0.9960 99.1060 

11-9-1 0.0073 0.9987 99.8126 

11-10-1 0.0112 0.9862 99.1702 

11-11-1 0.0448 0.9966 99.1022 

11-12-1 0.0144 0.9897 99.2980 

11-13-1 0.0217 0.9225 96.0021 

11-14-1 0.0149 0.9934 99.4621 

11-15-1 0.0146 0.9984 99.7124 

11-16-1 0.0126 0.9983 99.7186 

11-17-1 0.0265 0.9973 99.4392 

11-18-1 0.0457 0.9950 98.3802 

11-19-1 0.0201 0.9901 99.2532 

11-20-1 0.1716 0.9830 96.2011 

 

 

(a) 

 

(b) 

Figure 4 The networks’ mean square error through training, validation and testprocesses to predict a) VMD and b) 

drift 
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The training process and learning the relationships 

between the input and output data is very important for 

finding the best model (Safa and Samarasinghe, 2013). 

The less amount of network’s error, the more accurate 

predictions will be. Figure 4 illustrates the values of 

training, validating, and testing errors for each neural 

network through learning processes. It shows that in each 

case the network’s error had reducing trend and was 

minimized after several epochs for both training and 

validating data. It is clear from the figure that mean 

square error values were decreasing while the number of 

iterations was rising. In this case, the network’s error is 

fed back to the neurons and used for adjusting the 

network weights. 

The training of each network was performed for many 

various architectures and different number of iterations. 

In all networks, training, validation and test lines 

converged after some ten iterations and the training line 

could reach the best point after a number of iteration 

(Figure5). This is a valuable property for the models 

because these trainings provide very fast and light neural 

networks. Also, the figure shows that the learning 

processes get closer and closer to develop the desired 

accuracy. As well, it indicates that the neural networks 

successfully have been trained and the chosen topologies 

were capable to produce proper ANNs for well-predicting 

the output variables. This is an important step because 

training of the network in a proper way is vital to map 

input-output relations (Aghbashloet al., 2012). 

Linear regression indicates the strength of the linear 

relationship between the independent and dependent 

variables. In this study, the predicted and real value of 

whole data (train, validation and test) for each neural 

network was plotted and studied (Figure5for VMD and 

Figure6for drift). As the figures show, all networks 

estimated the new data with proper R-squares. A general 

conclusion can be drawn from the results of two networks; 

ANN could model the spray drift and VMD accurately. 

Performance of both networks was acceptable whereas 

the results for predicting drift were gained a better 

accuracy. Both networks had one hidden layer with fewer 

than twenty neurons led to simple and fast networks 

avoiding over-fitting drawback.
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4  Conclusion 

The results of this study indicate that spray drift can 

be monitored and predicted. Image processing technique 

and ANN modeling were applied successfully to 

understand and describe the relationships between the 

spraying properties and target variables. Two neural 

networks were developed to predict drift and VMD of 

spray droplets through five sets of data processing 

 

(a) 
 

(b) 

 

(c) 

 

(d) 

Figure 5 The correlation between observed and predicted VMD data for: a) 1 m distance, b) 2 m distance, c) 3 m 

distance and d) 4 m distance from nozzle 

 

Figure 6 The correlation between observed and predicted values of spray drift 
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elements including pressure, wind velocity, height, RSF, 

and VMD. The data gathered by experimental tests, 

image analysis, and calculation of variables. Based on 

R-square and MSE of the networks, can produce satisfied 

correlation between observed and predicted data. 

Therefore, using image processing and ANN modeling 

provides a promising tool for estimating sprayer drift 

based on given series of input parameters. 
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