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Abstract: Average bird weight is the primary measure of crop yield and is the basis for calculating payment for the grower 

by the wholesaler. Furthermore the profit per bird is very small. Thus very tight control of growing process that is essential to 

ensure average bird weight is maximised. The important factors (air temperature, air humidity, carbon dioxide concentration 

and ammonia concentration) that affect the intake of feed and water must be kept at their optimum during the progress of the 

growing cycle. These factors can be influenced by activating burners and opening the vents on walls of the growing house. It 

then follows that the burning and venting strategy will be influential on the average bird weight of the crop.  

Currently the burning and venting strategy is based on notional ideal levels and data from wall mounted sensors. This suffers 

from two fundamental problems: firstly the strategy is determined by ideals that may not be suitable for all growing houses 

and secondly the data are not measured from the chickens own airspace. Thus the management strategy is based on a model 

that may not reflect reality and on data that may not reflect reality   

The “BOSCA” project addresses these problems by placing wireless environmental sensors into the chickens own airspace. 

This provides for direct measurement of the air experienced by the chickens and reports the recorded data in near real-time to 

a cloud based data management system. The sensor data are merged with the data from the growing house weighing scales in 

the cloud repository so a predictive model of average bird weight from the measured environmental data can be calibrated and 

validated. Furthermore, a time shift can be applied to the environmental data during model calibration and validation so the 

average bird weight can be forward predicted by 72 h(R2up to 0.89 with neural networks). This gives the grower advance 

notice of a deviation from ideal feeding and watering conditions and the likely consequences of failing to take remedial action 

such as turning on the burners or venting the house. 
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1  Introduction1 

It is anticipated that there will be very strong growth 

in the global poultry market into the next decade (Mulder, 

2012), thus it is essential that anyone wishing to maintain 

or grow their market share will have adopt the best 

standards and practices. Specifically it will be necessary 

for producers to maximise their average bird weights by 

maintaining high feed and water conversion efficiencies 
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throughout the production cycle (Van Horne and Bondt, 

2013).It should be noted that in a typical production cycle 

(five to six week period) average bird weights can 

increase from 50 g to 2.2 kg(Hall and Sandilands, 2007).  

The comfort and the contentment of the broiler 

chickens depend on the control of the house environment. 

More specifically this means that the air temperature, 

humidity, carbon dioxide (CO2) and ammonia (NH3) must 

be within acceptable parameters (Aviagen, 2009). These 

parameters can be maintained by an in-house 

environmental control system (Rotem, 2014) which 

adjusts the internal house environmental profile by 
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controlling the use of heaters, air conditioning and 

external vents and other environmental manipulation 

devices. However, burners that use gas or liquid diesel 

fuel to generate additional heat at the cost of also 

introducing additional CO2 into the house environment. 

The gas concentrations and importantly the house 

temperature and humidity can be lowered by opening 

vents on the walls of the house to allow fresh air to enter 

the house and stale air to escape (Aviagen, 2009). 

However, venting due to excessive gas concentrations or 

humidity may mean that the heaters need to be activated 

to maintain temperature.    

In addition to the economic requirements for close 

control of poultry house environments there is a legal 

requirement in respect of animal welfare and workers 

healthcare (Corkery et al., 2013) and it is insufficient to 

merely reduce flock density to guarantee animal welfare 

(Jones et al., 2005) so additional welfare supports 

arerequired. The trend in regulation is towards 

progressively stricter limits on the house environment but 

equally the grower does not want use the environmental 

manipulation mechanisms as they are costly to use 

(Jones-Hamilton, 2014). Thus, the solution is the 

optimum use of the environmental manipulation 

mechanisms, which is a type of Precision Livestock 

Farming (PLF), towards a reduction in production losses 

(Mollo et al., 2009) leading to better incomes, reduced 

environmental impact, increased product quality, earlier 

diagnosis of health risks and improved waste 

management (Hocquette and Chatellier, 2011). The 

principal characteristics of good PLF systems are 

continuous adequate sensing, dynamic mathematical 

models, target values for outputs and model based 

predictive controllers (Wathes et al., 2008). 

To implement a PLF solution, poultry growers 

typically install an automatic environmental control 

system which uses standard curves and the growers’ 

inputs to make process decisions. However, these systems 

suffer from a number of shortcomings in that they use 

mounted sensors and thus they are not in direct contact 

with the chickens own airspace. Hence, the 

environmental control algorithms must make their 

decisions based on data that may be unrepresentative. 

Similarly the decision making algorithms are generic may 

not be appropriate to the unique characteristics of the 

particular growing house.Another weakness is that there 

is no cloud sharing of data meaning the data is only 

available locally. 

Thus, there is an industry gap for a new PLF solution 

for poultry houses that can avail of data directly measured 

from the chickens own airspace so decisions can be made 

based on truly representative data. There is a further gap 

in using decision algorithms that are tailored to the 

uniqueness of the growing house in question that can be 

quickly calibrated and validated from a small number of 

training crops.  

In particular what be of great value would be a 

predictive facility that could estimate the likely impact of 

a loss of environmental control or a failure to maintain 

optimum environmental conditions. This would be an 

advance on the traditional predictive models of bird 

weight that estimate future weights based on past weights 

during that crop cycle. Thus such an environmental model 

could be optimised on a house by house basis after a 

period of training and testing. The traditional bird weight 

gain models do not have this capacity for optimisation 

nor do they have the ability to incorporate environmental 

data into their predictions. 

The decision making algorithms must have a 

substantial forward prediction capability so there is 

enough time to take remedial action before the problem 

becomes irrecoverable. Furthermore the longer the 

forward prediction period the better as there is more time 

for a manual intervention by the grower if required. The 

sharing of all of this data on a cloud platform will greatly 

enhance its usefulness as all interested parties will be able 

to benefit including the wholesaler, the retailer and the 

consumer. 
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2  Materials and methods 

2.1 BOSCA design 

Bespoke environmental sensing boxes suitable for use 

in poultry houses (each known as a “BOSCA”) were 

constructed by Shimmer Sensing (Dublin, Ireland); these 

consisted of a robust box design, sensors, a sensor board, 

a Raspberry Pi and a 3G communication device. The 

BOSCAs were programmed with appropriate firmware 

and software to record readings as comma separated 

values and to allow transmission over the 3G network. 

The environmental sensors chosen for suitability for the 

task were: a Sensirion (London, United Kingdom) SHT21 

temperature and humidity sensor, an Elektronik (Bremen, 

Germany) EE891 carbon dioxide sensor and a Winsensor 

(Zhengzhou, China) MQ137 ammonia sensor. Two 

variants of the sensor boxes were constructed; a 

“BOSCA-MOR” or big box which contains all the 

elements described and a “BOSCA-BEAG” or small box 

which does not contain gas sensors and a 3G 

communication device. The BOSCA-BEAGs 

communicated their data to any BOSCA-MORs within 

range. 

Calibration experiments were performed to verify the 

calibration curves that were embedded in the BOSCA 

firmware. The sensor boxes were placed into a culture 

cabinet (Binder, Tuttlingen, Germany) where 

temperature, humidity and gas concentrations could be 

manipulated. Inside the cabinet were a Davis Vantage 

Pro2 weather station (Davis, Hayward, California, USA) 

and a Geotech G100 CO2 gas detector (Geotech, 

Leamington Spa, United Kingdom). Special NH3 rich air 

was supplied by BOC gases (Dublin, Ireland) at 25mg/kg 

and 50 mg/kg. As a result some adjustments to the 

BOSCA firmware were required to edit the calibration 

polynomials. 

2.2 BOSCA deployments 

The BOSCAs were deployed in a growing house in 

County Monaghan, Ireland for two crop cycles. The 

schematics are shown in Figures 1 and 2. Each BOSCA 

was placed in this location for the full cycle. The data 

recorded were condensed into comma separated values 

(.csv) every 1 min for the BOSCA-MORs and every 10 

min for the BOSCA-BEAGs. The .csv files were 

immediately uploaded to a cloud server via the 3G 

connection using a standard file transfer protocol (ftp) 

process. A local copy of the sensor data repository was 

made on a Linux server in University College Dublin 

where the .csv were parsed by bespoke Python and Bash 

scripts to facilitate their entry onto a PostgreSQL 

database suitable for forensic queries and web portal 

interface. 

 

Figure 1Planar schematic of placement of sensor boxes in 

the growing house for the first crop cycle 
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Figure 2 Planar schematic of placement of sensor boxes 

in the growing house for the second crop cycle 

 

2.3 Data processing 

Time series data for each BOSCA and each sensor 

within the BOSCAs were extracted from the PostgreSQL 

database with standard SQL queries (e.g. SELECT 

VALUE from READINGS where SENSOR_ID = …) 

with a Python for Linux interface. The time series data 

were saved as an excel spreadsheet where it was joined 

with the daily average bird weight data provided by the 

chicken grower. To make the data comparable all of the 

time series were grid interpolated into hourly readings. 

The hourly readings were copied into the statistical 

software MINITAB (Minitab Inc, Cologne, Germany) for 

analysis by partial least squares regression (PLSR) and by 

neural networks (NN) in Matlab (The Mathworks, Natick, 

Massachusetts, United States of America). Sensor 

redundancy analysis was performed and both internal 

comparison and cross comparison predictive models of 

average bird weight in 72 hours’ time were generated. 

3  Results and discussion 

3.1 Sensor spatial redundancy 

A vital question for sensor deployment is the spatial 

density required to capture trends and patterns within the 

area of interest. Deploying too high a density is a waste of 

resources and could also add error to the data stream, 

conversely too low a density will cause potentially 

important variability in the area to be missed and 

consequently important process control decisions to be 

distorted. Redundancy in the time series data can be 

estimated by a correlation matrix and by extracting the 

eigenvalues from a principal component analysis of the 

time series matrix. This was performed for both crops 1 

and 2 and the results are shown in Tables 1 and 2. The 

correlation matrix shows the linear correlation between 

any pair of sensors for temperature and humidity, it also 

shows the average cross correlation for each sensor. The 

eigenvalues for each matrix is shown alongside the 

correlation matrix, this shows how much variance is 

explained by each successive principal component. It is 

important to note that BOSCA-BEAG8 in crop 1 and 

BOSCA-MOR200 in crop 2 only performed 

intermittently and their data were thus excluded from 

calculations.
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3.2 Sensor type redundancy 

The inclusion of an ammonia sensor comes at 

significant financial cost and thus if it was possible to 

estimate ammonia by other means the financial cost of 

the BOSCA-MORs could be substantially reduced. 

Experience of the industry is that ammonia levels track 

humidity levels as the crop progresses. To test this 

hypothesis a PLSR model was built using humidity, 

temperature and time elapsed as predictors of humidity. 

To account for possible non-linearity squared, cubic and 

Table 1Temperature and humidity correlation matrices and eigenvalues for the first crop 

Temperaturecorrelation 

matrix 
Mor300 Beag2 Beag3 Beag4 Beag5 Beag6 Beag10 Beag12 Beag13 Beag14 

 
Eigenvalues,% 

Mor300 
           

93.0 

Beag2 0.905 
         

0.905 3.4 

Beag3 0.936 0.96 
        

1.896 1.1 

Beag4 0.93 0.929 0.954 
       

2.813 0.8 

Beag5 0.882 0.941 0.944 0.905 
      

3.672 0.5 

Beag6 0.926 0.975 0.975 0.968 0.957 
     

4.801 0.5 

Beag10 0.921 0.906 0.936 0.917 0.862 0.923 
    

5.465 0.3 

Beag12 0.941 0.934 0.962 0.959 0.897 0.955 0.948 
   

6.596 0.2 

Beag13 0.932 0.882 0.921 0.955 0.844 0.925 0.953 0.962 
  

7.374 0.1 

Beag14 0.851 0.884 0.865 0.885 0.804 0.892 0.905 0.9 0.907 
 

7.893 0.1 

 
8.224 7.411 6.557 5.589 4.364 3.695 2.806 1.862 0.907 

   
             

Humiditycorrelation 

matrix Humid 

Correlation Matrix 

Mor300 Beag2 Beag3 Beag4 Beag5 Beag6 Beag10 Beag12 Beag13 Beag14 
 

Eigenvalues-Humid 

Eigenvalues,% 

Mor300 
           

93.4 

Beag2 0.937 
         

0.937 2.5 

Beag3 0.894 0.945 
        

1.839 1.2 

Beag4 0.934 0.964 0.907 
       

2.805 0.8 

Beag5 0.899 0.943 0.973 0.901 
      

3.716 0.6 

Beag6 0.897 0.944 0.973 0.907 0.98 
     

4.701 0.5 

Beag10 0.938 0.95 0.952 0.94 0.947 0.946 
    

5.673 0.3 

Beag12 0.924 0.942 0.944 0.957 0.943 0.952 0.962 
   

6.624 0.2 

Beag13 0.948 0.952 0.937 0.942 0.939 0.939 0.976 0.957 
  

7.59 0.2 

Beag14 0.859 0.869 0.909 0.845 0.92 0.941 0.908 0.909 0.915 
 

8.075 0.1 

 
8.23 7.509 6.595 5.492 4.729 3.778 2.846 1.866 0.915 

   
             

Table 2Temperature and humidity correlation matrices and eigenvalues forthe second crop 

Temperaturecorrelation 

matrix 
Mor300 Beag2 Beag6 Beag10 Beag12 Beag14 

 
Eigenvalues,% 

Mor300 
       

73.2 

Beag2 0.79 
     

0.79 9.3 

Beag6 0.617 0.601 
    

1.218 6.5 

Beag10 0.69 0.63 0.598 
   

1.918 5.4 

Beag12 0.863 0.738 0.667 0.719 
  

2.987 3.8 

Beag14 0.712 0.572 0.526 0.701 0.709 
 

3.22 1.8 

 
3.672 2.541 1.791 1.42 0.709 0 

  

Humiditycorrelation matrix Mor300 Beag2 Beag6 Beag10 Beag12 Beag14 
 

Eigenvalues,% 

Mor300 
       

59.0 

Beag2 0.392 
     

0.392 23.3 

Beag6 0.314 0.66 
    

0.974 6.7 

Beag10 0.605 0.183 0.135 
   

0.923 5.7 

Beag12 0.839 0.347 0.264 0.687 
  

2.137 2.9 

Beag14 0.841 0.299 0.237 0.562 0.82 
 

2.759 2.3 

 
2.991 1.489 0.636 1.249 0.82 0 
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interaction terms were included. The PLSR model was 

validated by 10-fold cross validation. In parallel a NN 

was developed using humidity, temperature and time 

elapsed as a predictor of ammonia. The NN was validated 

and tested with a 70-15-15 split of the data. The results of 

the PLSR predictive models are shown in Figure 3. The 

corresponding NN model could on average predict 

ammonia with an R
2
of 0.94. 

Similarly the inclusion of a carbon dioxide sensor also 

comes at noticeable financial cost although less than for 

an ammonia sensor and thus its elimination would reduce 

the overall costs. As with ammonia, experience within the 

industry is that there is a substantial tracking of humidity 

levels as the crop progresses. Identical PLSR models and 

NN were thus developed to test for redundancy of the 

carbon dioxide sensor. The results of the PLSR predictive 

models are shown in Figure 4. The corresponding NN 

model could on average predict carbon dioxide with an 

R
2
of 0.84.

3.3 Forward predictions of average bird weight 

The most useful outcome for a big data would be to 

provide an alert system for potential deviations from 

weight gain targets for the crop based on parameters that 

can be adjusted by the grower. The further into the future 

this model could predict the better but industry 

experience is that a few days would be adequate. Thus a 

72 h time shift was applied to the average bird weight 

data so sensor readings were matched to average bird 

weight 72 h into the future. The time series were then 

used for PLSR and NN modelling in two contexts. The 

first was where the data from both crops was merged to 

form a single dataset; this would produce a growing 

house specific model that may not generalise well in 

 
Figure 3 Results of a PLSR model of ammonia level in mg/kgfrom linear, squared, cubic and interaction terms 

of humidity, temperature and time elapsed 

 
Figure 4 Results of a PLSR model of carbon dioxide level in mg/kgfrom linear, squared, cubic and interaction 

terms of humidity, temperature and time elapsed 
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other growing houses. The second was where a model 

calibrated from one dataset was applied on the other and 

vice versa, this would produce more conservative results 

but would generalise better. The PLSR models were 

validated by 10-fold cross validation. The PLSR results 

are shown in Figures 5, 6and 7. The corresponding NN 

models were again validated and tested with a 70-15-15 

split of the data. The NN model predictions were R
2
 =  

0.89 for the combined crop dataset, R
2
 =  0.89 for 

forward predicting the crop 2 average bird weight from a 

model developed from the crop 1 data and finally R
2
 =  

0.79 for forward predicting the crop 1 average bird 

 
Figure 5Results of a PLSR model forward predicting average bird weight in grams from environmental 

parameters over all the collected crop data 

 
Figure 6Results of a PLSR model forward predicting average bird weight in grams in crop 2 from 

environmental parameters over crop 1 

 
Figure 7Results of a PLSR model forward predicting average bird weight in grams from crop 1 from model 

parameters calculated over crop 2 
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weight from a model developed from the crop 2 data.

3.4 Discussion 

The key question of sensor spatial redundancy has 

been investigated in detail. The spatial arrangement in the 

first crop places all BOSCAs in areas that have good air 

circulation and are free from major obstructions. Thus it 

is no surprise that there is a very strong intra sensor 

correlation and very high proportions of variance are 

expressed in the first few eigenvalues. This would 

support the view that where air can move freely a very 

low density of BOSCAs will be adequate to capture the 

trends and patterns of air temperature and humidity.  

The spatial arrangement in the second crop places 

some BOSCAs in the corners of the house where there 

would be less free circulation of air and some large 

obstructions are present. In this case the intra sensor 

correlations were much weaker except for the BOSCAs in 

the centre of the house. Similarly the proportion of 

variance expressed in the first few eigenvalues is much 

smaller. This would support the view that it is essential to 

have sensors deployed in the corners of the house to fully 

characterise the trends and patterns in the house. 

The results for predicting ammonia from the other 

environmental parameters and other crop data are 

adequate to replace the ammonia sensor in the 

BOSCA-MORs and to estimate the ammonia levels in the 

BOSCA-BEAGs. Additional gas calibration experiments 

to take place in the laboratories of University College 

Dublin can further refine the signal produced by the 

ammonia sensor to increase the robustness of the 

prediction equations. 

The results for predicting carbon dioxide from the 

other environmental parameters and other crop data 

would not be adequate to replace the carbon dioxide 

sensor for two main reasons. Firstly the carbon dioxide 

sensor will be substantially cheaper than an ammonia 

sensor and secondly poultry farmers and poultry house 

managers in Ireland place a very high importance on 

direct carbon dioxide readings in their experience when 

determining the correct moment to open the house vents, 

thus any predictive model of carbon dioxide would need 

to be extremely accurate to warrant replacement of a 

direct carbon dioxide measurement.  

The ability to forward predict by 72 hthe average bird 

weight based on current environmental data has ranged 

from good to excellent. Where the data from both crops 

were envisaged as a single dataset an excellent correlation 

with measured average bird weight was found. This 

would suggest that it is realistic to attempt to build house 

specific models of crop progression, these would not be 

expected to generalise well and it would be necessary to 

carry out similar experiments in each new house.  

Where the data from the crops were treated as distinct 

the results were mixed, an excellent prediction of the 

progression of crop 2 was possible based on a model 

developed with the crop 1 data, however the converse 

was not the case and it was more difficult to predict the 

progression of crop 1 based on a model developed with 

the crop 2 data. These models would be more likely to 

generalise as they have had to deal with fully external test 

data. The mixed results would suggest that it may be too 

ambitious to produce generalised models of crop 

progression based on environmental data as the 

differences between houses may be too difficult to 

capture without a vast program of experiments and the 

inclusion of house infrastructural features into the 

predictive models. 

The benefits of artificial intelligence based modelling 

approaches are marginal as the NN model prediction 

statistics are only a few percent at best beyond the 

classical multivariate statistical model predictions. As 

such it is recommended to use explicit methods that can 

be more clearly understood rather than opaque artificial 

intelligence methods. 

Further experimental data arebeing collected in the 

same chicken growing house and in other chicken 

growing houses in Ireland. This will add to the supply of 
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data which can enhance and refine the results found in 

this series of experiments. Similarly additional calibration 

experiments are being carried out with ammonia rich gas 

mixtures to further refine the ammonia sensor signal.   

4  Conclusions 

A comprehensive series of experimental work has 

been carried out to collect environmental data from a 

typical chicken growing house in Ireland. Key questions 

of sensor spatial deployment and which sensors are 

necessary to characterise the trends and patterns in the 

house that lead to weight gain in the crop have been 

substantially addressed. Important questions of how 

current environmental data can be used to forward predict 

crop weight gain have been explored and it has been 

proven possible to build a house specific predictive model 

that can forecast a few days into the future giving the 

grower enough time to take mitigating action. 
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