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Drying kinetic and shrinkage circumstance of Persian shallot bulb 
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Abstract: The drying kinetics and volume shrinkage of Persian shallot bulb were looked at during air-drying.  Six 
mathematical drying kinetics models were used, the non-linear page models represents good agreement with experimental data 
with average of Mean Relative Absolute Errors as 1.77%.  Liner and exponential models were fitted to volume shrinkage 
containing with coefficients of determination from 0.956 to 0.998. 
 

Keywords: drying model, shrinkage, Persian shallot 
 

Citation: Kouchakzadeh, A.  2014.  Drying kinetic and shrinkage circumstance of Persian shallot bulb.  Agric Eng Int: 
CIGR Journal, 16(2): 176－180. 
 

1  Introduction 

Persian shallot (Allium hirtifolium.) is one of the 
important edible alliums in Iran.  It is different from 
common shallot (Allium ascalonicum L.) for many 
characteristics.  The storage tissue of Persian shallot is 
bulb like (Figure 1), white skinned and usually consists of 
one main bulb or rarely a small bulblet attached to main 
bulb, the weight of each bulb being 8–15 times of garlic 
clove (Salunkhe and Kadam, 1998).  Bulbs of Persian 
shallot are eaten in Iran where they are called “Mooseer”.  
They grow wild across the cold mountains in different 
provinces of Iran, but common shallot is come from 
warm regions of west Asia (Salunkhe and Kadam, 1998).  
Most of Persian shallots are harvested from the wild, 
sliced, dried and sold.  Persian shallot is a nutritive plant 
with special taste and its dried bulb slices are used as an 
additive to yogurt and pickling mixtures.  Its powder is 
used as a tasty additive or spice for foods in Iran.  Also, 
it has medicinal effects; aqueous extract of Persian shallot 
has shown antibacterial effects (Ashrafi et al., 2010) and 
suppresses the growth of Trichomonas vaginalis 

                                                
Received date: 2013-10-22    Accepted date: 2014-05-24 
Corresponding author: Ahmad Kouchakzadeh, Department of 
Biosystem Engineering, Ilam University, Ilam, Iran.  Email: 
akouchakzadeh@mail.ilam.ac.ir.  Phone: 00989124532128.  Fax: 
00988412227015. 

(Ebrahimi et al., 2009).  

 
Figure 1  Wet Persian shallot bulb 

 

Drying is a mass transfer process consisting of the 
removal of water by evaporation from a solid, semi-solid 
or liquid.  This process is often used as a final 
production step before selling or packaging products.  
The final product must be solid, in the form of a 
continuous sheet (e.g., paper), long pieces (e.g., wood), 
particles (e.g., cereal grains or corn flakes) or powder 
(e.g., sand, salt, washing powder, milk powder).  A 
source of heat and an agent to remove the vapor produced 
by the process are often involved.  In bioproducts like 
food and grains, air heating increases the driving force for 
heat transfer and accelerates drying.  It also reduces air 
relative humidity, further increasing the driving force for 
drying.  In the falling rate period, as moisture content 
falls, the solids heat up and the higher temperatures speed 
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up diffusion of water from the interior of the solid to the 
surface.  However, product quality considerations limit 
the applicable rise to air temperature.  Excessively hot 
air can almost completely dehydrate the solid surface, so 
that its pores shrink and almost close, leading to crust 
formation, which is usually undesirable.  

Drying is one of the most important steps in Persian 
shallot production.  Almost all fresh Persian shallot 
bulbs (with about 70% moisture content, wet basis) have 
to be dried to low moisture content (10%) in short time 
after harvest.  The current drying method used in the 
Persian shallot industry is air-drying. 

One of the significant criteria in designing of 
industrial dryers is the forecasting of moisture contents of 
matter while drying.  These contents were decreased 
during dehydration procedure.  Shrinkage during drying 
is important in determining the quality of the dried 
product.  The purpose of this study was to investigate 
the suitability of the well-known mathematical models 
that were used to describe drying of biological materials 
and evaluation of shrinkage, in drying process of single 
Persian shallot bulb when fully exposed to air at different 
temperature and velocity.  No similar work has been 
done on Persian shallot. 

2  Materials and methods 

Moist Persian shallots were used in this study.  For 
each test, the best quality Persian shallots graded by 
experts were obtained from local market in Iran, Ilam 
province during March 2012.  After cutting the roots and 
stem, the sample bulbs were washed and blot dry with 
tissue paper.  The initial moisture contents of samples 
were determined by oven drying at temperature of 130°C 
for 6 h according to ASABE standard method (ASABE, 
2006).  

Single Persian shallot bulbs between 20 to 25 g weigh, 
4 to 5 cm polar diameter and 3 to 4 cm equatorial 
diameter was hanging on a long piece of wire of load cell 
on special dryer then the variation of weight of bulb 
recorded and moisture content were determined for any 
time.  The difference in weight was taken as water loss 
and expressed as kg water per kg initial weight.  All 
experiments were repeated in three times. 

2.1   Experimental procedures 
The test apparatus is shown in Figure 2.  The dryer is 

made up of a variable speed fan, an electric heater and 
ultrasonic humidity generator.  Air velocity was kept at 
1.0 and 2.00 m/s with an accuracy of ±0.1 m/s measured 
with an anemometer plus temperature and humidity meter 
(AM-4205A Lutron) with RS-232 USB computer 
interface flowed to air.  During the tests, the relative 
humidity was kept at 45%±3% by using an ultrasonic 
humidifier (UCAN). 

 
Figure 2  Schematic of the test apparatus 

 

When the samples were drying, the digital force 
gauge (FG-5005 Lutron) with RS-232 USB computer 
interface and an accuracy 0.01 g measured weight of 
Persian shallot bulb for any time.  For long term stability 
the drying temperature was controlled by fuzzy-supported 
controller at 34°C, 40°C, and 50°C with the sensitivity 
±1°C. 

Three digital image of each bulb sample was captured 
by a digital camera (E-510, Olympus, Tokyo, Japan) with 
macro lens (35MM, Zuiko, Tokyo, Japan), where the 
camera position was fixed in the 120 degrees angle of the 
horizontal field of vision  during examination.  The 
image size was 7256 × 5472 pixels, and the image 
resolution was about 240 pixels mm-1.  Changes in bulb 
surface were calculated from differences in pixel number 
(sum of three camera position) between images in each 
drying time using graphic software (Photoshop CS2, 
Adobe, San Jose, CA., U.S.A.). 
2.3  Drying models 

Drying curves were fitted with six moisture ratio 

models that were tried in several researches such as: 
thin-layer drying characteristics of garlic slices 

(Madamba et al., 1996), drying of eggplant and selection 
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of a suitable thin layer drying model (Ertekin and Yaldiz, 
2004), Dehydration characteristics of kastamonu garlic 

slices (Sacilik and Unal, 2005), modeling of hot-air 
drying of pretreated cassava chips (Tunde-Akintunde and 

Afon, 2010), modeling of vacuum-infrared drying of 
pistachios (Kouchakzadeh and Haghighi,  2011).  

Newton (Westerman et al., 1973), Page (Page, 1949), 
Henderson Pabis (Henderson and Pabis, 1961), 
Logarithmic (Yaldiz et al., 2001), Wang and Singh 
(Wang and Singh, 1978) and Verma et al. (Verma et al., 
1985) models are represented as Equation (1), Equation 
(2), Equation (3), Equation (4), Equation (5) and 
Equation (6), respectively.  These models have been 
used to describe the drying of biological materials.  

X = exp(−kt)       (1) 

exp( )nX kt            (2) 

exp( )X a kt             (3) 

exp( )X a kt c             (4) 

21X at bt             (5) 

exp( ) (1 )exp( )X a kt a gt          (6) 

In all above equations X=x/x0 shows the ratio of 
present moisture to its initial moisture in any time, t is 
time, and other factors are the empirical values that were 
calculated by curve fitting technique with using software 
(Table Curve V.1.12, Jandel Scientific, Germany).  The 
acceptability of models was determined by the Mean 
Relative Absolute Error (MRAE) according to Equation 
(7), Equation (8) and Equation (9) as (Willmott and 
Matsuura, 2005):  
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where, ei is the fractional error; E is the sum of absolute 

errors, and MRAE is the Mean Relative Absolute 
Errors. 

2.4  Shrinkage models 
The shrinkage is expressed as the relative change of 

volume, area or thickness (or diameter if spherical).  For 

volume reduction, it is expressed as Equation (10) (Chen 
and Mujumdar, 2009): 

0

VS
V

      (10) 

where, S is the shrinkage; V and V0 are the present and 
initial volumes.  The volumes may be substituted to 
number of pixels in three images in each drying time 
because of spherical similarity shape. 

Many linear and non-linear mathematical models of 
volume change in correlation with moisture content of 
samples have been suggested.  The liner models were 
used to describe carrot volume shrinkage (Hatamipour 
and Mowla, 2002) and exponential models were used for 
calibration of volume shrinkage in apple, carrot, potato 
and squid (Mayor and Sereno, 2004), which were 
presented respectively as Equation (11) and Equation 
(12): 

0( / )S A x x B      (11) 

0( / )B x xS Ae      (12) 

3  Result and discussion  

Table 1 shows the test results of Persian shallot bulb 
drying.  The values of present moisture on initial 
moisture in any time (X) were shown in Figure 3.  The 
experimented data (X) in 1 and 2 m/s air velocities were 
presented as a plot of differences of X vs. time (min) for 
each temperature as illustrated in Figure 4.  Maximums 
differences of X were 0.07, 0.135, and 0.031 in 34, 40, 
and 50°C between air velocities.  This shows a 
negligible difference, and cannot be justified using the 
higher air velocity.  Drying kinetics of some vegetables 
such as potato, carrot, pepper, garlic, mushroom, onion, 
leek, pea, celery, pumpkin and tomato showed that the 
effect of air velocity is considered lower than that of air 
temperature (Krokida et al., 2003). 

The calculated values for all six models were 
presented in Table 2.  For comparison of best model 
selection the MRAE were calculated in Table 3.  As 
shown in Table the Page models with lowest averages of 
MRAE 1.77% are the best fitted models and Henderson 
Pabis models with highest averages of MRAE 7.69% are 
the worst. 
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Table 1  The present moisture on initial moisture (X) of 
Persian shallot bulb 

Air velocity 1.00 m/s  2.00 m/s 

Air temperature 34°C 40°C 50°C  34°C 40°C 50°C 

0 1 1 1  1 1 1 

30 0.936 0.977 0.954  0.944 0.971 0.926 

60 0.883 0.947 0.902  0.893 0.929 0.871 

90 0.841 0.911 0.830  0.861 0.884 0.813 

120 0.806 0.876 0.776  0.769 0.840 0.762 

150 0.773 0.841 0.724  0.731 0.790 0.718 

180 0.717 0.802 0.677  0.694 0.756 0.670 

210 0.692 0.764 0.621  0.667 0.709 0.632 

240 0.641 0.725 0.559  0.627 0.660 0.590 

270 0.616 0.690 0.522  0.595 0.599 0.511 

300 0.589 0.655 0.483  0.568 0.560 0.474 

330 0.566 0.584 0.408  0.534 0.518 0.426 

360 0.545 0.552 0.380  0.485 0.440 0.393 

390 0.518 0.517 0.342  0.467 0.406 0.354 

420 0.496 0.484 0.304  0.438 0.383 0.302 

450 0.475 0.452 0.273  0.418 0.342 0.269 

Time 
/min 

480 0.463 0.428 0.242  0.393 0.293 0.231 

 
Figure 3  Variation of present on initial moisture of Persian shallot 

bulb (X) vs. time 

 
Figure 4  Variation of differences of X vs. time between 1 and 2 m/s 

air velocity 

Table 2  The parameters of calculated drying models  
Air velocity 1.00 m/s  2.00 m/s 

Air temperature 34°C 40°C 50°C  34°C 40°C 50°C 

Newton k 2.73e-3 1.94e-3 1.59e-3  2.48e-3 1.99e-3 1.58e-3 
k 0.56e-3 2.05e-3 3.40e-3 1.16e-3 0.19e-3 0.13e-3 

Page 
n 1.27 0.99 0.87 1.13 1.42 1.62 
a 0.96 0.97 0.98 0.97 0.95 1.12 Henderson  

Pabis k 2.62e-3 1.94e-3 1.62e-3 2.42e-3 1.86e-3 4.23e-3 
a 1.71 0.97 0.77 2.22 10.74 3.26 
k 1.27e-3 2.05e-3 2.27e-3 0.87e-3 0.15e-3 0.84e-3 Logarithmic 
c -0.69 0.22 -1.23 -1.24 -9.72 -2.22 
a -2.00e-3 -1.87e-3 -1.72e-3 -2.03e-3 -1.23e-3 -2.43e-3 Wang and  

Sing b 8.64e-7 1.30e-6 1.33e-6 9.62e-7 -7.92e-7 4.42e-7 
a 8.38 5.33 4.59 5.48 9.01 13.26 
k 4.77e-3 1.96-3 1.65e-3 4.04e-3 4.36e-3 8.20e-3 Werma,  

et al. 
g 5.23e-3 1.96e-3 1.63e-3 4.52e-3 4.82e-3 8.91e-3 

 

Table 3  The Mean Relative Absolute Errors (MRAE) 
Model Air  

velocity 
/m s-1 

Air  
temperature 

/°C Newton Page Henderson 
Pabis Logarithmic Wang and 

Sing 
Werma,
et al. 

34 6.22 1.31 8.05 1.65 1.73 1.21 
40 1.06 1.07 2.45 1.09 1.19 1.07 1.00 
50 1.83 0.55 2.18 0.83 1.38 3.94 
34 3.00 1.96 4.23 1.23 1.22 1.70 
40 5.33 1.67 7.41 1.58 0.90 1.69 2.00 
50 26.85 4.04 21.83 5.56 6.59 7.75 

Average 7.38 1.77 7.69 1.99 2.17 2.89 
 

The reduction in volume was observed during drying 
of the bulb.  At various moisture contents, the changes 
in shrinkage coefficients were calculated and the results 
were shown in Figure 5.  It was observed that the 
percentage shrinkage was higher in upper air temperature.  
This may be caused by the faster movement of moisture 
from the pulpy portion of the bulbs.  The shrinkage 
coefficients of volume followed a liner and exponential 
trend as shown in Table 4.  Related to coefficient of 
determination, in higher air velocity the exponential 
models have a better compatibility while in lower air 
velocity the liner model. 

 
Figure 5  Variation of bulb shrinkage during drying  
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Table 4  The parameters of calculated shrinkage models 

Air velocity 1.00 m/s  2.00 m/s 

Model Air 
temperature A B R2  A B R2 

34°C 0.06106 0.4322 0.976  0.00973 0.603961 0.959 

40°C 0.05272 0.4933 0.970  -0.269367 0.848406 0.963 Liner 

50°C 0.3606 0.6044 0.993  -0.014171 0.727294 0.982 

34°C 0.104168 1.67537 0.969  0.108654 1.84023 0.998 

40°C 0.121712 2.7338 0.962  0.125821 1.99380 0.996 Exponential 

50°C 0.138186 2.37491 0.956  0.123855 1.94449 0.996 

 

Conclusions 
The effects of air temperature and air velocity on the 

drying process of Persian shallot bulbs were investigated.  

The Page models were predicted the drying process and 

exponential and liner models for volume shrinkage.  

Temperature of air drying is the most significant factor of 

drying rate for all the examined materials, while the effect 

of air velocity is measured low. 
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