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Abstract: Modeling of soil elastic and permanent plastic volumetric strains (compaction) caused by loading from machinery 

vehicles using the modified Cam-clay soil constitutive model requires understanding the behaviors of compression and rebound 

parameters under unsaturated soil conditions.  Oedometer tests were conducted on a sandy loam, a loam, and a clay loam soil, 

all tropical soils, at three initial soil moisture contents and five maximum stress levels (50, 100, 200, 300 and 400 kPa).  The 

objectives were to investigate the effects of soil moisture content and maximum applied stress on the modified compression 

index (*) and modified rebound index (*) parameters of a modified Cam-clay soil model on the three soils and predict the 

compressibility indices using the shape-restricted modeling technique.  The clay loam soil showed higher compressibility at 

lower maximum stress levels and wet moisture conditions (-10 kPa soil moisture potential) but as the maximum applied stress 

increased (> 200 kPa), the modified compression index (*) variations with soil moisture content were insignificant (p > 0.05).  

A loam soil exhibited similar compression characteristics to a clay loam soil at 26.12% d.b. and 23.67% d.b., respectively.  For 

a sandy loam soil, both critical state parameters were less sensitive to the variations in soil moisture content.  The loam soil, 

which had an organic matter content of 6.33%, rebounded more than clay loam and sandy loam soils especially at higher 

applied stress values.  On average, the modified compression index (*) was about 23 to 36 times the modified rebound index 

(*).  Shape-restricted and quadratic model fittings are presented to explain the relationship between the critical state 

parameters and maximum applied stresses for each soil moisture content.  The model fitting results indicated that 

shape-restricted regression predicted the modified Cam-clay model parameters as a function of maximum applied stress (or 

pre-compression stress) at very low Average Squared Error Loss (ASEL) and did so better than parametric quadratic equations. 
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1  Introduction 

Soil compaction is an important soil process that 

modifies soil permeability to air and water, soil strength 

and root penetrability (Al-Adawi and Reeder, 1996; Hillel, 
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1998).  Excessive soil compaction commonly occurs 

when the external loading exceeds the pre-compression 

soil stress or loading on compactable soil conditions 

(Wiermann et al., 2000; and Raper, 2005).  Previous 

studies have indicated that crop production and the 

environment are negatively affected by excessive soil 

compaction (Radcliffe et al., 1989; Soane and van 

Ouwerkerk, 1994; Hamza and Anderson, 2005; Raper, 

2005).  Soil stresses from external loading exceeding 

internal soil structure strength can result in deeper and 

long-lasting subsoil compaction (Wiermann et al., 2000).  
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Remediation of subsoil compaction is often energy 

intensive, and for low organic matter sandy soils, the 

benefits are not necessarily sustainable since the soil 

reconstitutes to the compacted state quickly (Van den 

Akker et al., 2003; Raper, 2005).  In highly modernized 

agriculture, supplemental inputs such as drainage, 

intensive fertilization and irrigation can compensate the 

detrimental effects of compaction on crop production 

(Van den Akker et al., 2003).  Soil compaction problems 

are still of concern with the continuously increasing 

trends in vehicle weight; and continuous need for 

trafficking on weakly structured (less than 5-mm soil 

aggregates) and wet soil moisture state (plastic to 

swelling limit range) soil conditions for instance during 

seed-bed preparation and harvesting underground roots 

(Poodt et al., 2003).  The size of tractors currently used 

in less modernized agriculture such as in tropical regions 

of the globe may be relatively small, however, with 

trafficking on compaction-prone low organic matter and 

erodible tropical soils, repeated wheel passes, limited 

expensive inputs in the form of deep tillage, drainage, 

fertilization and irrigation, the magnitude of soil 

degradation from compaction is significant (Lal, 1994; 

Soane and van Ouwerkerk, 1994). 

Numerical modeling tools such as the finite element 

method are now becoming useful tools in soil compaction 

management from wheeling to reduce or prevent soil 

quality deterioration (Van den Akker et al., 2003).  The 

computational modeling can provide useful and relatively 

quick information to farm managers, soil protection 

environmental regulatory agencies, and manufacturers of 

tire and soil-engaging equipment.  

With the availability of powerful computers and 

recent advances in adaptive meshing for large-geometric 

deformations of elements, explicit numerical solvers and 

representative boundary constraints (ABAQUS, 2004), 

the finite element method is a good tool for simulating 

tire-soil and machine-soil interactions (Fielke, 1999; 

Mouazen and Neményi, 1999; Upadhyaya et al., 2002).  

Poodt et al. (2003) modeled tire-soil using PLAXIS finite 

element code (Plaxis bv, Delft, The Netherlands) to 

predict cap-plasticity compaction zones in soil from a 

wide range of vertical tire load and inflation pressure 

combinations (8 - 12 Mg vertical tire load and 100 -   

289 kPa inflation pressure) common in sugar beet 

harvesters.  Poodt et al. (2003) used stress-strain data 

from the uniaxial compression tests of Lobith fluvial 

loam soil to determine Cam-clay soil model parameters.  

The cap-plasticity zones in the soil model were obtained 

where finite element-predicted vertical stress exceeded 

the measured pre-consolidation stress.  The finite 

element method predicted stresses that were less than the 

pre-compression values.  Chiroux et al. (2005) modeled 

a loaded rolling rigid wheel (5.8 and 11.6 kN vertical load) 

using the Drucker – Prager soil model with ‘cap’ 

plasticity and ‘cap’ hardening parameters in finite 

element code of ABAQUS/Explicit (Dassault Systèmes 

Americas Corp., Waltham, Mass., USA).  The finite 

element model under-predicted the wheel rut depth 

(compaction) for the 11.6 kN vertical wheel load as 

compared to the experimental data.  

The fidelity of finite element modeling on agricultural 

soils is highly dependent on the availability of versatile 

soil constitutive models that account for heterogeneous 

and unsaturated soil conditions (Bailey and Johnson, 

1996; Wulfsohn and Adams, 2002).  Good soil 

constitutive models that account for variations in soil 

condition can improve the prediction soil responses from 

general vehicle loading for various tire and wheel 

characteristics, including vertical load, tire size, and tire 

inflation pressure. 

1.1  Soil constitutive models 

Soil constitutive models establish the relationship 

between applied stresses and strains.  Material elastic, 

hardening law, yield criterion, and plastic potential 

parameters are required to mathematically formulate the 

soil constitutive relationships.  Laboratory or field 

experiment tests such as uniaxial compression, triaxial, or 

shear box tests can be used to establish soil constitutive 

relationships.  It is essential to select the appropriate 

material testing representative of initial soil conditions 

and to measure the dominant soil strain behavior under 

the stress state of soil-machine interaction problems.  

The Cam-clay soil model, developed from critical 

state mechanics theory, successfully describes soil shear 

and volumetric behaviors upon normal and deviatoric 



12  July                Agric Eng Int: CIGR Journal   Open access at http://www.cigrjournal.org               Vol. 15, No.2 

applied stresses (Wood, 1990).  The cylindrical stress 

state (σ2 = σ3) triaxial test on normally consolidated 

saturated and remolded clay soil (Roscoe et al., 1958) 

was used to develop the original Cam-clay model.  The 

Cam-clay soil constitutive model uses three boundary 

equations and requires five constitutive soil parameters to 

explain the elastic behavior, Mohr-Coulomb, plastic 

hardening (soil compaction) and pre-consolidation stress.  

The three critical state soil model equations are 

Normal Consolidation Line (NCL) for primary loading 

responses (Equation (1)) in mean normal stress (p) vs. 

specific volume (ν); Unloading-Rebound Line (URL) for 

rebound or swell responses on the p-ν plane (Equation 

(2)); and Critical State Line (CSL) for the critical state 

failure on the p-deviatoric stress (q) plane (Equation (3)) 

(Atkinson and Bransby, 1978).  

Normal Consolidation Line (NCL): A straight line 

in the logarithmic scale of the compression plane ν vs. 

ln(p), with q = 0 and is given by: 

ν = ν - ln(p)     (1) 

The Unloading/Rebound Line (URL): Represents 

soil rebound or recovery after load removal: 

ν = ν - ln(p)     (2) 

The Critical State Line (CSL) on the p-q plane: 

Represents the yield locus plane and is defined as: 

qcs = M pcs      (3) 

The slope parameter of CSL in the q-p plane, M, is 

related to the angle of internal friction, , of the 

Mohr-Coulomb failure criterion (Chen and Mizuno, 1990) 

according to: 
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where σoct and oct are octahedral normal and shear 

stresses, respectively. 

The Cam-clay material model with the “cap 

hardening” option has been integrated into finite element 

codes such as PLAXIS (Brinkgreve and Vermeer, 1998) 

and ABAQUS (ABAQUS, 2004).  The quasi-empirical 

macro soil model of COMPSOIL (O’Sullivan et al., 1999; 

and Defossez et al., 2003) also utilizes the critical state 

soil parameters for soil compaction modeling.  The 

modified Cam-clay soil model parameters needed in the 

PLAXIS material model (Brinkgreve and Vermeer, 1998) 

are Poisson’s ratio (), modified compression index (*), 

modified rebound index (*), cohesion (C), angle of 

internal friction (), dilatancy angle (), Ko –parameter 

(Ko =M) and pre-consolidation stress (pc).  

1.2  Determination of soil compaction (hardening) 

model parameters 

The major principal stress (1) is a dominant stress 

controlling compressive behavior of soils upon loading 

from wheels (Söhne, 1958; Koolen and Kuipers, 1983).  

Cyclic uniaxial compression tests on soil cores can 

sufficiently simulate soil response at tire-soil interaction 

under the major principal stress loading (Koolen, 1994) 

and may represent soil behaviors in contact with tires at 

least twice, for instance, between the tractor front and 

rear tires (O’Sullivan and Robertson, 1996).  The 

primary loading up to a maximum applied stress level 

results in the soil volume compression that tends to 

partially recover during unloading.  Numerous studies 

were conducted to determine critical state soil parameters 

using an oedometer, triaxial and shear box tests on 

laboratory remolded soil specimens (Petersen, 1993; 

O’Sullivan et al., 1996; Smith et al., 1996; Adams and  
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Wulfsohn, 1998) and on intact core samples from fields 

(O’Sullivan and Robertson, 1996; Kirby and O’Sullivan, 

1997).  The studies indicated that critical-state soil 

parameters for unsaturated agricultural soils varied by 

quality and preparation of soil specimens, soil moisture 

conditions and stress paths.  Bailey and Johnson (1996) 

and Wulfsohn and Adams (2002) noted the challenges for 

accurate prediction of soil compaction behaviors on 

unsaturated soils are availability of less disturbed soil 

samples and tests that are less costly, simple and quick. 

In our study, the modified compression index (*) and 

modified rebound index (*) parameters, as influenced by 

soil moisture and estimates from uniaxial compression 

tests were considered as most influential on the soil 

compaction behaviors.  In this article, the modified 

compression index (*) and modified rebound index (*) 

are computed from the slope of the primary compression 

line (Cc) and the slope of the unloading-rebound lines (Cs) 

in graphs of void ratio, e, vs. Log σ1, for uniaxial 

compression (oedometer) tests using Equations (5), (6) 

and (7) (Brinkgreve and Vermeer, 1998).  The equations 

take into account the initial packing state expressed as 

initial void ratio and Poisson’s ratio for the elastic 

behavior. 
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where, *= Modified compression index; * = Modified 

rebound index;  = Poisson’s ratio; eo = Initial void ratio; 

Cc = Slope of primary compression line; Cs = Slope of 

unloading-rebound line; e1 and e2 = Void ratios along the 

compression curve; and 1 and 2  = Stress values along 

the compression curve. 

The formula used to estimate Cs is similar to that of 

Cc (Equation (6)) except the former uses void ratio (e) 

and log-stress () values from the rebound curve of the 

oedometer test data.  Poisson’s ratio (), an elastic 

parameter, is important in the unloading phases.  Its 

value usually ranges between 0.1 and 0.2.  A Poisson’s 

ratio of  = 0.2 was assumed after Poodt et al. (2003) for 

modeling agricultural soils.  Initial void ratio values (eo) 

were obtained from the void ratio at the pre-load stress 

(10 kPa) of the oedometer tests that vary with soil type, 

soil moisture content and maximum principal stress. 

Studies of the variability of the modified Cam-clay 

model parameters under a wide range of soil moisture 

contents and loading magnitudes on tropical soils are 

limited.  Besides utilizing simple tests to determine the 

soil mechanical parameters, surface response models 

trained from scattered test data are needed to quickly 

generate soil model parameters for unsaturated soils.  

Once validated from test data, the surface response 

models can be looped into an inverse optimization 

process flow with finite element analysis solvers and can 

be used to further train the soil model parameters to 

improve simulation-based support of soil-wheel 

interaction problems.  Based on previous studies and 

empirical inspection of the relationship of the Cam-clay 

model parameters and soil moisture, the implementation 

of a non-parametric shape-restricted regression model 

was investigated for agricultural tropical soils.  

1.3  Objectives 

The main objectives of the study were: 1) to 

determine the modified compression (*) and rebound (*) 

indices of the Cam-clay soil model on clay loam, loam 

and sandy loam for unsaturated soil conditions; 2) to 

investigate the effects of soil type, moisture content and 

maximum axial stress levels on the modified compression 

(*) and rebound (*) indices; and 3) to introduce a 

nonparametric regression model to predict the modified 

compression (*) and rebound (*) indices. 

2  Materials and methods 

2.1  Soil characterization  

Soil samples for oedometer tests were collected from 

three agro-ecological zones in Eritrea, namely the central 

highland (21o28' 30.62" N 49o50' 42.22" E), the western 

lowland (15o47' 00.00" N 38o27' 00.22" E), and the 

coastal plains (15o48' 55.83" N 39o04' 15.87" E) (Tekeste, 

1999).  According to FAO-soil classification 

(FAO-UNESCO, 1988), the dominant soils in the central 



14  July                Agric Eng Int: CIGR Journal   Open access at http://www.cigrjournal.org               Vol. 15, No.2 

highland, western lowland and coastal plains are 

classified as Lixisols, Leotosols, and Fluvisols, 

respectively.  The soils physical and chemical properties 

including particle size distribution, organic matter content, 

soil acidity (pH), calcium carbonate, particle density and 

soil moisture retention information are given in Table 1. 

 

Table 1  Soil physical and chemical properties from soil sampling sites at central highland, coastal plains and western lowland zones 

Site Name 
Particle 
density 
/g cm-3 

Soil moisture content 
(-10 kPa soil moisture 

potential)/% d.b. 

Particle size distribution1 
Textural 

class2 
Organic 
matter/% 

Soil pH 
(1:2.5 KCl)3 

CaCO3 
/% 

S/% Si/% C/% 

Central highland 2.81 34.00 26.68 37.84 35.48 CL 5.59 6.03 0.31 

Coastal plains 2.76 33.82 41.23 38.92 19.84 L 6.33 7.6 0.24 

Western lowland 2.72 14.09 68.69 11.7 19.61 SL 2.22 6.98 0.88 

Note: 1 S - sand fraction, Si - silt fraction, C - clay fraction; 2 CL - Clay Loam, L - Loam, SL - Sandy Loam; 3 Soil pH was measured in potassium chloride (KCl) soil 

solution 1:2.5 water: KCl ratio. 

 
2.2  Experimental design 

The oedometer testing experiment was arranged using 

a split-plot factorial design with three replicates.  The 

soil type was considered as the experimental block, each 

having three moisture levels as the main plot treatments, 

and five maximum stress levels as the subplot treatments.  

For each soil type, the remolded soil samples (5-mm 

sieved aggregates) were uniaxially compressed from 

pre-load stress to five maximum stress levels.  Three soil 

moisture levels, five maximum stress levels, and three 

replications (3 × 5 × 3) gave 45 tests for each of the three 

soils. 

2.3  Uniaxial soil sample preparation 

Soil samples were prepared into three soil moisture 

levels representing typical field soil moisture conditions 

occurring during field operations, starting from a plastic 

soil state.  Soil samples sieved through 5 mm were first 

brought to a soil moisture potential of -10 kPa using a 

sandbox apparatus (Eijkelkamp Agrisearch Equipment, 

Giesbeek, the Netherlands). 

The three soil moisture levels were prepared 

according to the following criteria: soil moisture level – 1 

(“wet’): SM -10 kPa; soil moisture level – 2 (“moist”): SM 

air dry + (5/6) (SM -10 kPa - SM air dry); and soil moisture 

level – 3 (“drier”): SM air dry + (2/3) (SM -10 kPa - SM air dry).  

Soil samples from the sandbox apparatus at soil moisture 

potential of -10kPa were oven-dried for 24 hrs at 105oC 

to determine the soil moisture content (SM –10 kPa).  Soil 

samples at -10 kPa soil moisture potential were air-dried 

to prepare samples for the soil moisture level - 2 (“moist”) 

and soil moisture level - 3 (“drier”).  

2.4  Uniaxial compression test 

The uniaxial compression or oedometer test is an easy 

and a fast method to obtain stress and strain data on 

agricultural soils for modeling soil compaction (Koolen, 

1974).  In the uniaxial compression test, a vertical 

uniaxial stress was applied using axial loading of a 

cylindrical piston and the soil volume compresses in the 

axial direction with increasing stress until the pre-selected 

maximum stress level was reached.  The loading piston 

moving direction was then reversed allowing the soil 

volume to rebound (swell).  The cylinder containing the 

soil was rigid, so there were no strains in the horizontal 

direction.  

Soil samples from the three soil moisture levels were 

filled into metal cylinders (7.5 cm in diameter and 5 cm 

in height) and subjected to cyclic (loading-reloading) 

uniaxial compression loading using a material testing 

machine (Zwick model 1455 material testing machine 

(Zwick GmbH and Co. KG, Ulm, Germany)).  The 

parameters of pre-load stress, lowest reversal stress point, 

highest reversal stress point (maximum stress), sampling 

frequency and test speed were defined in the control unit 

of the material testing machine.  Normal stress-strain 

primary compression data were collected using a pre-load 

stress value of 10 kPa and increasing to the highest 

reversal stress (maximum stress) values.  Data for the 

rebound line (strain recovery displacement-force data) 

were collected by decreasing from the highest reversal 

stress to the lowest stress point (5 kPa).  The 

compression speed was 0.5 mm s-1.  The displacement 

and force data were recorded at a frequency of 50 Hz.  
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For each uniaxial compression test, the sample height was 

measured at the preload stress (10 kPa) to compute initial 

void ratio values (eo) for the modified compression index 

(*) and rebound index (*) computations.  

2.4.1  Determination of critical state soil model 

parameters: Modified compression index (*) and 

rebound index (*) 

The slope of the normal compression and reloading 

lines from each run were determined from the graphs of 

log stress vs. void ratio referring to Cc and Cs, 

respectively.  Then the modified compression index (*) 

and modified rebound index (*) were derived using 

Equations (10) and (11).  A Poisson’s ratio of 0.2 and 

initial void ratio values at pre-load stress (Table 2) were 

used to convert the Cc and Cs to the modified 

compression index (*) and modified rebound index (*).  

A Poisson’s ratio of 0.2 is typically used value in 

modeling agricultural soils (Poodt et al., 2003).  
 

Table 2  Values of initial void ratio (eo) measured at preload stress (-10 kPa) from the uniaxial compression test for clay loam,  

loam and sandy loam 

Clay Loam (CL)  Loam (L) Sandy Loam (SL) 

Soil moisture content 
/% d.b. 

Initial void ratio (eo)  
Soil moisture content 

/% d.b. 
Initial void ratio (eo) 

Soil moisture content 
/% d.b. 

Initial void ratio (eo) 

26.12 2.72  23.67 2.14 10.49 1.58 

29.94 2.71  30.87 2.32 12.29 1.47 

34.00 2.57  33.82 2.20 14.09 1.53 

 

Once the mechanical parameters were determined, 

statistical analysis was done using PROC MIXED in SAS 

(SAS Institute Inc., Cary, NC, USA) with a significance 

level,  = 0.05, and for all possible pairwise comparisons 

on the effects (soil moisture and maximum stress).  

Least squares means (LSMEANS) were used. 

2.5  Curve fitting using nonparametric regression  

In typical regression analysis, a straight line is fit to 

the data when the relationship between the response 

variable and a linear combination of the predictors is 

linear.  Otherwise, polynomial, logarithmic or 

exponential regression is typically used to fit the data.  

In many situations when the underlying regression 

function or scatter plot has a particular shape or form, the 

fitted model can be characterized by certain order or 

shape restrictions, a shape-restricted class of regression 

function will be preferred.  This regression method 

provides a flexible fit to the data and improves regression 

predictions.  Detailed exposition of widely studied 

regression methods, particularly polynomial regression 

and shape-restricted regression are given in Weisberg 

(2005) and Robertson et al. (1988), respectively.  

Shape-restricted regression is a nonparametric approach 

for building models whose fits are monotone, convex or 

concave in their covariates.  These assumptions are 

commonly applied in biology (Obozinski et al., 2008); 

medicine (Schell and Singh, 1997); psychology (Kruskal, 

1964); ranking (Zheng et al., 2008); statistics (Barlow and 

Brunk, 1972); and survival analysis (Meyer and Habtzghi, 

2011).  

Initial observation of uniaxial compression test data 

for different soil moisture conditions in our study 

indicated that the relationship between the modified 

compression and maximum applied stress levels; rebound 

index values and maximum applied stress levels have 

certain shapes.  The shapes differ, depending on soil 

moisture content.  In addition, from the scatter plots of 

Figures 1 and 2, there are some curvatures in the 

relationship between maximum applied stress and 

modified compression index (*), and maximum applied 

stress and modified rebound index (*) at different levels 

of soil moisture content.  Use of shape-restricted 

regression seems appropriate for investigating the 

relationship between maximum applied stress and soil 

mechanical parameters.  Previous studies also support 

the need to evaluate shape-based assumptions.  For 

instance, O’Sullivan et al. (1999) observed quadratic 

forms of the relationship between slopes of NCL and soil 

moisture, and URL and soil moisture, for sandy loam and 

clay loam soils.  Defossez et al. (2003) also found higher 

quadratic coefficients for estimating critical mechanical 

parameters with water content on loess and calcareous 
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soils.  Comparison of shape-restricted predictions was 

also made with quadratic regression to observe the 

performance of regression modelling. 

 

Figure 1  Modified compression index (* × 10-2 (e.g. “5” on vertical axis indicates * = 0.05)) values as a function of maximum applied 

stress for clay loam, loam and sandy loam soils at three soil moisture levels.  Vertical bars indicate standard error values 

 

Figure 2  Modified rebound index (*× 10-2 (e.g. “0.2” on vertical axis indicates * = 0.002)) values as a function of maximum applied 

stress for clay loam, loam and sandy loam soils at three soil moisture levels.  Vertical bars indicate standard error values 

 

The shape-restricted model is defined as:  

Let yi = f(xi) + β1m1i + β2m2i + εi, for i=1,…, n.    (8) 

where, xi is maximum applied stress; yi is modified 

compression index or modified rebound index; f(xi) is any 

function belonging to the shape restricted family, β1 and 

β2 are unknown parameters, and εi are independently 

distributed N (0,1) random errors.  The mji variables are 

indicator variables. 
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The constrained set over which we minimize the sum 

of squared errors is constructed as follows: let θi = f(xi) 
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     



 
  

  
  

Any of these sets of inequalities defines m half spaces 

in Rn, and their intersection forms a closed polyhedral 

convex cone in Rn.  The cone is designated by 

 0:   AC  for m × n constraint matrix A.  Here, 

1m n   for monotone, nondecreasing convex and 

2m n   for convex.  The nonzero elements of the   

m × n dimensional constraint matrix A are: for monotone 
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constraints, Ai,i = -1 and Ai,i+1=1 for 1 1.i n     For 

convex, Ai,i = xi+2 - xi+1, Ai,i+1 = xi - xi+2 _and Ai,i+2 =  

xi+1 - xi  for 1 2.i n     For example, if n = 5, the 

monotone constraint matrix A is given by 

1   1  0   0   0

0  -1   1    0   0

0   0  -1   1    0

0   0    0 -1    1

A

 
 
 
 
 
 

. 

If n = 5 and the x−coordinates are equally spaced, the 

nondecreasing concave and convex constraints are given 

by the following constraint matrices, respectively: 

 -1   2  -1   0   0

0  -1   2   -1    0

0   0  -1    2    -1

0   0    0  -1     1

A

 
 
 
 
 
 

 

-1   2  -1   0   0

0  -1   2   -1    0

0   0  -1    2    -1

A

 
   
 
 

 

2.5.1  Implementation of the shape-restricted regression 

algorithm 

Recall that the ordinary least-squares regression 

estimator is the projection of the data vector y on to a 

lower-dimensional linear subspace of Rn, whereas the 

shape-restricted estimator can be obtained through the 

projection of y on to an m dimensional polyhedral convex 

cone in nR  (Meyer, 1999).  We have the following 

useful proposition that shows the existence and 

uniqueness of the projection of the vector y on a closed 

convex set (Robertson et al., 1988). 

Proposition 

Let C be a closed convex subset of Rn.  For 
nRy  

and C  , the following properties are equivalent.  

1) ˆ|| || min || ||Cy y     

2) ˆ ˆ, 0y       for all C   where the 

notation , i ia d a d  refers to the vector inner 

product of a and d. 

3) For every ny R , there exists a unique point 

where ˆ C  satisfies (1) and (2), ̂  is said to be the 

projection of y onto C. 

Let V be the linear space vector spanned by        

I = (1,..., 1)T for a monotone, nondecreasing convex, and 

nondecreasing concave, and let V be linear space spanned 

by I = (1, ..., 1)T and X = (x1, ..., xn)
T for convex regression. 

Note that V∈C in both cases.  The constraint cone can 

be specified by a set of linearly independent vectors 

1,..., n   as 
1

: 0
m

j
j j

j

C b v b


     and v∈V.  

where m=n-1 for monotone, nondecreasing concave, 

nondecreasing convex and m=n-2 for convex. The 

vectors δj can be obtained from the formula         

[δ1,..., δn]T
 = (AAT)A.  

For example, any convex vector θ∈C is a 

nonnegative linear combination of the δj vectors plus a 

linear combination of I and X. 

ˆ j
j

j J

b v 


   

The constrained least squares estimate, ̂  can be 

found through Ordinary Least-Squares Regression (OLS) 

using v∈V and δj for j∈J as regressors.  To find the set 

J and ̂  the mixed primal-dual bases algorithm of 

Fraser and Massam (1989) was used.  Further details on 

the shape restricted least square estimator are found in 

Meyer (1999). 

The implementation of the algorithm was coded in R, 

statistical software and the R-code can be obtained upon 

request from the authors.  The code can also be 

integrated into process flow software packages using 

user-selected surface response model options.  

3  Results and discussion 

3.1  Critical state parameter modified compression 

index (*) 

The uniaxial compressibility of the clay loam and 

loam soils (Figure 1) showed statistically significant 

variations with change in soil moisture content.  In the 

clay loam soil, the modified compression index values 

increased with the increasing soil moisture content for all 

the stress levels, with the highest values being observed at 

the wet soil moisture conditions (36.09 % d.b.) (Figure 

1a).  There was a significant interaction effect of soil 

moisture content and maximum stress (p = 0.006) on the 
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modified compression index (λ*) on the clay loam soil.  

Within each soil moisture content, there were no 

statistically significant differences in the modified 

compression index for higher stress levels ( 200 kPa).  

At low applied stresses, the compression behavior of the 

clay soil appeared to be more strongly affected by the soil 

moisture content than at the higher applied stresses.  The 

explanation for the large differences in compressibility at 

the low stress level may be that at high soil moisture 

content, the soil water films lubricate the soil particles so 

they are more easily reoriented into a denser state.  A 

similar observation was made by Holtz and Kovacs (1981) 

that for wet soil conditions clay soils are generally highly 

compressible under low applied stress and less 

compressible under high applied stress. 

Generally the influences of soil moisture and 

maximum applied stress levels on the modified 

compression index (λ*) of the loam soil appeared similar 

to those of the clay loam soil (Figure 1b).  On the loam 

soil, there was a strong statistical interaction effect of soil 

moisture and maximum stress on the modified 

compression index (P < 0.0001).  At the soil moisture 

content of 23.67 % d.b., a drier state, the loam soil 

showed less compression at low applied stress and 

increased with increasing the applied stress values.  The 

low modified compression index (λ*) at this relatively dry 

soil moisture content was likely associated with the high 

organic matter content (6.33 %) of the loam soil.  As 

explained by Arvidsson (1998), an increase in organic 

matter decreases soil compactibility.  

As is shown in Figure 1c, the modified compression 

index values of the sandy loam soil did not vary 

significantly by soil moisture (P = 0.169) and stress (P = 

0.302).  Horn and Lebert (1994) found that coarser 

textured soils are less compressible than fine textured 

soils.  Unlike the clay loam soil, the sandy loam showed 

less variability with the change in soil moisture content 

(10.49 %, 12.29 %, and 14.09 % d.b.).  On the sandy 

loam soil, the modified compression index showed a 

decreasing trend with an increase in the maximum 

applied stresses even though the influence was not 

statistically significant.  This may indicate that for soils 

with a high sand content, once the soil particles are 

re-oriented into a denser state under the low maximum 

applied stress, the soils tend to develop strong resistance 

for further compression.  

3.2  Critical state parameter: Modified rebound 

index (κ*) 

The values of modified rebound index (κ*) for clay 

loam, loam and sandy loam soils are shown in Figure 2a, 

b, and c.  Overall, for the applied stress levels, the clay 

loam and loam samples tend to rebound more when the 

soil moisture content was wetter than when the soil was 

drier.  For the loam soil, the interaction of soil moisture 

content and stress significantly affected the modified 

rebound index (κ*) (P < 0.0001).  For the clay loam soil, 

at only the lowest (50 kPa) and highest (400 kPa) stress 

values, the interaction of soil moisture content and stress 

significantly affected the modified rebound index (κ*) (P 

< 0.0001). 

At the intermediate stress levels, the rebound index 

(κ*) was nearly similar for the three soil moisture contents.  

The loam soil showed high rebound behavior with a 

modified rebound index values (κ*×10-2) range of -0.300 

to -0.005, i.e. the κ* range is from -0.00300 to -0.00005, 

and were higher than those for the sandy loam and clay 

loam soils.  The strong rebound behavior of the loam 

soil could be associated with the high soil organic matter 

content (6.33 %).  The loam soils in Sheeb, in the 

eastern coastal plains of Eritrea, are situated in seasonal 

river beds (locally called wadis) and annually receive an 

average of 143 t ha-1 of sediments and organic materials 

(Tesfai and Strek, 2002).  Similar to the modified 

compression index behavior, rebound characteristics of 

the sandy loam soil were generally low and not as 

sensitive to soil moisture variations as for the clay loam 

and loam soils.  

The values of the modified rebound index were 

smaller than the values of modified compression index 

for all of the soil types and treatment factors (soil 

moisture content and maximum stress).  Averaged by 

soil moisture content and stress levels, the ratio of λ*/κ* 

for clay loam, loam and sandy loam soils were 32.75 ± 

3.21; 23.00 ± 2.68; and 36.46 ± 3.54, respectively.  The 
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rebound index was approximately 3%-4% of the 

compression index. 

The compression and rebound index values obtained 

on the studied soils were compared to those from other 

works (Table 3).  It appeared that the critical state 

parameter values varied depending on the testing methods 

used and the quality of samples (undisturbed or 

remolded).  The compression and rebound index values 

computed from the uniaxial compression stress on the 

clay loam, loam and sandy loam soils from this study 

were overall within the range of values from triaxial tests 

of similar soil types and range of soil moisture contents.  

The compression and rebound indices computed from 

triaxial test data on undisturbed soil samples tend to have 

higher values than the values from uniaxial compression 

on remolded soil samples.  For finite element analysis, it 

appeared that quick uniaxial testing could provide values 

of the critical state parameters comparable to triaxial 

testing which employs rigorous stress path loadings but is 

time-consuming in sample preparation and conducting the 

experiment.  

 

Table 3  Values of compression index () and rebound index () from different authors [1] 

 Soil type Soil Moisture (% d.b.) Testing method (×10-2) [2] (×10-2) [2] 

Petersen (1993) 
(Tastrup and Marum soils from Denmark) 

Sandy loam 2 – 25 Triaxial on remolded samples 8 – 18 1.1 – 1.6 

Loam 10 – 27  13 – 24 1.2 – 1.9 

O'Sullivan and Robertson (1996) 
(Eutric Cabisol and Gleysol from Scotland)

Sandy loam 13 – 19 Triaxial in undisturbed samples 0.3 – 16 0.17 – 0.71 

Clay loam 18 – 25  2.3 – 19 0.41 – 1.28 

Poodt M.P. et al. (2003) 
(Lobith loam soil from Netherlands) 

Loam 19 -  23 Uniaxial compression on remolded samples 5 – 8 0.2 – 0.3 

Tekeste et al. (2009) 
(Lixisols, Leotosols and Fluvisols from 

Eritrea) 

Sandy loam 11 – 14 Uniaxial compression on remolded soils 10 – 12 0.2 – 0.4 

Loam 24 – 36  9 – 13 0.4 – 0.7 

Clay loam 26 – 34  0.11 – 0.16 0.3 – 0.5 

Note: [1] To compared similar index values from the different authors, the compression index () and rebound index () in this table refer to the index values computed 

from void ratio (e) and logarithmic normal stress (ln (p)) relationships.  

[2] For example, a value of “(×10-2)” of 8 indicates  = 0.08 and a value of “(×10-2)” of 1.1 indicates  = 0.011. 

 
3.3  Shape-restricted vs. quadratic regression fitting 

of critical state parameters as a function of maximum 

stress 

The shape-restricted regressed models that assumed 

the modified compression and rebound indices attained 

certain shapes, fitted better than quadratic regression 

models in all cases.  The shape-restricted regression had 

smaller Average Squared Error Loss (ASEL) than a 

quadratic regression for the modified compression index 

(Figure 3) and modified rebound index (Figure 4).  As is 

shown in Figures 3 and 4, soil mechanical parameters 

generally were predicted better (lower ASEL) at the dry 

soil moisture contents than at the wet soil moisture 

contents for all soil types.  The parameter estimates for 

the quadratic regression of the modified compression 

index and the modified rebound index are shown in Table 

4 and Table 5, respectively.  Across the soil moisture 

contents, the higher order terms of the quadratic 

regression were not significant (P > 0.05) for both the 

modified compression and rebound index models.  In 

curve fitting, quadratic regression was applied with the 

intercept forced to be zero because the values of the 

mechanical parameters are zero when the applied stress 

level is zero. 

 
a. Clay loam 
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b. Loam 

 
c. Sandy loam 

 

Figure 3  Average Squared Error Loss (ASEL) of shape-restricted 

regression and quadratic regression for predicting the modified 

compression index (*) for clay loam, loam and sandy loam soils 

 
a. Clay loam 

 
b. Loam 

 
c. Sandy loam 

 

Figure 4  Average Squared Error Loss (ASEL) of shape-restricted 

regression and quadratic regression for predicting the modified 

rebound index (*) for clay loam, loam and sandy loam soils 

 

Table 4  Coefficient estimates of the quadratic regression for 

clay loam, loam and sandy loam soils at three soil moisture 

contents with the modified compression index (* × 10-2) as a 

dependent variable and maximum applied stress as an 

independent variable 
 

Clay Loam Soil 

X = 
maximum

applied 
stress 

Soil Moisture (% d.b.) 

26.29 30.07  33.9 

Parameter 
Estimate 

P-Value
Parameter 
Estimate 

P-Values  
Parameter 
Estimate 

P-Value

X 0.1285 0.02 0.1596 0.08  0.158 0.019

X2 -0.0003 0.07 -0.0003 0.13  -0.0003 0.05
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Loam Soil 

X = 
maximum 

applied 
stress 

Soil Moisture (% d.b.) 

23.67  30.87  33.82 

Parameter 
Estimate 

P-Value  
Parameter 
Estimate 

P-Value  
Parameter 
Estimate 

P-Value

X 0.1029 0.02  0.1263 0.04  0.1467 0.03

X2 -0.0002 0.07  -0.0003 0.09  -0.0003 0.05

 

Sandy Loam Soil 

X = 
maximum 

applied 
stress 

Soil Moisture (% d.b.) 

10.47  12.29  14.09 

Parameter 
Estimate 

P-Value  
Parameter 
Estimates

P-Value  
Parameter 
Estimates

P-Value

X 0.1180 0.04  0.1277 0.04  0.1271 0.05

X2 -0.0002 0.10  -0.0003 0.09  -0.0003 0.10

 

Table 5  Coefficient estimates of the quadratic regression for 

clay loam, loam and sandy loam soils at three soil moisture 

contents with the modified rebound index (*× 10-2) as a 

dependent variable and maximum applied stress as an 

independent variable 
 

Clay loam soil 

X = 
maximum 

applied 
stress 

Soil Moisture (% d.b.) 

26.29  30.07  33.9 

Parameter 
Estimate 

P-Value  
Parameter 
Estimate 

P-Value  
Parameter 
Estimate 

P-Value

X 0.00444 0.02  0.00469 0.07  0.00411 0.04

X2 -0.00001 0.05  -0.00001 0.11  -0.00001 0.14

 

Loam soil 

X = 
maximum 

applied 
stress 

Soil Moisture (% d.b.) 

23.67  30.87  33.82 

Parameter 
Estimate 

P-Value  
Parameter 
Estimate 

P-Value  
Parameter 
Estimate 

P-Value

X 0.00446 0.01  0.00530 0.03  0.00560 0.02

X2 -0.00001 0.05  -0.00001 0.07  -0.00001 0.06

 

Sandy loam soil 

X = 
maximum 

applied 
stress 

Soil Moisture (% d.b.) 

10.47  12.29  14.09 

Parameter 
Estimate 

P-Value  
Parameter 
Estimate 

P-Value  
Parameter 
Estimate 

P-Value

X 0.00341 0.03  0.00332 0.03  0.00359 0.02

X2 -0.00001 0.05  -0.00001 0.08  -0.00001 0.05

 

3.4  Volumetric plastic strain for linear hardening 

rule of Cam-clay model 

For the piecewise linear form of the clay plasticity  

hardening rule option in the ABAQUS Cam-clay model, 

tabular data of plastic natural volumetric strains and yield 

stress values can be estimated from the oedometer data 

(ABAQUS, 2004).  Using the initial stress, the strain, 

the compression index and rebound index values, the 

plastic (irrecoverable) volumetric deformation were 

computed from the oedometer test data using Equations 

(9) and (10). 

ln i
v

o





 

  
 

     (9) 

where v = total natural volumetric strain; i = specific 

volume at the maximum stress value; and o = specific 

volume at pre-load stress (10 kPa).  The elastic natural 

volumetric strain values were also computed similarly 

with specific volume values from the maximum stress 

and the lowest stress value (Equation (10)). 

lne

i
v

e





 

  
 

     (10) 

where ev = elastic natural volumetric strain; i = specific 

volume at the maximum stress value; and e = specific 

volume at lowest rebound stress (5 kPa). 

The plastic natural volumetric strain values ( pv ) 

were then obtained by subtracting the elastic natural 

volumetric strain values from the total natural volumetric 

strain values ( p ev v v    ). 

As is shown in Figure 5, the plastic (irrecoverable) 

volumetric strain values from the maximum applied 

stresses on the clay loam soil were generally greater than 

the values on the sandy loam and loam soils.  

 
Figure 5  Plastic natural volumetric strain and normal stress 

relationships for clay loam, loam and sandy loam soils 
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On weakly structured soils the maximum applied 

stress in a uniaxial compression test approximates the 

pre-consolidation stress (pc) which is often estimated by 

using the Casagrande method and represents the 

transition from elastic to plastic regions in the 

stress-strain relationship (Mosaddeghi et al., 2007).  The 

results show that for accurately modeling compaction on 

unsaturated soils, for loading from wheeling for which 

the major principal stress, 1, is the dominant stress, the 

best fitted shape-restricted regression technique or 

plastic-yield stress in Figure 5 can be successfully used to 

generate modified Cam-clay plastic model parameters. 

4  Conclusion 

Unsaturated samples of agricultural soils were 

subjected to quick uniaxial compression tests to measure 

modified Cam-clay soil model parameters of modified 

compression (*) and rebound (*) indices and 

investigate their behaviors with variations in soil type, 

soil moisture content and the maximum stress applied.  

The parameters showed variation with soil types, soil 

moisture contents and maximum applied stress.  It was 

found that on a clay loam soil higher compressibility was 

observed at lower stress levels and wet moisture 

conditions (-10 kPa soil moisture potential) than at higher 

stress levels.  The loam soil had similar compression and 

rebound characteristics to the clay loam.  Soil moisture 

did not significantly affect the Cam-clay parameters on a 

sandy loam soil.  The sandy loam soil showed the lowest 

values of modified compression index (*) and modified 

rebound index (*).  On average, the modified 

compression index (*) was about 23 to 36 times the 

modified rebound index (*).  The shape-restricted 

regression technique was presented to predict the 

modified Cam-clay model parameters as a function of 

pre-consolidation stress at different levels of soil moisture 

content.  The shape-restricted method provided more 

accurate estimates at reduced average squared error loss 

and this demonstrated the applicability of the method for 

prediction of model parameters.  The benefit of the 

shape-restricted regressions is that they can provide a 

flexible fit to the data, while polynomial regressions 

require the fixed forms of the underlying distribution 

function.  
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