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Proximal sensing mapping method to generate field maps in 
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Abstract: An innovative methodology to generate vegetative vigor maps in vineyards (Vitis vinifera L.) has been developed 

and pre-validated.  The architecture proposed implements a Global Positioning System (GPS) receiver and a computer vision 

unit comprising a monocular charge-coupled device (CCD) camera equipped with an 8-mm lens and a pass-band near-infrared 

(NIR) filter.  Both sensors are mounted on a medium-size conventional agricultural tractor.  The synchronization of 

perception (camera) and localization (GPS) sensors allowed the creation of globally-referenced regular grids, denominated 

universal grids, whose cells were filled with the estimated vegetative vigor of the monitored vines.  Vine vigor was quantified 

as the relative percentage of vegetation automatically estimated by the onboard algorithm through the images captured with the 

camera.  Validation tests compared spatial differences in vine vigor with yield differentials along the rows.  The positive 

correlation between vigor and yield variations showed the potential of proximal sensing and the advantages of acquiring top 

view images from conventional vehicles. 
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1  Introduction 

The availability of site-specific crop information 

brings many advantages to producers, especially if this 

information is accessible early enough to help in strategic 

decisions before harvesting time.  Getting key 

information about crop status facilitates giving right 

treatments at the precise time (Blackmore, 2000).  Many 

Precision Agriculture (PA) applications have been studied 

to provide crucial information to producers by presenting 

the results on field maps (Godwin and Miller, 2003; 

Baluja et al., 2012; Bramley and Williams, 2001; Best et 

al., 2011).  In particular, vineyards (Vitis vinifera L.) are 

favorable to vision sensing because of the high 

reflectance of vegetation when compared to the rest of 

elements found in the field (Gausman, 1977), and vine 
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vigor has been well correlated to the important 

parameters such as grape production or yield (Hall et al., 

2002).  In addition, wine grapes have an added value in 

its final produce; the wine, which favors the adoption of 

new technology.  The narrow band of the spectrum 

where healthy vegetation possesses such a high 

reflectance rate, typically called the vegetation red edge 

(Weekley, 2007), is located between 700 nm and 800 nm.  

The red edge has been studied in isolation and also 

combined with other narrow bands of the electromagnetic 

spectrum (Chaerle and Van der Straeten, 2000).  This 

property of crops has been helpful in multiple 

applications within the framework of precision farming, 

such as the discrimination of grape varieties (Lacar et al., 

2001), the detection of nitrogen deficiency in crops (Noh 

et al., 2005), the assessment of water content in fields 

(Alchanatis et al., 2006), and the estimation of nitrogen 

stress in plants (Kim et al., 2001).  Multispectral and 

hyperspectral techniques have been widely used in 

remote sensing to study vine vigor due to the advantages 
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of its high radiometric quality to estimate biomass in 

vineyards with the purpose of detecting zones of different 

productivity within a field (Lamb et al., 2001; Lamb et al., 

2004).  Vine vigor has been related to important crop 

parameters to build yield maps (Godwin and Miller, 

2003), quality control maps of fertilizer applications 

(Giles and Downey, 2001), or diseases, infestations, and 

grape maturity maps (Johnson et al., 2003).  Similarly, 

Johnson et al. (2000), and Johnson et al. (2001) used 

remote sensing to divide fields in equally-mature zones 

where differential harvesting could be applied.  

According to Bramley et al. (2011a) and Bramley et al. 

(2011b), harvesting a field through different stages 

separated in time in such a way that only those clusters at 

the optimum conditions are collected (selective 

harvesting) is an effective strategy to improve wine 

quality; and consequently detecting the best moment to 

harvest grapes in zones of different properties is essential 

to discriminate diverse quality rates among the yield and 

eventually make supreme quality wines (Best et al., 2011; 

Johnson et al., 2003).  Unfortunately, multispectral 

applications from remote sensing techniques may not be 

affordable to the average wine producers in Europe 

-usually smallholders - who need to face major technical 

and economical adversities.  Rovira-Más (2010), 

Sáiz-Rubio and Rovira-Más (2012), and Bramley et al. 

(2011c) have recently highlighted multiple advantages of 

ground sensing, also known as proximal sensing, where 

the possibility of adapting conventional vehicles to 

extract critical information while the vehicle is executing 

other field tasks makes this alternative very attractive for 

farm managers.  In a similar fashion, McCarthy et al. 

(2010) pointed out the suitability of ground sensing in 

vineyards as these crop fields have wide planting 

frameworks and, normally, wide space among rows, 

which allows a correct visualization of vines and vehicle 

driving.  Furthermore, Taylor et al. (2005) proposed a 

change in optical systems from remote to ground imagery 

in order to improve the estimation of vine vigor, and 

Bramley et al. (2007) confirmed this fact by taking more 

accurate images for determining vegetation coverage.  

Praat et al. (2004) also implemented a ground-based 

machine vision system to quantify vegetation in 

vineyards, but the need to attach bulky structures to the 

vehicle to control image parameters has made this 

approach impractical in the field.  Interestingly, some 

commercial devices based on proximal sensing have been 

recently released, but their cost and lack of flexibility in 

the application to different crops have discouraged their 

general adoption by producers.  One of the crucial 

challenges related to image-based sensing of vegetation is 

the variable reflectance distribution derived from 

sun-angle variations along the day and camera attitude 

changes along the rows, a phenomenon measured by the 

bidirectional reflectance distribution function (BRDF).  

Ground-based measurements revealed that sun-angle 

variations affected Normalized Difference Vegetation 

Index (NDVI) values depending on the observer’s 

(camera) position (Schopfer et al., 2007); and Eklundh et 

al. (2011) encouraged researchers to test their vegetation 

monitoring systems in off-nadir positions, confirming 

Kimes’s results (1983) which proved that nadir viewing 

increased vegetation reflectance with the increasing 

off-nadir view angles.  

With the objective of overcoming some of the 

difficulties mentioned above regarding costs and 

accessibility to crop information, the research reported in 

this article tries to make information technology available 

to the average wine producer by mounting sensors and 

processors on conventional agricultural vehicles and 

proposing moderately priced systems for field mapping.  

2  Materials and method 

The architecture proposed for vigor mapping was 

evaluated through several field tests carried out with a 

standard tractor (JD 5820, Deere Co., Moline, IL, USA) 

equipped with its proprietary global positioning system 

(GPS) receiver StarFireTM (SF) iTC featuring ±25 cm 

precision (SF1 free signal).  The antenna of the SF 

receiver was centered on the vehicle’s cabin as indicated 

by Figure 1.  Additionally, an alternative low-cost GPS 

receiver (Garmin 18x - 5Hz, Olathe, KS, USA) was 

affixed to the camera supporting arm as a redundant 

sensor with an error inferior to 3 m.  The imaging sensor 

of the mapping engine was a charge-coupled device 

(CCD) camera, monocular and monochrome (JAI, 
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Copenhagen, Denmark), with an 8-mm lens (Goyo 

Optical Inc., Saitama, Japan) coupled to a pass-band near 

infrared (NIR) filter BP880 (Midwest Optical Systems, 

Inc., Palatine, IL, USA) centered at 880 nm.  Over the 

tests, the camera acquired and saved images at an average 

rate of 1.8 frames per second and the tractor traveled at 

average speeds of 5 - 6 km h-1.  A laptop computer (2.20 

GHz and 1.5 GB of RAM) was used to run the mapping 

software especially programmed for this application.  

The complete system architecture is shown in Figure 1, 

where the camera was set to visualize the row of vines 

situated on the left side of the tractor.  The position of 

the camera was such that its image plane was kept 

approximately parallel to the ground, resulting in top 

view images captured at 2.7 m above the ground and 

about 1.5 m above vegetation.   

 
Figure 1  Mapping system mounted on the experimental tractor 

used in the field tests 

 

The field tests performed to build vigor maps took 

place in the vineyards of a winery located in the wine 

production region of Utiel-Requena (Valencia, Spain), 

over the seasons of 2010 and 2011.  Eight rows of a 

20-year-old Cabernet-Sauvignon grape vine planted on a 

1.5 m height trellis and an irrigated clay-limestone soil 

were selected to carry out the field experiments.  The 

testing rows were approximately 120 m long and row 

spacing was 3 m, as is shown in the image of Figure 2b.  

Figure 2a plots the trajectories followed by the tractor to 

cover the selected eight rows - labeled 2 to 9 in the Figure 

- during the field tests.  The sensor configuration of 

Figure 1 always keeps the perceived row on the left of the 

tractor, and therefore on the left of the GPS-recorded 

trajectory when the vehicle moves forward, as indicated 

in Figure 2a by the arrows specifying the travel direction 

of the tractor.  In order to make driving easier and 

maneuvering time shorter, the recording passes were 

driven alternatively according to the sequence of rows 2, 

6, 3, 7, 4, 8, 5 and 9, as depicted in Figure 2a.  

 
A. Path followed by the vehicle 

 
b. Actual field 

 

Figure 2  Field experiments 

 

A multiplicity of lenses with different focal lengths (6, 

8, 12, 16 and 25 mm), optical filters (NIR, ultraviolet 

(UV), NIR + UV), digital cameras (monochrome and 

color), and camera positions on the vehicle were 

combined along the field experiments with the purpose of 

identifying the set of parameters and setups that best met 

the initial objectives.  The optimum configuration for 

estimating vigor in vines turned out to be the assemblage 

of the camera on the aluminum bar affixed to the cabin 

roof shown in Figure 1; which set the monochrome 

camera looking downwards with an 8 mm lens and a NIR 
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filter.  This camera arrangement provided a top view of 

the plants that enhanced their perception and facilitated 

the application of image processing algorithms.  The 

resolution of the images was set to 696 pixels (H) by 520 

pixels (V), which covered an area of 1,190 mm by 889 

mm when the separation of the camera and the canopy 

was around 1.5 m.  

2.1  Image processing 

When reflectance from healthy plants is sensed in the 

NIR band of the spectrum with an imaging sensor, a grey 

level disequilibrium occurs in the images as a 

consequence of the high reflectance rate exerted by 

vegetation, which appears atypically whiter than in 

regular monochrome images captured in the visible range 

(Knipling, 1970).  These “unbalanced” images constitute 

the basic entry of the methodology proposed, and 

consequently their proper generation is vital for the 

success of the segmentation algorithm.  The core of the 

automatic segmentation engine is the Segmentation 

Profile curve (Sáiz-Rubio and Rovira-Más, 2012), whose 

archetypical form is depicted in Figure 3.  The abscissas 

axis of the segmentation profile represents the 256 levels 

of grey belonging to 8-bit images, specifically ranging 

from h = 0 (black) to h = 255 (white), and the ordinate 

axis provides the percentage of pixels P(h) whose grey 

level is higher than the grey level considered in the 

abscissas axis.  The NIR-forced unbalance of the images 

usually leads to either bright pixels representing 

vegetation or dark pixels coming from the non-vegetal 

background.  This particular situation results in a drastic 

drop of the segmentation profile around specific grey 

levels which establish the boundary levels between 

vegetation and the rest of objects in the image.  The 

objective of the algorithm that will automatically quantify 

vegetation is the detection of this drop in the profile curve 

for each image acquired.  The best estimate of the drop 

position in the abscissa axis will be considered the 

segmentation threshold µ that will separate vegetation 

from non-vegetation.  The curve drop was found by 

means of two mathematical concepts: the gradient 

(Equation (1)) and the curvature (Equation 2).  Equation 

(1) provides an estimation of the gradient, ∆(h), applied 

to the segmentation profile, where for grey level h, the 

difference in segmentation profile is applied according to 

Equation (1), being  the resolution of the gradient 

estimation in terms of increments of grey level.  In the 

algorithm implemented in the tractor, the magnitude of  

ranged from 1 to 50 levels.  The segmentation profile 

P(h) can be defined as the percentage of pixels in the 

image with grey level superior to h. 

( ) ( ) | ( ) ( ) |h h P h P h        ; 

 0...255 ;  1...50h               (1) 

2 2( ) ( ) | ( ) ( ) |;h h h h           

0...255 2 ;  1...50h              (2) 

 
Figure 3  Segmentation profile and automatic calculation of the 

threshold 　 

 

The estimation of the curvature on the profile was 

another indicator used to detect the drastic drop of the 

segmentation profile.  The mathematical expression of 

the curvature encoded in the algorithm is defined in 

Equation (2), where ∆2(h) is the estimation of curvature in 

the profile at grey level h for an interval .  Note that the 

application of Equation (2) requires the previous 

estimation of the gradient (h).  The final expression for 

∆2(h) is based on the simplification usually performed on 

the conventional definition of curvature presented in 

Equation (3), where y would represent percentages of 

segmented pixels P(h), x would correspond to grey levels 

h,  is the curvature, and y′ is the first derivative of y. 

2 3/2 2 2| | /(1 ) | / |y y d y dx             (3) 
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Finally, the optimum threshold µ was defined as the 

average of the grey levels that maximized (h) and ∆2(h), 

symbolized by h∆ and respectively, and corrected by the 

offset λ as is shown in Equation (4).  The threshold  

indicates the approximate location in the segmentation 

profile where the highest drop occurs.  The offset λ was 

empirically adjusted in the field and ranged from 0 to 50 

grey levels.  

2( ) / 2;  0....50h h               (4) 

Figure 3 represents the segmentation profile of a 

random image saved by the onboard algorithm in one of 

the passes.  When the segmentation engine was set to 

work in automatic mode, the thresholds  calculated by 

the algorithm with Equation (4) were drawn in the 

corresponding curves saved by the onboard computer.  

After each threshold  had been determined, the 

algorithm segmented the equivalent original images by 

changing to black all the pixels considered as non 

vegetation by the algorithm; and leaving the rest of the 

pixels - considered vigorous vegetation - with their 

original levels of grey.  As a final point, the algorithm 

counted vegetation pixels and calculated the percentage 

of the image covered by vegetation. 

The customized software used in the field, and run in 

real time, can be conceptually divided into two core 

algorithms simultaneously executed in the onboard 

computer; one to manage the perception system 

(monocular camera) and the other to handle the global 

localization engine (GPS receivers).  A third algorithm 

devoted to the generation of global maps was 

implemented in the map building computer, generally 

off-line and off-vehicle.  The ultimate objective of the 

entire three-algorithm procedure was the construction of 

information maps with high interest for PA applications 

such as vine vigor maps or yield (either predicted or 

measured) maps of vineyards.  Figure 4 is a block 

diagram that describes how the three main algorithms 

manage and exchange fundamental information to fulfill 

the final objective of storing crop data through global 

maps.  According to Figure 4, the user initiates the 

mapping process by turning the camera on to start image 

acquisition  from  the  perception  algorithm,  but  before  

saving any information, the image parameters of 

resolution (), exposure time (shutter speed), offset (λ), 

and illumination gain need to be manually adjusted to 

current environmental conditions.  Once these four 

parameters have been set, the camera starts saving 

sequences of NIR images so that the vision algorithm can 

calculate automatic thresholds, and estimate local 

variations of vigor.  As indicated in Figure 4, both the 

segmented images and the profile curves can be displayed 

and recorded at any moment.  In addition to visual 

information, thresholds and vegetation percentages were 

stored in a text file.  Simultaneous to the execution of 

the perception algorithm, the localization engine 

continuously provided the global coordinates of the 

vehicle in order to associate every image to a position in 

the field.  The instantaneous position of the vehicle was 

initially given in geodetic coordinates latitude, longitude, 

and altitude.  However, these coordinates are not 

convenient for the representation of maps in agriculture 

where fields are mostly flat and small when compared to 

the size of the earth.  The ideal alternative is brought by 

the Local Tangent Plane (LTP) coordinate system, which 

features Euclidean geometry, allows user-set origins, and 

employs the intuitive coordinate frame east-north (Grewal 

et al., 2001; Rovira-Más et al., 2011).  The 

transformation between coordinate systems took place in 

real time inside the localization algorithm, but not every 

point in the field was paired with an image; raw messages 

received by the GPS in National Marine Electronics 

Association (NMEA) code were constantly analyzed for 

consistency and only those considered reliable provided 

the images with a position in the field.  All the images 

associated to unreliable positions were discarded as their 

contribution to the global map deteriorated it by adding 

wrong data.  The consistency check implemented in the 

algorithm assured that the number of satellites in solution 

was above four and the horizontal dilution of precision 

(HDOP) was always acceptable.  Nevertheless, these 

two conditions were not sufficient to grant the precise 

localization of the mapping vehicle and a more 

sophisticated filtering routine had to be implemented in 

the localization algorithm encoded in the onboard 

computer (Rovira-Más and Banerjee, 2012).  
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Figure 4  Block diagram of the three algorithms encoded in the 

mapping vehicle to create vigor maps 

 

Unlike the perception and localization algorithms that 

were executed in real time during the mapping missions, 

the mapping algorithm was run in the laboratory after the 

vehicle finished the acquisition of field data.  To 

assemble a grid-based global map of plant vigor, the 

mapping algorithm required two essential inputs: the 

instantaneous percentage of vegetation estimated from the 

images and the LTP coordinates of the positions where 

vigor was sensed.  The former entry was provided by the 

perception algorithm after processing NIR images, and 

the latter was the output of the GPS receiver after 

conditioning its data strings.  Figure 4 highlights the 

inputs and output of the mapping algorithm.  A global 

grid (or universal grid) is defined as a two-dimensional 

regular grid with a user-defined origin and discretized 

LTP coordinates east and north (Rovira-Más, 2012).  In 

reality, global grids are the quantization of the LTP 

coordinate system as a means to manage crop production 

information at a global scale; allowing the exchange of 

information among successive seasons and the 

comparison of multiple parameters on the same field.  

Figure 5 schematizes the process to create global grid 

maps from LTP coordinates.  The first stage in the 

construction of the map consists of establishing its 

boundaries according to the extreme east (E) and north (N) 

coordinates, as labeled in the conceptual plot of Figure 5 

(minE, maxE, minN, maxN).  Once the map limits have 

been set and the size of the square cell (c) has been 

chosen, the cell of the grid corresponding to any 

particular position of coordinate (E, N) can be calculated 

with Equation (5) and Equation (6).  As the resolution of 

the global grid directly depends on the user-selected size 

of the cell, therefore, changing the size of the cell will 

necessarily lead to a change in resolution.  The 

resolution of the global grid is determined by the level of 

detail required by each application.  The positions of the 

cells in the grid are numbered in the same fashion as 

matrices, and as a result the discrete coordinates of the 

grids x and y are non-negative integers.  Equation 5 and 

Equation 6 yield the position of the cell for point k, where 

the original LTP coordinates are (E(k), N(k)), the size of 

the cell is c, and the global grid coordinates are (x(k), 

y(k)).  The coordinates minE and minN are the minimum 

values of coordinates east and north, respectively. 

        
(5) 

        
(6) 

 
Figure 5  Transformation from LTP coordinates to global grid 

cells 
 

When different global maps representing the same 

vineyard need to be compared, it is a good practice to 

maintain the same resolution, i. e. the same cell 

dimension, for all the maps; however, enlarging the size 

of the cells may result in a loss of information.  The 
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cells of global grids were filled-in according to the data 

recorded by the perception and localization algorithms.  

Each percentage of vegetation was taken to the cells 

calculated with Equation (5) and Equation (6) after 

introducing the LTP coordinates associated with each 

image.  When a given cell was already filled with a 

percentage of vegetation and new information became 

available for that particular cell, the algorithm updated 

the cell with the average value of old and new data.  

 With the purpose of controlling the perception and 

localization algorithms efficiently, which had to run in 

the computer aboard in real time, the customized 

interface of Figure 6 was designed.  This graphic user 

interface (GUI) allowed the visualization of the three key 

images related to vigor quantification: the original image 

acquired by the NIR-filtered camera (Figure 6a), the 

segmentation profile with its corresponding automatic 

threshold μ (Figure 6b), and the segmented image after 

applying either the automatic or the manual threshold 

(Figure 6c).  Together with image supervision, the 

quality of GPS data was continuously tracked too, as only 

images with acceptable coordinates were added to the 

vigor maps.  This graphic interface allowed the user to 

set the working requirements for the minimum number of 

satellites and maximum magnitude of the Horizontal 

Dilution of Precision (HDOP).  
 

    
 

a. NIR-filtered image                             b. Segmentation profile curve and automatic threshold  

 
c　 . Segmented image 

 

Figure 6  Control interface for vigor map construction 

 

Since vigor has been traditionally correlated to yield, 

yield maps may be resourceful to validate the information 

contained in grid-based vigor maps.  The harvester used 

in the field where the tests took place was not equipped 

with a yield monitor, and consequently grapes had to be 

manually harvested in order to build a yield map.  

Grapes were weighted with a dynamometer (Compact 

Force Gauge, Mecmesin, West Sussex, UK) every trellis 

post, which practically corresponded to a weight 

measurement every six meters along the vehicle path 
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delimited by rows one to eight.  The locations at which 

grapes were weighted were also globally referenced with 

the StarFireTM GPS receiver, establishing a unique 

common origin for all vigor maps and the yield map used 

in the validation.  The procedure to build the yield map 

was exactly the same used to create vigor maps (Equation 

(5) and Equation (6); Figure 5), but instead of filling the 

cells with image-based vigor estimates, cells were 

occupied by the weight of grapes manually harvested in 

the field.  The yield map used to evaluate vigor maps 

was assembled after weighting grapes at the 113 points 

marked along the six passes traced in Figure 7a.  These 

points were positioned with the StarFireTM GPS and 

transformed to LTP coordinates.  The yield associated to 

each of the 113 sampled points corresponded to a length 

of about six meters of trellised vines located on the left 

side of the vehicle, keeping the same geometrical 

relationship between vehicle path and sensed canopy used 

during image acquisition.  In order to ease the 

comparison between yield and vigor maps, all the maps 

were normalized by setting a square cell size of 5 m side, 

resulting in regular squares of 25 m2 carrying the average 

yield or vigor associated to the points falling inside each 

cell. 

 
a. Generating points 

 
b. Final map 

 

Figure 7  Grid-based yield map 
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3  Results and discussion 

The complete yield map generated from the 113 

points of Figure 7a is plotted in Figure 7b, and it shows 

variability in yield, as expected.  In particular, the initial 

30 m in the east side of the field indicates a considerable 

low yield in comparison to the rest.  The main reason for 

these differences in yield was a disadvantageous slope 

(3% in average) in the terrain that reduces the quantity of 

water available for the vines in this location.  In addition 

to internal differences due to water availability, the entire 

field was severely attacked by powdery mildew 

(Plasmopara viticola), which accounted for the low yield 

rates averagely measured.  The half field in the east side 

(right side in the grid) was situated at the lowest elevation 

of the farm, and water generally accumulated towards the 

eastern headlands, resulting in cells with higher yield 

rates.  Furthermore, the damage caused by mildew was 

apparently less severe in the east section of the field.    

Figure 8 shows a vigor map generated from NIR 

images taken along rows 2, 3, 6, and 7.  The rest of the 

rows tested are not included in the map due to the 

reception of incorrect or unreliable GPS messages.  

According to the vigor map depicted in Figure 8, the 

spatial distribution of vine vigor, here quantified as 

percentage of healthy vegetation, clearly shows a 

concentration of weaker plants in the west side of the 

field, which is in accordance with the lower yield rated 

for the same area as indicated by Figure 7b.  Notice the 

advantages of normalizing the resolution of the maps with 

cells of equal dimensions, as cell-to-cell correlations may 

be calculated between yield and vegetation. The 

automatic estimation of vegetation from zenithal images 

leads to several measurements within the same cell, as a 

consequence of sampling rate, camera field of view, and 

vehicle forward speed.  The final value represented in 

each cell was the average of all the values associated to 

that cell.  The statistical analysis of correlating every 

cell of Figure 8 with its corresponding cell of Figure 7b 

led to the model of Equation (7), where Y represents the 

yield per cell in kg and V is the relative vegetation in 

percentage.  This result, graphically represented in 

Figure 9, confirms that there exists statistical significance 

with a 99% confidence level, where the model explains 

39.9% of the variability in yield.  On the whole, the 

deepest part of the field resulted in both higher yield and 

vigor, something already noticed by Johnson et al. (2001) 

in the study of irrigation management based on remote 

sensing for commercial vineyards in Napa Valley, 

California.        

Y (kg/cell) = 0.465172 + 0.065518  V (%)     (7) 

 
Figure 8  Grid-based vigor map from NIR images acquired on rows 2, 3, 6, and 7 
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Figure 9  Correlation model between NIR-based vegetation (%) 

and grape yield (kg cell-1) 

 

The analysis of various series of images taken with 

the camera located at different positions in the vehicle 

demonstrated that zenithal images, i. e. those providing a 

top view, gave the best results in terms of vigor 

quantification.  Nevertheless, some field scenes with 

adverse illumination occasionally resulted in challenging 

images to be thresholded in automatic mode.  Figure 10a, 

for instance, is a typical image correctly segmented by the 

algorithm.  It shows a top view of the vine where 

everything that is not vegetation, including the wires of 

the supporting structure, has been eliminated.  In these 

segmented images, non-black pixels are valid indicators 

of vigorous vegetation, and the percentage of non-black 

pixels in the image gives an estimate of the relative 

amount of vegetation for a precise location in the field, an 

indirect assessment of the vigor of the plants.  On the 

other hand, Figure 10b shows a problematic image in 

which the strong sun at noon enhanced the reflectance of 

the soil, complicating the isolation of vegetation.        

 
a. Correct segmentation                                          b. Soil-induced errors 

 

Figure 10  Automatic segmentation results 

 

Even though field results showed the superiority 

of zenithal images to lateral images for vigor mapping, 

there exist alternative studies that give preference to 

lateral views for proximal sensing of vineyard variability 

(Bramley et al., 2007).  Lateral images are defined as the 

images captured with the camera facing one of the sides 

of the continuous row in such a way that the sensor array 

of the camera is approximately parallel to the canopy and 

perpendicular to the moving direction (Figure 11a).  Due 

to important disadvantages found in the field with lateral 

images, the prototype proposed for vigor mapping only 

used zenithal images.  To begin with, placing the camera 

between fully-grown rows of vines at plant height 

resulted in too small - sometimes inexistent - separation 

between camera and plants, which produced weak images 

for quantifying differences in vigor, and eventually was 

the cause of a broken camera.  In addition, the detection 

algorithm failed when the row being sensed had patches 

of no vegetation, as contiguous rows fooled the system, 

which assigned vegetation to places with no vines (Figure 

11a).  These false positives were the reason to assign 

higher vigor values to sections of the field with meager 

vines, as in the vigor map of figure 11b which shows 

vigorous plants in the west side of the field.  This 

serious problem has been dodged in the past by affixing a 

large screen to the vehicle in such a way that the 

background of the image was always controlled (Praat et 

al., 2004).  However, such a cumbersome and bulky 

solution opposes one of the central objectives of this 

research, which intends to configure a system easy to 



July, 2013              Proximal sensing mapping method to generate field maps in vineyards                Vol. 15, No.2  57 

integrate in conventional vehicles, as the one shown in 

Figure 1, to avoid rejection by farmers and producers in 

search for effective solutions at minimum cost and the 

lowest possible complexity.  The flexibility pursued 

with this system also affects the capacity of users to 

adjust the cost of hardware according to the precision 

required, as there exist GPS receivers of practically any 

price, vision sensors range from inexpensive webcams to 

high performance cameras, and any moderate quality 

computer suffices to run the proposed software.  

 
a. Undetected gaps                                              b. Consequential defective vigor maps 

 

Figure 11  Lateral sensing 

 

4  Conclusion 

Once technology has been proved useful and helpful 

to assist producers in the management of their fields, only 

applications with easy access, simple means of adoption, 

and reasonable cost will have potential in the near future.  

The ground-based sensing system proposed in this article 

is meant to be incorporated to conventional vehicles, and 

provides an estimate of the spatial variation of vine vigor 

in a global grid format.  Vigor differences have been 

correlated to yield variability, and as a result vigor maps 

can be used as a predictive tool for farmers.  The 

grid-based global maps developed for this project 

facilitate the rapid exchange of crop information and 

favors the comparison of vigor maps with other maps of 

alternative production parameters.  Field tests confirmed 

the superiority of zenithal images to side views, which led 

to establish a direct correlation between estimated vigor 

and measured yield.  However, more robustness needs to 

be added to the perception algorithm in order to improve 

its performance under adverse illumination conditions, 

especially by reducing the confusing effect of soil 

reflectance.  Reliability must also be strengthened in 

terms of GPS vehicle positioning, as the real time 

integration of image acquisition and GPS message 

conditioning sometimes jammed the onboard computer 

and delayed the construction of the maps.  In conclusion, 

the methodology proposed opens a field of austere 

applications which sacrifice certain complexity in order 

to gain accessibility by the end users who, in the end, 

need to improve their management with the least 

investment.      
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Nomenclature 

h  8-bit grey level (gray level) 

P(h)   Segmentation profile.  Percentage of pixels in the 
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image with grey level superior to h (%) 

     Gradient  

Δ(h)   Estimation of the gradient for intensity level h  

     Curvature 

Δ2(h)  Estimation of the curvature for intensity level h  

δ   Resolution.  Finite interval considered for 

gradient and curvature calculations (gray level) 

λ  Offset (gray level) 

hΔ  Grey level that maximizes (h) (gray level) 

hΔ2  Grey level that maximizes 2(h) (gray level) 

μ  Dynamic threshold (gray level) 
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