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Abstract: In this study, various Artificial Neural Networks (ANNs) were developed to estimate the output energy for corn 

silage production in Esfahan province, Iran.  For this purpose, the data on 65 corn silage production farms in the Esfahan 

province, were collected and analyzed.  The results indicated that total energy input for corn silage production was about 

83126 MJ ha–1; machinery (with 38.8 %) and chemical fertilizer (with 24.5 %) were amongst the highest energy inputs for corn 

silage production.  The developed ANN was a multilayer perceptron (MLP) with eight neurons in the input layer (human 

power, machinery, diesel fuel, chemical fertilizer, water for irrigation, seed, farm manure and pesticides), one, two, three, four 

and five hidden layer(s) of various numbers of neurons and one neuron (output energy) in the output layer.  The results of 

ANNs analyze showed that the (8-5-5-1)-MLP, namely, a network having five neurons in the first and second hidden layer was 

the best-suited model estimating the corn silage output energy.  For this topology, MAB, MAE, RMSE and R2 were 0.109, 

0.001, 0.0464 and 98%, respectively.  The sensitivity analysis of input parameters on output showed that diesel fuel and seeds 

had the highest and lowest sensitivity on output energy with 0.0984 and 0.0386, respectively.  The ANN approach appears to 

be a suitable method for modeling output energy, fuel consumption, CO2 emission, yield, and energy consumption based on 

social and technical parameters.  This method would open new doors to advances in agriculture and modeling. 
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1  Introduction 

   Agriculture is both a producer and consumer of 

energy.  It uses large quantities of locally available 

non-commercial energy, such as seed, manure and 

animate energy, as well as commercial energy sources, 

directly and indirectly, in the form of diesel, electricity, 

fertilizer, plant protection, chemical, irrigation water, 

machinery etc (Lianga, Fana and Wei, 2007).  

Efficient use of energy in agriculture is one of the 

principal requirements for sustainable agricultural 

production.  Improving energy use efficiency is 
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becoming increasingly important for combating rising 

energy costs, depletion of natural resources and 

environmental deterioration (Dovì, Friedler, Huisingh 

and Klemes, 2009).  The development of energy 

efficient agricultural systems with low input energy 

compared to the output of food can reduces the 

greenhouse gas emissions from agricultural production 

systems (Dalgaard, Halberg and Porter, 2001).  The 

energy input–output analysis is usually made to 

determine the energy efficiency and environmental 

aspects.  This analysis will determine how efficient the 

energy is used.  Sensitivity analysis quantifies the 

sensitivity of a models state variable to the parameters 

defining the model.  It refers to changes in the 

response of each of the state variables which result from 

small changes in the parameter values.  Sensitivity 
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analysis is valuable because it identifies those 

parameters which have the most influence on the 

response of the model.  It is also an essential 

prerequisite to any parameter optimization exercise 

(Richter, Acutis, Trevisiol, Latir and Confalonieri, 

2010). 

   In recent years, many researchers have been 

investigated the energy use for agricultural crop 

production.  Taki, Ajabshirchi and Mahmoudi, (2012a) 

studied the energy use patterns of cucumber production in 

Iran and found that the fertilizer application have the 

highest energy source in total inputs.  Bahrami, Taki and 

Monjezi, (2011) studied the productive efficiency for 

wheat production in Iran by means of data envelopment 

analysis (DEA).  An advantage of DEA is that it does 

not require any prior assumptions on the underlying 

functional relationships between inputs and outputs.  It 

is therefore a nonparametric approach. Franzluebbers and 

Francis (1995) investigated the energy requirements for 

maize and sorghum management systems in Nebraska, 

USA.  They concluded that energy ratio decreased with 

N fertilizer application in all management systems, except 

with cereal as previous crop and low initially available N.  

In Turkey, the energy use patterns of wheat, cotton, maize, 

sesame was studied and found that the fertilizer 

application have the highest energy source in total inputs 

with the share of 52.7% in maize production (Canakci, 

Topakci, Akinci and Ozmerzi, 2005). 

   During the past 15 years there has been a substantial 

increase in the interest on artificial neural networks.  

The basis of ANN modeling methods is biological neuron 

activities. Neurons in the brain learn to respond to a 

situation from a collection of examples represented by 

inputs and outputs.  Scientists have tried to mimic the 

operation of the human brain to solve various problems 

by using mathematical methods.  They have found, and 

used, various networks to solve practical problems. 

Neural networks include a wide range of mathematical 

methods and artificial neural networks (ANNs), the 

commonly used term to differentiate them from 

biological neural networks, have become one of the most 

important modeling method that have been used more 

than other modeling methods for complex input-output 

dependencies (Pachepsky, Timlin and Varallyay, 1996). 

The ANNs are good for some tasks while lacking in  

some others.  Specifically, they are good for tasks 

involving incomplete data sets, fuzzy or incomplete 

information, and for highly complex and ill-defined 

problems, where humans usually decide on an intuitional 

basis.  They can learn from examples, and are able to 

deal with non-linear problems.  Furthermore, they 

exhibit robustness and fault tolerance.  The tasks that 

ANNs cannot handle effectively are those requiring high 

accuracy and precision, as in logic and arithmetic.  

ANNs have been applied in a number of application areas. 

ANN has been successfully used in prediction of drying 

kinetics of seeds, vegetables, and fruits food process 

parameters (Omid, Baharlooei and Ahmadi, 2009).  For 

example, Erenturk and Erenturk (2006) compared the use 

of genetic algorithm and ANN approaches to study the 

drying of carrots.  They demonstrated that the proposed 

neural network model not only minimized the R2 of the 

predicted results but also removed the predictive 

dependency on the mathematical models (Newton, Page, 

modified Page, Henderson-Pabis).  Azadeh, Ghaderi, 

Tarverdian and Saberi, (2007) presented an integrated 

genetic algorithm and ANN to estimate and predict 

electricity demand.  The economic indicators were price, 

value added, and number of customers and consumption 

in the previous periods.  Azadeh, Ghaderi and 

Sohrabkhani, (2008) also presented an ANN approach for 

annual electricity consumption in high energy 

consumption of industrial sectors based on a supervised 

multilayer perceptron (MLP).  Rahman and Bala (2010) 

employed ANNs to estimate jute production in 

Bangladesh.  In this study an ANN model with six input 

variables including Julian day, solar radiation, maximum 

temperature, minimum temperature, rainfall, and type of 

biomass was applied to predict the desired variable (plant 

dry matter).  Zangeneh, Omid and Akram, (2011) 

compared results of the application of parametric model 

and ANNs for assessing various economical indices 

(economical productivity, total costs of production and 

benefit to cost ratio) of potato crop in Hamadan province 

of Iran.  Pahlavan, Omid and Akram, (2012) developed 

the various artificial neural networks models to estimate 
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the production yield of greenhouse basil in Iran.  Results 

showed, the ANN model having 7-20-20-1 topology can 

predict the yield value with higher accuracy.  

   Based on the literature, there has been no study on 

modeling corn silage production with respect to input 

energies using ANNs.  Thus, this study was devoted to 

the use of ANN models as an alternative approach for 

predicting output energy for corn silage in Esfahan 

province of Iran. 

2  Materials and methods 

2.1  Case study and data collection 

   This study was conducted in Esfahan province of Iran. 

This province is located within 30° 42' and 34° 30' north 

latitude and 49° 36' and 55° 32' east longitude.  Data 

were collected through personal interview method in a 

specially designed schedule for this study.  The 

collected data belonged to the 2009/10 production year.  

Before collecting data, a pre-test survey was conducted 

by a group of randomly selected farmers.  The required 

sample size was determined using simple random 

sampling method.  The equation is as below (Mousavi– 

Avval, Rafiee and Mohammadi, 2011): 

2 2 2
h h h hn N S N D N S              (1) 

where, n is the required sample size; N is the number of 

total population; Nh is the number of the population in the 

h stratification; Sh is the standard deviation in the h 

stratification; 2
hS  is the variance in the h stratification; 

D2 is equal to 

2

2

d

z
; d is the precision; ( Xx ) (5%) is the 

permissible error and z is the reliability coefficient (1.96, 

which represents 95% reliability).  Thus the sample size 

was found to be 65.  Consequently, based on the number 

of corn silage producers in each village the 65 farmers 

from the population were randomly selected. 

2.2  Energy equivalents of inputs and output 

   The inputs used in the production of corn silage were 

specified in order to calculate the energy equivalences in 

the study.  Inputs in corn silage production were: human 

power, machinery, diesel fuel, chemical fertilizers, 

biocides, seed electricity and irrigation.  The output was 

considered corn silage.  The energy equivalents given in 

Table 1 were used to calculate the input amounts. 

 

Table 1  Energy equivalent of inputs and output in 

agricultural production 

 Unit
Energy equivalent 

/MJ Unit-1 
Reference 

Inputs    

Human power H 1.96 Singh et al., 2000 

Machinery kg 64.8 Mikkola and Ahokas, 2010

Diesel fuel L 47.8 Singh et al., 2000 

Pesticides kg   

Herbicides  238 Erdal et al., 2007 

Fungicides  216 Erdal et al., 2007 

Insecticides  101.2 Erdal et al., 2007 

Fertilizer kg   

Nitrogen  66.14 Çetin and Vardar, 2008 

Phosphate  12.44 Shrestha, 1998 

Potassium  11.15 Shrestha, 1998 

Manure ton 303.10 Mohammadi et al., 2010 

Water for irrigation m3 1.02 Rafiee et al., 2010 

Seed (hybrid) kg 100 Pishgar Komleh et al., 2011

Output    

Dry matter corn 
silage 

kg 8 Pishgar Komleh et al., 2011

 

   The energy equivalent of human power is the muscle 

power used in field operations of crop production.  

Pesticides and chemical fertilizers energy equivalents 

means the energy consumption for producing, packing 

and distributing the materials and they are given on an 

active ingredient basis.  Farmyard manure is regarded as 

a source of nutrients, so the energy equivalent of 

farmyard manure equates with that of mineral fertilizer 

equivalents corresponding to the fertilization effect of the 

applied manure.  Also, the energy sequestered in diesel 

fuel mean their heating value (Enthalpy) and the energy 

needed to make their energy available directly to the 

farmers.  Moreover, the seed energy is the energy used 

in the production of a crop and the grain energy is the 

gross energy content determined from laboratory bomb 

calorimeter tests (Kitani, 1999).  The energy equivalent 

of water for irrigation input means indirect energy of 

irrigation consist of the energy consumed for 

manufacturing the materials for the dams, canals, pipes, 

pumps, and equipment as well as the energy for 

constructing the works and building the on-farm 

irrigation (Mousavi–Avval, Rafiee and Mohammadi, 

2011).  For calculating the embodied energy in 

agricultural machinery it was assumed that the energy 

consumed for the production of the tractors and 
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agricultural machinery be depreciated during their 

economical life time (Beheshti Tabar, Keyhani and 

Rafiee, 2010); therefore, the machinery energy input was 

calculated using the following Equation (2) (Mousavi– 

Avval, Rafiee and Mohammadi, 2011): 

G MP t
ME

t
                  (2) 

where, ME is the machinery energy per unit area (MJ 

ha-1); G is the machine mass (kg); MP is the production 

energy of machine (MJ kg-1); t is the time that machine 

used per unit area (h ha-1) and T is the economic life time 

of machine (h). 

2.3 Artificial neural network modeling 

   In an ANN, neurons are grouped in layers.  In 

complex problems more than one layer is necessary; these 

neural networks are called multilayer neural networks 

whose most prominent representative is the Multi- 

Layered Perception (MLP).  The layers between the 

input layer and output layers are called hidden layers; 

signals are sent from input layers through hidden layers to 

the output layer.  In some networks, the output of 

neurons is feed back to the same or previous layers.  In 

most studies, a feed-forward Multi-Layered Perception 

(MLP) paradigm trained by a gradient descent learning 

method is used.  Due to its documented ability to model 

any function, a MLP has been selected to develop 

apparatus, processes, and product prediction models more 

than other feed-forward networks (Kalogirou, 2001).  

The transfer functions may be a linear or a non-linear 

function.  There are several transfer functions, such as 

Logistic, Hyperbolic tangent, Gussian, and Sine.  The 

output depends on the particular transfer function used. 

This output is then sent to the neurons in the next layer 

through weighted connections and these neurons 

complete their outputs by processing the sum of weighted 

inputs through their transfer functions.  A schematic 

diagram of typical multilayer feed forward neural 

network architecture is shown in Figure 1. 

 
Figure 1  Schematic diagram of a multilayer feed forward neural network  

 

2.4  Training, testing and validation of ANN 

   MLPs are normally trained with Back Propagation 

(BP) algorithm.  It is a general method for iteratively 

solving for weights and biases.  The knowledge obtained 

during the training phase is not stored as equations or in a 

knowledge base but is distributed throughout the network 

in the form of connection weights between neurons.  BP 

uses a Gradient Descent (GD) technique that is very 

stable when a small learning rate is used but has slow 

convergence properties.  Several methods for speeding 

up BPs have been used, including adding a momentum 

term or using a variable learning rate.  GD with a 

momentum (GDM) algorithm that is an improvement to 

the straight GD rule in the sense that a momentum term is 

used to avoiding local minima, speeding up learning and 

stabilizing convergence, is used (Pahlavan, Omid and 

Akram, 2012).  Multiple layers of neurons with 

non-linear transfer functions allow the network to learn 

nonlinear and linear relationships between input and 

output parameters.  Several MLP network architectures 
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with one, two, three and four hidden layers have been 

trained and evaluated aiming at finding the one that could 

result in the best overall performance.  In this work, the 

learning rules of Gradient Descent Momentum (GDM) 

and Levenberg-Marquardt (LM) were considered.  No 

transfer function for the first layer was used.  For the 

hidden layers the sigmoid functions were used, and for 

the output layer a linear transfer function was applied as 

desired for estimating problems. 

A program was developed in Neuro Solutions 5.07 

package (2011) for the feed forward and back 

propagation network. We used an N-fold cross validation 

method that in this method data are randomly divided into 

two sets; training set (70% of all data) and cross 

validation set (the remaining 30% of all data) (Pahlavan, 

Omid and Akram, 2012).  The neural network model is 

formed for output energy (corn silage production) by 

using eight inputs (human power, machinery, diesel fuel, 

chemical fertilizer, water for irrigation, seed, farm 

manure and pesticides), and one output (output energy).  

Four statistical parameters were used for performance 

analysis.  Mean absolute bias error (MAB), root mean 

square error (RMSE), mean absolute error (MAE) and 

coefficient of determination (R2) were computed to 

estimate the overall model performance.  These are 

defined as: 

 1
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where, i=1–N; N is the number of observations; Si is the 

simulated values; Oi is the observed values.  R2 and 

RMSE are the two most commonly used statistical 

parameters, which represent the degree of explanation 

and the average difference between estimated and 

observed values.  Values of R2 close to 1 with small 

values for the error terms are desirable (Rahman and Bala, 

2010). 

 

3  Result and discussion 

3.1  Energy use pattern 

   In Table 2, the physical inputs and their energy 

equivalences used in the production of corn silage are 

given.  Also, in Figure 2, distribution of the 

anthropogenic energy input ratios in the production of 

corn silage are given. 
 

Table 2  Physical inputs used in the production of corn silage 

and their energy equivalences 

Input (unit) 
Quantity per unit 

area/ha-1 
Total energy 

equivalent/MJ
Percentage

1. Pesticides (kg) 30 6460 7.77 

Herbicides (kg) 20 4760  

Fungicides (kg) 6 1296  

Insecticides (kg) 4 404.8  

2. Human power (h) 871 1707 2.04 

3. Machinery (kg) 497 32251 38.8 

4.Chemical Fertilizer (kg) 550 20073 24.5 

Nitrogen fertilizer (kg) 250 16535  

Phosphate (kg) 150 1866  

Potassium (kg) 150 1672  

5. Manure (ton) 10 3031 3.64 

6. Seeds (kg) 32.1 3210 3.85 

7. Diesel fuel (L) 207 9862 11.85 

8. Water for irrigation (m3) 6403 6532 7.85 

Total energy input (MJ) - 83126 100 

Corn silage (kg ha-1) 35000 280000  

 

   As it can be seen in the Table 2, 250 kg nitrogen,  

150 kg Phosphate, 150 kg potassium, 10 t of farm 

fertilizer, 207 L diesel fuel, 6,403 m3 water, 30 kg 

pesticides, 871 h human power and 497 h machinery per 

hectare are used for the production of corn silage in 

Esfahan province of Iran.  The average corn silage 

output were found to be 35,000 kg ha-1 in the enterprises 

that were analyzed.  The energy equivalent of this is 

calculated as 280,000 MJ ha-1.  It can be seen in Table 2 

that the energy used in the production of corn silage 

consists of 7.77% pesticides, 2.04% human power, 38.8% 

machinery, 24.5% chemical fertilizers, 11.85% diesel fuel, 

3.64% manure and 7.85% water inputs.  The highest 

energy input is provided by machinery.  The results 

were similar to Pishgar Komleh, Keyhani, Rafiee and 

Sefeedpary, (2011) where machinery and chemical 

fertilizer were major energy inputs.  Phipps, Pain and 
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Mulvany, (1976) reported that the total energy input for 

corn silage production was to be 21,400 MJ ha-1.  In a 

Italy research, the energy input in maize production for 

conservation farming (CF) and organic farming (OF) 

systems were reported to be 46,900 and 25,890 MJ ha-1, 

respectively (Sartori et al., 2005).  Similar results have 

been reported in the literature that the energy input of 

chemical fertilizers and diesel fuel has the biggest share 

of the total energy input in agricultural crops production 

(Nassiri and Singh, 2009; Mohammadi and Omid, 2010). 

Consequently, Börjesson and Tufvesson (2011) reported 

that chemical fertilizers and diesel fuel were the main 

energy consuming inputs in wheat, sugar beet, canola, ley 

crops, maize and willow productions. 

 
Figure 2  Anthropogenic energy input ratios in the production of 

corn silage 
 

3.2  Evaluation of ANNs models  

   In this research, Various ANNs were designed and 

trained as one, two, three, four and five layers to find an 

optimal model prediction for the corn silage output 

energy.  For this purpose, back propagation algorithm 

was chosen to build the prediction models.  The results 

obtained from the 25 models and their characteristics are 

showed in Table 3.  As indicated in Table 3, among the 

trained networks, the (8-5-5-1)-MLP, namely, a network 

having eight input variables (human power, machinery, 

diesel fuel, chemical fertilizer, water for irrigation, seed, 

farm manure and pesticides), five neurons in the first and 

second hidden layer, and single output variable (corn 

silage output energy) resulted in the best-suited model 

estimating the corn silage output energy.  For this 

topology, MAB, MAE and R2 were 0.109, 0.001 and 98%, 

respectively.  

According to results of Table 3, after (8-5-5-1)-MLP  

the most reliable models were respectively: (8-10-10-10- 

10-1)-MLP model and (8-25-25-1)-MLP model. R2, MAB 

and MAE for these models were: 97, 0.162, 0.006 and 96, 

0.175 and 0.031, respectively.  Figure 3 shows the 

average values of RMSE for the each ANNs of models.  

The difference between values predicted by (8-5-5-1)- 

MLP and real value of data is shown in Figure 4. 
 

Table 3  ANN models of corn silage prediction for different 

arrangement 

Model 
Hidden 
layers 

Neurons of  
hidden layers 

MAB MAE R2/% 

MLP 1 5 0.245 0.005 69 

MLP 1 10 0.176 0.002 72 

MLP 1 15 0.320 0.005 79 

MLP 1 20 0.221 0.038 68 

MLP 1 25 0.119 0.053 83 

MLP 2 5 0.109 0.001 98 

MLP 2 10 0.227 0.006 88 

MLP 2 15 0.261 0.008 90 

MLP 2 20 0.225 0.037 77 

MLP 2 25 0.175 0.031 96 

MLP 3 5 0.198 0.035 66 

MLP 3 10 0.336 0.028 92 

MLP 3 15 0.230 0.058 93 

MLP 3 20 0.271 0.054 45 

MLP 3 25 0.288 0.056 55 

MLP 4 5 0.225 0.064 64 

MLP 4 10 0.162 0.006 97 

MLP 4 15 0.261 0.059 66 

MLP 4 20 0.220 0.068 82 

MLP 4 25 0.177 0.062 80 

MLP 5 5 0.169 0.042 71 

MLP 5 10 0.331 0.051 79 

MLP 5 15 0.229 0.054 94 

MLP 5 20 0.291 0.032 59 

MLP 5 25 0.267 0.054 62 

 

 
Figure 3  RMSE between the ANN predicted and actual outputs of 

corn silage 
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Figure 4  Predicted and actual network for MLP with 8-5-5-1 

topology 

 

   Pahlavan et al. (2012) showed that the ANN model 

having (7-20-20-1) MLP topology with R2 of 0.976 can 

predict the basil yield value with high accuracy.  

Rahman and Bala (2010) reported that a model consisted 

of an input layer with six neurons, two hidden layers with 

nine and five neurons and one neuron in the output layer 

was the best model for predicting jute production in 

Bangladesh.  Simulation models have been developed 

for predicting plant yield under differing environmental 

conditions (Jones, Dayan and Allen, 1991; Chalabi, Biro, 

Bailey, Aikman and Cockshull, 2002).  These models 

are often based on estimates of physiological processes 

such as photosynthesis, respiration, and carbon 

partitioning to fruit.  Models of yield have also been 

constructed using neural networks (Lin and Hill, 2008). 

One advantage of ANNs is that outcomes may be 

predicted using all available environmental information 

as concurrent inputs.  Moreover, in terms of commercial 

deployment, ANNs often result in very accurate 

predictions without any real need to understand the 

underlying mechanisms and relationships (Ehret, Hill, 

Helmer and Edwards, 2011). 

3.3  Sensitivity analysis 

   In order to assess the predictive ability and validity of 

the developed models, a sensitivity analysis was 

performed using the best network selected (Figure 5).  

The robustness of the model was determined by 

examining and comparing the output produced during the 

validation stage with the calculated values.  The MLP 

model was trained by withdrawing each input item one at 

a time while not changing any of the other items for every 

pattern.  According to the obtained results in Figure5, 

the share of each input item of developed MLP model on 

desired output (output energy) can be seen clearly.  

Sensitivity analysis provides insight into the usefulness of 

individual variables.  With this kind of analysis it is 

possible to judge what parameters are the most significant 

and the least significant during generation of the 

satisfactory MLP (Zangeneh, Omid and Akram, 2010).  

It is evident that diesel fuel had the highest sensitivity on 

output (0.0984), followed by machinery (0.0901).  Also, 

the sensitivity of seeds was relatively low.  Taki, 

Ajabshirchi and Mahmoudi, (2012b) reported that the 

human power energy had the highest sensitivity on output 

(wheat production), followed by diesel fuel and pesticides.  

Also, the sensitivity of irrigation energy was relatively 

low. 

 
Figure 5  Sensitivity analysis of various input energies on corn 

silage output energy 

 

4  Conclusion 

Based on the results of this paper it can be stated that: 

1) Corn silage production consumed a total energy of 

83,126 MJ ha–1, which was mainly due to machinery 

(38.8% of total energy).  The energy input of chemical 

fertilizer and diesel fuel have the secondary and tertiary 

share within the total energy inputs.  Output energy was 

calculated as 280,000 MJ ha–1.  

2) The (8-5-5-1)-MLP, namely, a network having 

eight input variables (human power, machinery, diesel 

fuel, chemical fertilizer, water for irrigation, seed, farm 

manure and pesticides), five neurons in the first and 

second hidden layer, and single output variable (corn 

silage output energy) resulted in the best-suited model 
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estimating the corn silage output energy.  For this 

topology, MAB, MAE, RMSE and R2 were 0.109, 0.001, 

0.0464 and 98%, respectively.  

3) Using the same methodology can develop models 

to predict fuel consumption, CO2 emission, and other 

agricultural production (yield).  It is possible to use the 

same database collected in this study for these 

investigations.  Modeling fuel consumption, CO2 

emission, yield, and energy consumption based on social 

and technical parameters would open new doors to 

advances in agriculture and modeling. 

4) ANN models can estimate energy use of all 

products on each farm to find the most energy efficient 

combination of different agricultural products (rotation) 

and agricultural operations under different conditions.  

To develop this complex model, several farms must be 

involved and their production and operation must be 

investigated carefully.  Establishing an international 

protocol to estimate energy use in agricultural production 

would be a great step toward sharing and comparing 

different results.  Estimating national energy 

consumption for different agricultural production and 

comparing results from other countries would be helpful 

for the adoption of different farming systems globally.  

Additionally, this comparison can find the most important 

barriers to reduce energy use on farms in each country 

and globally. 
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