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Abstract: Pre-harvest sprouting is a major problem associated with cereal grains which results in lowering of end use quality. 

Pre-harvest sprouting affects the malting quality of barley.  The common methods to determine sprout damage are falling 

number, stirring number and amylograph peak viscosity, but these methods are time consuming.  There are other methods such 

as near infrared hyperspectral imaging and soft-x ray analysis which are still in the research stage.  Infrared thermal imaging 

technique to detect sprout damage is based on determining the changes in surface temperature distribution of grain which 

depends on the heat emission.  An infrared thermal camera was used in this study to determine whether sprout-damaged barley 

could be detected from healthy barley.  The results were analyzed using statistical and artificial neural network classifiers.  

The classification accuracies were 78.7%, 78.9% and 88.5% for healthy; and 87.0%, 87.5% and 87% for sprouted kernels, using 

linear discriminant analysis, quadratic discriminant analysis and artificial neural network, respectively.  The results of the 

study show that thermal imaging has potential to determine sprout damage to barley. 
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1  Introduction 

Sprouting of the seed is a natural occurrence in the 

life cycle of a plant.  A sprouted kernel is defined as one 

in which the germ end has been opened by germination 

and exhibits a sprout, or in which the sprout has been 

broken off leaving only the socket (Huang and 

Varriano-Marston, 1980).  Pre-harvest rain coupled with 

warm temperatures provides optimum condition for the 

kernels to germinate in the swath even before they are 

harvested from the field.  Sprouting of cereal grain 

causes increased enzyme activity, loss of total dry matter, 

an increase in total protein, change in amino acid 

composition, and decrease in starch and increase in 

sugars (Lorenz, 1980).  Pre-harvest sprouting causes 

harvest losses, reduced test weight, loss of seed viability 

                                                 

and reduced flour quality resulting from protease and 

α-amylase enzyme activity (Sorrells et al., 1989; Moot 

and Every, 1990 cited from Martin et al., 1998). 

Pre-harvest sprouting is mainly attributed to low 
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mancy before harvest (Rodríguez et al., 2001). 

Pre-harvest sprouting is a major issue in barley 

because when barley viability falls below 95%, malting 

barley is downgraded to feed grade with consequent 

financial loss (Bason et al., 1993).  Pre-harvest sprouted 

barley may lead to poor modified malt that is unsuitable 

for production of beer.  Low extract yields, long runoff 

times, poor beer stability and off flavors are some 

problems that can res

isel et al., 2004).  

Detection of sprouted barley is largely performed by 

visual inspection in Australia (Bason et al., 1993).  But 

this method is subjective and lacks the sensitivity to 

detect mild damage that can significantly affect storage 

and further processing (Bason et al., 1991).  Visual 

estimation of sprouting in wheat is unreliable because 
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 accurate method to determine sprout-damaged 

kernels.  

Thermal imaging is a technique which converts the 

radiation emitted by an object into temperature data 

without establishing contact with the object.  Infrared 

thermal imaging provides the surface temperature of an 

object and has wide application in fields such as medical, 

electrical, mechanical and civil engineering.  In 

agriculture, application of thermal imaging for evaluation 

of fruit maturity (Danno et al., 1980), detection of bruises 

in fruits and vegetables (Danno et al., 1977; Varith et al., 

2003), detection of foreign substance in food 

(Meinlschmidt and Margner, 2003) and detection of 

insect infestation in stored grain (Manickavasagan et al., 

2007) have been studied.  It has been established that 

respiration and consequently the quantity of heat energy 

released per unit time would be higher in sprouted grain 

than in a healthy kernel (Bailey and Gurjar, 1920; Proctor, 

1994).  In an earlier study (Vadivambal et al., 2010), we 

demonstrated that thermal imaging has the efficiency of 

identifying pre-harvest spouting in wheat.  Therefore, 

our hypothesis was that higher

much of the damage is done before germination of grain 

is visible (Jensen et al., 1984 cited from Barnard et al., 

2005).  In North America, the most widely used method 

for detecting pre-harvest sprouting in barley at the malt 

house and elevator is the pearling of the sample and 

visual inspection (Heisel et al., 2004).  Schwarz et al. 

(2004) compared the pearling method with other 

techniques such as falling number (FN), stirring number 

(SN) and amylazyme method for assessment of 

pre-harvest sprouting in barley and they found that FN 

and SN methods were more sensitive than pearling 

me

eed to develop a simple, rapid, non-destructive 

and

 heat energy released by 

used to differentiate 

ey kernels using 

chnique.  

r experiments.  Healthy kernels were 

oisture 

con

thod for identifying early stages of pre-harvest 

sprouting.   

Falling number is widely used to determine sprout 

damage in wheat. Barnard et al. (2005) compared the 

falling number method with other methods such as 

stirring number, α-amylase, diastatic activity and 

WheatRite method.  Their results showed that all 

methods evaluated showed significant correlation to each 

other but stirring number and falling number methods 

were most reliable for determination of pre-harvest 

sprouting.  Koeltzow and Johnson (1993) compared the 

various sprout damage detection techniques such as 

falling number, stirring number (SN) and amylograph 

peak viscosity methods and concluded that the 

relationship between FN, SN and amylograph results 

were complex and it was difficult to convert results from 

one method to another.  These methods are destructive 

and time consuming and cannot be used for online 

determination of sprout-damaged kernels.  Neethirajan 

et al. (2007) used X- rays to determine the incidence of 

sprouted wheat kernels.  X-rays are difficult to use and 

pose a health hazard if the system becomes defective. 

Shashikumar et al. (1993) and Singh et al. (2009) 

demonstrated the potential of near-infrared hyperspectral 

imaging to classify sprouted and healthy kernels.  But 

the drawback with hyperspectral imaging is the handling 

of enormous amounts of data and high cost associated 

with the imaging system (Sivakumar, 2006).  Hence, 

there is a n

the sprout-damaged kernels can be 

sprouted kernels from healthy barl

thermal imaging te

2  Materials and methods 

2.1  Samples   

The barley variety selected for the study was Certified 

Newdale.  About 1 kg sample was surface sterilized by 

soaking in a 2% aqueous sodium hypochlorite solution 

for 15 min and then rinsed in distilled water.  The 

sample was then soaked for about 16 h in distilled water. 

The water was drained and the grain spread on a cellulose 

pad and germinated at 21℃ at 70% RH for 48 h.  Then 

the samples were dried at room temperature to 12% 

moisture content and then kept in air-tight plastic bags 

until used fo

surface sterilized, rinsed and dried to 12% m

tent and kept in air-tight plastic bags using the similar 

procedures.  

2.2  Image acquisition and feature extraction 

An infrared thermal camera (Model: ThermaCAMTM 

SC500 of FLIR systems, Burlington, ON, Canada) with 
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uncooled focal planar array type sensor was used to take 

thermal images of the sprout-damaged and healthy barley 

kernels (Figure 1).  The camera captured images of  

240×320 pixels.  Grain kernels at room temperature 

were placed on a heated plate (which was maintained at 

30±1℃ using a PID controller) in order to easily segment 

background from the area of interest and thermal images 

were captured by the camera.  Technical specifications 

of the thermal camera, image acquisition and feature 

extraction techniques are described in detail in 

Vadivambal et al. (2010).  Totally 2000 thermal images 

were acquired (one thousand healthy and one thousand 

sprout-damaged kernels), and Matlab (version 7.1, The 

Mathworks Inc., Natick, MA) was used for segmentation 

of grain kernel from background and temperature data 

extraction.  Totally five temperature features (average, 

maximum, minimum temperatures of the grain kernel, 

range of temperature difference between maximum and

minimum temperatures (Δt)) and standard deviation) 

 

were extracted from each thermal image using the 

developed Matlab algorithm. 

 
1. ed Plate  2. Thermal camera  3. Close-up lens  4. PID controller 

 

Fig

n 

ork software (Neuroshell 

2, v

 Heat

5. Data acquisition system 

ure 1  Experimental set-up for thermal imaging of healthy and 

sprout-damaged barley kernels  

 

2.3  Classification 

The Linear Discriminant Analysis (LDA) and 

Quadratic Discriminant Analysis (QDA) models were 

developed using PROC DISCRIM procedure in SAS 

(version 9.3, SAS Institute, Cary, NC, USA). 

Discriminant analysis classifies objects into one or more 

groups based on a set of features that define the object. 

Linear discriminant classifier uses pooled covariance in 

Bayes criteria to assign an unknown sample to one of the 

predefined groups.  The quadratic discriminant classifier 

uses covariance of each class instead of pooling them in 

Bayes criteria for grouping of unknown samples (Naes et 

al., 2002).  Means of healthy and sprout-damaged barley 

samples’ temperature features were compared by Scheffe 

grouping method using SAS.  Statistical classifiers were 

compared with a three layer back propagation neural 

network (BPNN) with default number of neurons (44) i

one hidden layer.  Neural netw

ersion 4.0, Ward Systems Group, Frederick, MD) was 

used for classification purposes.  Five random data sets 

were created and the dataset was grouped as 60%, 20% 

and 20% for training, testing and validation purposes.  

2.4  Falling number test 

Falling number test is used to determine the sprout 

damage in barley using a falling number apparatus 

(Model 1500, Perten Instruments, Huddinge, Sweden) 

following the standard AACC Method 56-81B (AACC, 

2000).  A 7 g finely ground sample (particle size <0.8 

mm) of barley was mixed with 25 ml of distilled water in 

a test tube and shaken thoroughly forming slurry.  A 

stirrer was placed in the tube and the test tube containing 

the slurry was placed in a hot water bath.  The total time 

taken by the stirrer to reach the bottom is the falling 

number which reflects the sprout damage.  The greater 

the sprout damage, the lower is the falling number.  

3  Results and discussion 

3.1  Temperature of the healthy and sprout-damaged 

barley kernels 

The average surface temperature of the thousand 

healthy barley kernels was 27.27℃ whereas the average 

surface temperature of the sprout-damaged kernels was 

27.83℃.  The thermal images of healthy and 

sprout-damaged kernels are shown in Figure 2.  The 

average maximum and minimum surface temperatures of 
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healthy kernels were 28.29℃ and 26.69℃, respectively. 

The average maximum and minimum surface 

temperatures of sprout-damaged kernels were 28.68℃ 

and 27.10℃, respectively.  The temperature features 

other than range were significantly different (P<0.001) 

for healthy and sprout-damaged kernels (Table 1).  The 

classification of healthy and sprouted kernels using 

therm  the 

temp d by 

Bail ty of 

carbo ty of 

heat e in 

al imaging is based on the variation in

erature of the kernels.  The study conducte

ey and Gurjar (1920) has shown that the quanti

n dioxide respired and consequently the quanti

 energy released per unit time is at a higher rat

sprouted wheat than in control wheat.  

 
Figure 2  Thermal im y and sp d  

s 

 

Ta mper  (±standa n) of 

mperatu a es Heal rnels Sprout-damaged kernels 

ages of health rout-damage

barley kernel

ble 1   Mean te ature values rd deviatio

healthy and sprout-damaged kernels. 

Te re v lu thy ke

Av p at a*erage tem er ure 27.27  ± 0.49** 27.83b ± 0.52 

Maximum temperature 28.29a ± 0.35 28.68b ± 0.36 

Minimum temperature 26.69a ± 0.52 27.10b ± 0.55 

Range (Δt) 1.60a ± 0.27 1.58a ± 0.30 

Standard deviation 0.33a ± 0.09 0.40b ± 0.08b 

Note: * Values with same letters in a row are not significantly different (α=0.05) 

by Scheffe method;  ** Stanard deviation (n=1000). 

表 1 中上标a、b表示什么？？ 

3.2  Classification using statistical analysis  

The results of the statistical classifiers using LDA and 

QDA are given in Figure 3.  The classification accuracy 

for healthy and sprout-damaged barley kernels using 

LDA was 78.7% and 87.0%, respectively.  The 

classification accuracy for healthy and sprout-damaged 

barley kernels using QDA was 78.9% and 87.5%, 

respectively.  The classification accuracy was higher for 

sprout-damaged kernels than the healthy kernels using 

both statistical classifiers.  In our earlier study 

(Vadivambal et al., 2010); the LDA and QDA classifiers 

developed from thermal images successfully identified 

98.1% and 95.1% of pre-harvest sprouting in wheat 

kernels.  Singh et al. (2009) studied the detection of 

sprout-damaged wheat kernels using near infrared 

hyperspectral imaging and obtained a classification 

accuracy of 100% for healthy and sprouted wheat kernels.  

 
Figure 3  Classification accuracy for healthy and sprout-damaged 

barley kernels using LDA and QDA 

 

3.3  Classification using artificial neural network 

Five features (average temperature of the grain, 

maximum temperature of the grain, minimum 

temperature of the grain, range (Δt), and standard 

deviation) were used for artificial neural network 

classification.  The mean classification accuracies of 

five trials for healthy and sprout-damaged kernels were 

88.5% and 87.0%, respectively.  Table 2 shows the 

contributing factors and the contributing percentage of 

each factor.  For both healthy and sprout-damaged 
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accuracy was higher in ANN. 

Neet  

classification a the statistical 

classifi det

wheat kernels u  image an .  ANN 

classifier develope al im yielded 

clas n acc % and 91.7% for healthy 

and pre-harv age whe samples 

(Vadivambal et 

ribu ontributing t of each 

sification. 

Type of kernel Contributi entage/% 

kernels, average temperature was the most important and 

the highest contributing factor.  Compared to statistical 

classifier the classification 

hirajan et al. (2007) also reported higher

ccuracy using ANN than 

er for ection of sprout-damaged and healthy 

sing soft X-rays alysis

d from therm ages 

sificatio uracies of 99.4

est sprout-dam at 

al., 2010). 
 

Table 2  Cont ting factor and c percen

factor for ANN clas

Contributing factor ng perc

Average temper re 33.87 atu

Range (Δt) 18.93 

Standard deviation 17.59 

Minimum temperature 17.21 

Healthy 

Maximum temperature 12.39 

Average temperature 33.20 

Range (Δt) 19.38 

Standard deviation 17.70 

Minimum temperature 17.32 

Sprout-damaged 

Maximum temperature 12.39 

 

3.4  Falling number test 

The results of the average falling number for healthy 

and sprout-damaged kernels are given in Table 3.  The 

average falling number values for healthy and 

rout-damaged kernels were 235 and 62, respectively. 

Generally a falling number of 250 is considered 

c  

2007).  The value clearly 

indicates ree of sprout da mples. 

 

d deviation of falling r values 

based on 5 replicates of barley 

Falling number, s 

sp

as a 

cut-off for sprouting, but depending on the crop year this 

ut-off value varies between 220 and 250 (Bueckert et al.,

results of falling number 

 a large deg mage in the sa

Table 3  Mean ± standar numbe

Type of kernel 

Healthy 235* ± 7.7** 

Sprout-damaged 62 ± 0 

表中上标*、**表示什么？？ 

 

4  Conclusions 

Thermal imaging was used to determine the 

sprout-damaged barley kernels from healthy kernels and 

statistical and neural network classifiers were used for 

classification purposes.  The classification accuracies 

were: 78.7% and 87.0% for healthy and sprouted kernels, 

respectively, using LDA; 78.9% and 87.5% using QDA; 

and 88.5% and 87% using artificial neural network.  The 

results of the study have shown that thermal imaging has 

 potential to identify single-sprout-damaged kernels 

s.  Further studies are needed to 

det
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