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ABSTRACT: Drying kinetic of sweet potato was investigated considering different drying 
conditions. The drying experiments were performed at five levels of drying air temperature of 50-
90oC, together with five levels of air flow velocities of 1.5-5.5 m/s, and also three levels of 
thickness of 0.5-1.2 cm. A predictive model using artificial neural network was proposed in order 
to obtain on-line predictions of moisture kinetics during drying of Sweet potato. A three-layer 
network with tangent sigmoid transfer function in hidden layer and linear transfer functions in the 
output was used. A feedforward network with two hidden neurons was used. The best fitting with 
the training data set was obtained with eight neurons in first hidden layer and 4 neurons in second 
hidden layer, which made possible to predict moisture kinetics (moisture content, drying rate and 
moisture ratio) with accuracy, at least as good as experimental error, over the whole experimental 
range. On validation data set, simulation and experimental kinetics test were in good agreement. 
Comparing the R2 (coefficient of determination), MRE and STDR  using the developed ANN 
model it was concluded that the neural network could be used for on-line state estimation of drying 
characteristics and control of drying processes. 
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Introduction  

Sweet potato (Ipomoea batatas Lam.) is an important source of carbohydrate for people in 
Asia. Since its root part is also rich in B-carotene, food fibre, and potassium ion, etc., sweet potato 
is widely used in ready-to-eat foods, etc. The possibility of using Sweet potato starches in noodles 
and other wheat-based foods has been investigated by different researches (Noda et al., 2006). 
Sweet potato starch can be used as an ingredient in bread, biscuits, cake, juice and noodles (Zhang 
& Oates, 1999).  
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Air-drying is an essential procedure in food processing industries. On-line state estimation 
and control of air drying operation requires the mathematical description of food temperature and 
moisture evolution during the process. The dynamics of food drying process involves simultaneous 
heat and mass transfer, where water is transferred by diffusion from inside of the food material 
towards the air-food interface, and from the interface to the air stream by convection. Heat is 
transferred by convection from the air to the air-food interface and by conduction to the interior of 
food (Balaban & Piggot, 1988; Karathanos et al., 1990, Kiranoudis, et al., 1993). This 
phenomenon has been modeled with different levels of complexity. Existing models do not permit 
in adequate control of the air drying process in industrial applications. Physical dynamic models, 
considering the complexity of the process, usually result in coupled non-linear differential 
equations with partial derivatives which are very time consuming. However, these equations can 
be simplified (Sablani et al., 2005 and Hernandez, 2009), although not taking into account the 
complexity of the process, and still contain ordinary non-linear differential equations that take too 
long to simulate for control applications (Trelea et al., 1997). Empirical models representations 
approximate the drying kinetics by several line segments (Daulin, 1982), high order polynomials 
and neural networks, but require only a limited number of simple arithmetic operations for 
simulation, and can be easily incorporated in control software. 

 Neural networks are recognized as good tools for dynamic modeling, and have been 
extensively studied since the publication of the perceptron identification methods (Rumelhart et al., 
1986). The interest of such model includes the modeling without any assumptions about the nature 
of underlying mechanism and their ability to take account non-linearities and interactions between 
variables (Bishop, 1994). Recent results establish that it is always possible to identify a neural 
model based on the perceptron structure, with only one hidden layer, for either steady state or 
dynamic operations. An outstanding feature of neural network is the ability to learn the solutions 
of problems from a set of examples, and to provide smooth and reasonable interpolations for new 
data. Also, in the field of food process engineering, it is a good alternative for conventional 
empirical modeling based on polynomial, and linear regressions. For food processes, the 
application of neural network keeps on expanding (Erenturk and Erenturk, 2007, Torrecilla et al., 
2007, Assidjo et al., 2008, Lertworasirikul and Tipsuwan, 2008, Huang & Mujumdar, 1993).  

In this work, an attempt has been made to predict the drying kinetics of sweet potato drying 
with a wide range of independent variables and to test the importance and efficiency of neural 
networks to model and predict the moisture transfer during air drying of food stuffs. The model 
validation was made with experimental drying data of sweet potato cubes. 

2. MATERIALS AND METHODS 

2.1 Neural Network Systems  

 Neural networks are composed of simple elements operating in parallel. As in nature, 
network function is determined largely by the connections between the neurons, each connection 
between two neurons has a weight coefficient attached to it. The neuron is grouped into distinct 
layers and interconnected according to a given architecture. The standard network structure for 
function approximation is the multiple layer perceptron (or feed forward network). The feed 
forward network often has one or more hidden layers of sigmoid neurons followed by an output 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
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layer of linear transfer functions to allow the network to learn non-linear and linear relationship 
between input and output vectors. The linear output layer lets the network produce values outsides 
the range -1 to +1 (Limin, 1994). For multiple-layer networks we use the number of the layers to 
determine the superscript on the weight matrices. The appropriate notation is used in two-layer 
networks. A simple view of the selected network structure and behavior is given Fig. 1. 
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Fig.1. Topological Structure of Artificial Neural Network, k = number of inputs;  
ln = inputs;   Out = output, W = weights and b= biases. 

 

 The number of neurons in the input and output layers are given by the number of input and 
output variables in the process under investigation. In this work, the input layer consists of four 
variables in the process air temperature (T), air velocity (V), sample thickness (s) and time of 
drying (t) and the output layer contains one variable; Moisture content (d.b.). The optimal number 
of neurons in the hidden layer ns is difficult to specify, and depends on the type and complexity of 
the task, usually determined by trial and error. Each neuron in the hidden layer has a bias b, which 
is added with the weighted inputs to form the neuron input n. This sum, n, is the argument of the 
transfer function f :  

n = Wi{1,1}ln1+Wi{1,2}ln2 + ………… +Wi{1, k} lnk+b     …(1) 

 The coefficients associated with the hidden layer are grouped into matrices Wi1 (weights) 
and b1 (biases). The output layers computes the weighted sum of the signals provided by the 
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hidden layer, the associated coefficients are grouped into matrices Wo3 and b3. Using the matrix 
notation, the network output can be given by Eq. (2) 

Out = f’{Wo3 x f (Wi2 x1n+ b2)+b3}            …(2) 

 Hidden layer neurons may use any differentiable transfer function to generate their output. 
In this work, a tangent sigmoid transfer function and linear transfer function were used for f and f’, 
respectively. The equation of network coefficient (weight and biases) is given by the equation (2)  

2.2 Learning Algorithm 

 A learning (or training) algorithm is defined as a procedure that consists in adjusting the 
coefficients (weight and biases) of a network, to minimize an error function (usually a quadratic 
one) between the network outputs for a given set of inputs and the right outputs already known. If 
smooth non-linearities are used, the gradient of the error function can be easily computed by 
classical back propagation procedure (Rumelhart et al., 1986).  

  Previous learning algorithms used this gradient directly in a steepest descent optimization, 
but recent results show that second order methods are far more effective. In this work, the 
Levenberg-Marquardt, optimization procedure in the Neural Network Toolbox of Matlab was used. 
The algorithm of Levenberg is an approximation of Newton’s methods, this algorithm was 
designated to approach second order training speed without having to compute the Hessian matrix 
(Martin et al., 1994). Despite the fact that computations involved in each iteration are more 
complex than in the steepest descent case, the convergence is faster, typically by a factor of 100. 
The root mean square error (RMSE) between the experimental values and network predictions 
were used as a criterion of model adequacy. 

2.3 Database Preparation 

 Experimental data were obtained from drying of sweet potato cubes having thickness 5, 8 
and 12 mm at five different air temperatures (50, 60, 70, 80 and 90oC) and five air velocities (1.5, 
2.5, 3.5, 4.5 and 5.5 m/s) with a time 0 - 220 min for each kinetics. It resulted in around 1400 
experiment data. Experimental data were split into learning and test databases to obtain a good 
representation of the situation diversity. The inputs (In) of the network were air temperature (T)/90, 
air velocity (V)/5.5, cube thickness (d)/12 and time (t)/220; the outputs (out) was moisture content 
(db). 

 Food moisture evolution during drying was calculated by sample weight loss of the product 

using weight balance with accuracy 0.0001g (mettle Germany). The learning database was 
obtained to optimize the neural network and the test database was reserved for validation of the 
predictive capability of the model. 

3. RESULTS AND DISCUSSION 
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weight changes during series of iterations to bring the predicted value within an acceptable range 
of the observed values, were adjusted between 0.01 and 0.08 with the hidden neurons kept constant 
at 8 in first hidden layer and 4 neurons in second hidden layer on trial basis. Preliminary trials 
indicated that higher learning rates (η) produced poorly developed models which agree with 
findings of Chhaya and Rai (2008). After these trial runs, the learning rate was fixed at 0.05 and 
momentum at 0.9. During training the neural network weights were initialized in order to obtain 
the smallest possible predicting error, simulations were performed 2500 times with frequency of 
progress of 50 (Fig. 2). A simple propagation network using the Levenberg-Marquarardt for 
training the network was found to be very effective to generalize and predict the moisture of the 
final dried product. The minimum value of root mean square error (RMSE) in the range of 0.00052 
to 0.00092 was also reached well within that number in all the three drying kinetics. These 
observations were in good agreement with previous research workers (Assidjo et al. 2008 and 
Chhaya and Rai, 2008).  
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 Fig. 2 Variation of root-mean square error training with iteration number (epochs) 
 

Fig. 2 indicates the trial RMSE values against the iteration number for moisture content. The 
topology which gave the minimum error in minimum number of iterations during the training of 
the ANN was selected. The various ANN topology along with coefficient of determination and 
other associated statistics are presented in Table 1.  Total of 30 configurations were performed in 
order to search the optimal topology.  
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Table 1. Prediction of Moisture content (MC) db,% for Sweet potato Samples 

M.C. , % No. of 
hidden 
layer 

Neurons in 
1st hidden 

layer 

Neurons in 
2nd hidden 

layer 
MAE MRE, 

% 
STDA STDR R2 

1 2 - 0.017 12.890 0.017 0.133 0.996 
1 4 - 0.015 11.483 0.016 0.125 0.997 
1 6 - 0.013 10.896 0.014 0.135 0.997 
1 8 - 0.013 12.623 0.014 0.180 0.998 
1 10 - 0.013 13.967 0.013 0.210 0.998 
2 2 2 0.015 10.564 0.016 0.119 0.997 
2 2 4 0.015 11.773 0.016 0.140 0.997 
2 2 6 0.014 10.880 0.016 0.130 0.997 
2 2 8 0.014 10.327 0.015 0.134 0.997 
2 2 10 0.014 10.252 0.016 0.134 0.997 
2 4 2 0.013 12.292 0.014 0.161 0.997 
2 4 4 0.012 10.367 0.013 0.134 0.997 
2 4 6 0.011 11.001 0.011 0.156 0.998 
2 4 8 0.014 14.214 0.014 0.191 0.997 
2 4 10 0.011 10.201 0.014 0.143 0.999 
2 6 2 0.012 10.735 0.012 0.140 0.998 
2 6 4 0.014 12.500 0.015 0.277 0.997 
2 6 6 0.011 12.358 0.011 0.194 0.998 
2 6 8 0.010 11.085 0.010 0.182 0.999 
2 6 10 0.013 15.516 0.013 0.223 0.999 
2 8 2 0.011 10.595 0.011 0.127 0.998 
2 8 4 0.009 8.258 0.010 0.114 0.999 
2 8 6 0.010 9.961 0.011 0.160 0.999 
2 8 8 0.010 10.416 0.015 0.153 0.998 
2 8 10 0.009 11.446 0.011 0.212 0.999 
2 10 2 0.012 10.795 0.012 0.140 0.998 
2 10 4 0.012 12.614 0.012 0.193 0.998 
2 10 6 0.011 12.954 0.018 0.790 0.997 
2 10 8 0.010 10.874 0.010 0.186 0.999 
2 10 10 0.009 10.942 0.011 0.211 0.999 

 

3.1   Verification of the ANN Models 

 The prediction performance of all the ANN models (MC, dm/dt or MR ) was validated 
using a data of 20 % cases, which were not used in the initial training of the ANN models. The 
simple ANN model (2 hidden neurons) predicted MC with a mean relative error of 8.258, a 
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standard deviation on relative error of 0.114 and a coefficient of determination of 0.9987 as 
presented in Table 2.  

 

Table 2   Architecture of ANN with Minimum MRE for all Combinations in hot air  

drying of   treated sample 

Architecture MC (% db) dm/dt (Drying rate) MR 

No. of hidden layer 
No. of neuron first hidden layer 
No. of neuron in second hidden layer 
MAE 
STDA 

MRE 
STDR 

R2 

2 
8 
4 

0.009 
8.258 
0.010 
0.114 
0.9987 

2 
8 
10 

0.0157 
17.355 
0.0301 
0.2470 
0.9930 

2 
4 
6 

0.0061 
9.4725 
0.0079 
0.1602 
0.9984 

 

The ANN model with 2 hidden neurons predicted dm/dt (drying rate) with a mean relative error of 
17.355, a standard deviation of relative error of 0.2470 and a coefficient of determination of 
0.9930. The MRE, STDR and coefficient of determination in prediction of moisture ratio (MR) 
were 9.4725, 0.1602 and 0.9984 respectively. Lertworasirikul and Tipsuwan (2008) predicted 
moisture content and water activity of semi-crackers cassava from a hot air drying process in a tray 
dryer using one hidden layer having nine nodes and logarithmic sigmoid transfer function and 
reported that the mean squared error and regression coefficient (R2) was 0.0034 and 0.9910 
respectively, which was in close agreement with the findings of present study. Each data set was 
divided into two groups, consisting of 80% for training and 20% for testing. During training, the 
data set was used to determine the optimum number of hidden layers, neurons per hidden layer that 
gave the best predictive power. Architecture of artificial neural network was hidden layers 1 and 2 
and neurons 2-10 hidden layer. Each combination of hidden layers and neurons per hidden layer 
was trained. Relative mean square error (MAE), standard deviation of MAE (STDA), percentage of 
relative mean square error (% MRE) and standard deviation of % MRE (STDR) and R2 along with 
number of hidden layers and neurons in each hidden layer were computed. It was observed that the 
number of hidden layers, and neurons per hidden layer, that yielded minimum error was different 
for each drying technique. Table 3. revealed the detailed ANN structure for all combinations of 
data set of blanched and treated and blanched samples hot air drying. A large number of hidden 
layers are not required to lower the error if there is enough number of neurons (Torrecilla et al., 
2007). The best prediction for most of the data set contained two hidden layers. ANN developed 
for combined drying data had slightly higher error than individual conditions.  
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 Fig. 3 Correlation between predicted and experimental data for the treated sample 

Plots of experimentally determined moisture content, drying rate and moisture ratio versus 
ANN simulated values for all combined data shown in Fig. 3. The correlation coefficients were 
greater than 0.99 in all cases. For all combined data set for blanched and treated samples, the R2 
was found 0.9987, 0.9930 and 0.9984 for moisture content, drying rate and moisture ratio, 
respectively and for blanched samples, the R2 were 0.9984, 0.9917 and 0.9987. This shows that the 
ability of ANN to predict moisture content, drying rate and moisture ratio was very good. These 
observations are consistent with previous research workers (Hernandez-Perez et al., 2004) on 
Cassava in which correlation coefficients between the predicted and observed moisture content 
was more than 0.9998. The system equations representing the ANN for predicting moisture 
content, drying rate and moisture ratio are given in Table 3.  

The equation shows the input, transfer function and relative weights and biases of each 
node. The equations can be used in computer program to predict the moisture content, drying rate 
and moisture ratio of sweet potato cubes (Islam et al., 2003). The minimum and maximum error 
involved between actual and predicted values were 0.009-0.017, 0.0157-0.0330 and 0.0061-0.0212 
for moisture content, drying rate and moisture ratio for blanched and treated sample respectively 
and 0.009-0.017, 0.0181-0.0266 and 0.0082-0.0178 for blanched samples respectively. It is evident 
that the model was successful in predicting the experimental drying kinetics. This shows the 
importance of the artificial neural network to simulate the drying curves of foodstuff. These 
models are not complex because simulation is realized by simple arithmetic operations, and 
therefore, they can be used for on-line estimation in air drying processes for industrial applications 
(Erenturk and Erenturk, 2007).   
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Table 3   ANN model for prediction of Moisture Content (db, %) 

 
Input variables: 
X1 = Temperature, oC 
X2 = Air velocity, m/s 
X3 = Cube size, cm 
X4 = Time, min 
First hidden layer 
H1 = tansig[(4.2554*X1+0.5461*X2+3.7369*X3+2.509*X4)‐0.84272] 
H2 = tansig[(3.8593*X1+0.8758*X2+2.5884*X3+0.9339*X4)‐6.8799] 
H3 = tansig[(‐4.8827*X1+2.5006*X2‐6.0765*X3‐15.589*X4)‐5.3058] 
H4 = tansig[(0.2422*X1+0.5035*X2+0.7358*X3‐1.0578*X4)‐1.0176] 
H5 = tansig[(‐2.1996*X1+11.3534*X2+1.8041*X3+4.5596*X4)‐3.9677] 
H6 = tansig[(0.3429*X1‐0.3593*X2‐0.2657*X3‐1.111*X4)‐0.6475] 
H7 = tansig[(‐0.0215*X1+0.0277*X2+0.0179*X3+3.1194*X4)+5.1817] 
H8 = tansig[(14.6736X1‐31.4342*X2+14.8288*X3+12.956*X4)+12.0315] 
Second hidden layer 
G1= tansig[(0.1817*H1‐0.8615*H2+0.0546*H3‐0.4916*H4‐0.0723*H5‐0.9517*H6‐

10.1522*H7+0.0308*H8)+9.5811] 
G2 = tansig[(21.5471*H1+8.1645*H2+2.8121*H3‐19.1811*H4‐2.225*H5‐7.5634*H6+8.5984*H7‐

24.5878*H8)+14.8178] 
G3 = tansig[(‐0.9151*H1‐0.020*H2+0.8406*H3‐1.2553*H4‐20.8199*H5‐

4.6587*H6+4.0193*H7+0.5970*H8)+15.8368] 
G4 = tansig[(‐0.1986*H1+0.8074*H2‐0.0559*H3+0.4480*H4+0.0616*H5+1.0722*H6‐21.7917*H7‐

0.0065*H8)+22.3392] 
MC (output) = purelin[(1.5106*G1+0.0208*G2‐0.0394*G3+1.7508*G4)‐0.7470]  
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Fig. 4 Experimental data and simulated moisture ratio curves generated with proposed model in 
the drying kinetics of Sweet potato.  

Fig. 4 depicts the ability of the models to predict drying kinetics at different thickness, temperature 
and air velocities for a narrower validity range (e.i., 700C, 4.5 m/s & 0.5, 0.8 and 1.2 cm). In all 
cases, the drying rate decreased continuously throughout drying period (Diamante and Munro, 
1993). 

 

Fig. 5 Experimental data and simulated curves generated with proposed model in the drying 
kinetics of Sweet potato.  
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The moisture content Fig. 5 shows some moisture content simulated results and experimental data 
obtained by the test database for drying air temperatures; 50-900C for 4.5 m/s and 0.8 cm size). It 
is evident that the model was successful in predicting the experimental drying kinetics. This shows 
the importance of the artificial neural network to simulate the drying curves of foodstuff. These 
models are not complex because simulation is realized by simple arithmetic operations, and 
therefore, they can be used for on-line estimation in air drying processes for industrial applications. 

CONCLUSIONS 

 The applicability of an ANN to model a hot air dryer was discussed and illustrated with 
numerical simulations and experimental data involving different conditions operation. The results 
obtained in this work showed that the proposed ANN could be successfully applied to model 
convective hot air dryer for drying of sweet potato cubes. The proposed neural network model 
provided more than 0.05% accuracy in the estimation of moisture content. The ANN showed 
suitable accuracy and degree of generalization to predict the moisture content of the dried solid 
when the ANN was trained with a learning coefficient of 0.5 and 2500 iterations. Values larger 
than these ones did not improve significantly the predictions of the ANN. It also demonstrated that 
the proposed neural network model not only minimized R2, but also removed dependence on the 
mathematical model. As a result, neural network model introduced here was successful in 
predicting the experimental drying kinetics. This shows that the importance of the artificial neural 
network model is not complex since the estimation is realized by simple arithmetic operations. 
Hence, the artificial neural networks can be used for the on-line estimation of drying kinetics and 
also controlling the drying processes in industrial operations successfully. 
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