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Abstract: African Leafy Vegetables hold a high potential as an income source for resource poor 
rural dwellers in Cameroon but this potential has not been realized because of lack of appropriate 
post harvest packages resulting in high losses. A solar tunnel dryer was designed and constructed 
using local materials and evaluated for drying leafy vegetables and other agricultural products.  
Four drying trays made of wood and plastic mesh with a total surface area of 3.25 m2 were used 
for drying.  The dryer was south facing with an inclination of 6º, and the solar radiation falling 
on the dryer surface was estimated at 12.13 kJ/m2 per day.  At sunset during the wet harvesting 
period, the temperature inside the dryer was 5 ºC above the ambient because of additional 
heating due to heat storage.  The complete dryer could dry 17 kg of sliced cabbage from 95% 
moisture content wet basis down to 9% in five days in a period characterized by intermittent 
downpours and permanent cloud cover.  The overall dryer efficiency was 17.68%, with a 
moisture extraction efficiency of 79.15% and airflow of 9.68 m3/hr.  The relative humidity of the 
air inside the dryer varied from 75% in the morning down to about 35% at noon.  Tests on other 
high moisture products showed that the dryer could reduce the drying time by 30 to 50% 
depending on the product and the final product was acceptable in taste and colour. 
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1      Introduction  

One of the oldest uses of solar energy has been the drying and preservation of agricultural 
surpluses.  The methods used are simple and often crude but reasonably effective.  Basically 
crops are spread on the ground or platforms often with no pre-treatment and are turned regularly 
until sufficiently dried so that they can be stored for later consumption.  Little capital is required 
on the expenditure of equipment but the process is labour intensive.  These technologies have 
originated in many of the developing countries so there is no major social problem in their 
acceptance, or in the use by local populations.  There are however, several technical problems 
with this basic drying process, including cloudiness and rain, insect infestation, high levels of 
dust and atmospheric pollution and intrusion from domestic animals. 
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These technologies are still a common way of conserving agricultural commodities by small 
producers in Cameroon.  They spread cereals, legumes, fruits and vegetables (including coffee 
and cocoa) on the ground to dry, sometimes on the road side to take advantage of additional 
heating by the tarred surface.  Since harvesting of the major crops is generally in the months of 
heavy rainfall, and because of the limitations cited above, the final product is poor in quality and 
of low market value (Berinyuy, Nguy and Boukong, 1997).  

The total number of species of subsistence crops forming the base of agricultural 
development and cultivation in developing countries is large (Tindal, 1977).  A large proportion 
of this is vegetable, which plays an important role in African agricultural and nutritional systems.  
Westphal (1981) and Stevel (1990) list several varieties of leafy as well as root and fruit 
vegetables in Cameroon.  This diversity is more remarkable in the central and southern parts of 
the country where rainfall is relatively high.  Due to the lack of documentation of their yields and 
sales, these indigenous vegetables have been regarded as minor crops and have been given low 
priority in most agronomic research and development programmes, but leafy indigenous 
vegetables are assuming an increasingly important commercial role especially for farming 
households living near urban centres (Gokowski and Ndumba, 1997).  This potential is however 
not realized because of a lack of post harvest technologies for conservation that result in very 
high losses (Berinyuy, Nguy and Boukong, 1997). 

Dryers have been developed and used to dry agricultural products in order to improve shelf 
life (Esper and Mühlbauer, 1996; Mühlbauer, Müller and Esper, 1996; Lutz et al., 1987).  Some 
of these either use an expensive energy source such as electricity (El-Shiatry, Müller and 
Mühlbauer, 1991; Berinyuy, 2000) or a combination of solar energy and some other form of 
energy (Sesay and Stenning, 1997) that render the purchasing cost of the dryer become high.  
Most projects of this nature have not been adopted by end users, either because the holding 
capacity of the dryer is relatively small to justify the corresponding investment, (Lutz et al., 
1987); the final design and data collection procedures are frequently inappropriate or the cost has 
remained inaccessible and the subsequent transfer of technology from researcher to the end user 
has been anything but effective. 

Use of solar dryers for agricultural purposes in the tropics has often been hampered because 
crops mature during the peak of the rainy season when frequent downpours and overcast skies 
are the norm.  This often slows down drying, causes rewetting during periods of downpours even 
in cases where forced convection is used for the dryer (Fagunwa, Koya and Faborode, 2009).  
The final dry product takes longer to dry and does not have an attractive appearance because of 
moisture pick up during drying resulting in mould growth.  The end result is that the technology 
is considered unacceptable because it does not meet the end user’s expectations. 

The aim of this work was to apply technologies that allow the utilization of renewable 
energy to improve the food situation and living standards of the rural population in Cameroon.  
Specifically, this study was set out to modify and test a solar tunnel dryer for drying indigenous 
vegetables in the high plateau region of Cameroon where during harvest the climatic conditions 
are characterized by frequent downpours and cloudy weather conditions; design the dryer based 
on locally available material that allow for production using simple tools; incorporate the storage 
of heat into the system to overcome periods during which insolation is not sufficient to dry; and 
evaluate the product quality with respect to colour and taste.  

2     Dryer design considerations 

Solar dryers maybe designed with the drying trays stacked so that drying progress from the 
lower tray upwards.  In this case, the airflow can be determined using the following equation: 
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ݒ ൌ ܽሺ
∆


ሻ      (1) 

Where ݒ is the air flow in ms-1; ∆ܲ is the pressure drop across the dryer, in Pa; h is the 
depth of the material being dried in m; a and b are constants (Brenndorfer et al., 1987).  The 
useful energy for drying transferred into the air is given by 

௨ݍ ൌ ሺܥܯ ܶ െ ܶሻ     (2) 
For air, 

ܯ ൌ  (3)      ݐܸߩ
Where ݍ௨ = useful energy in watts, ܥ = Specific heat capacity at constant pressure, in J/kg 

ºC, ܶ 	ܽ݊݀	 ܶ = exit and entry temperatures respectively from collector in ºC, ܯ = mass flow 
rate in kg/s, ߩ = density of the air, kg/m3, ܸ = volume of air in m3 and t = time in seconds.  
Although forced ventilation reduces considerably the drying time, using forced ventilation, even 
if the fans are solar powered may be suitable for high value crops such as cash crops (Fagunwa, 
Koya and Faborode, 2009; Esper and Mühlbauer, 1996), but this option is often not available to 
the rural users of dryers because of the extra cost and their low income. 

For natural ventilation, the difference in pressure between the inside and exterior of the 
drying system can be written as 

∆ ൌ ሺߩ െ  (4)     ܪതതതሻ݃ߩ
Where ߩ,			and ߩതതത are respectively the density of the air at ambient temperature and the 

average density of air in the system in kg/m3, H is the height of the chimney in m and g the 
acceleration due to gravity (Othieno, 1986).  For a temperature ranged between 25Ԩ and 90Ԩ, 
the density of air depends on the temperature as follows; 

ߩ ൌ 1.11363 െ 0.00308ܶ    (5) 
Where T is the temperature in Ԩ (Brenndorfer et al., 1987).  Back substituting Equation (5) 

into (4) and then into (1) gives an equivalent airflow for natural convection as 

ݒ ൌ ܽሺ
.ଷ଼∆்ு


ሻ      (6) 

Where a and b have been given for rice as 0.0008 and 0.87 respectively (Brenndorfer et al., 
1987).  

Thermal energy can be stored in various media as sensible heat, where the heat gained or 
lost by the media is given by 

∆ܳ ൌ ݉ ݀ܶܥ ൌ ܸ  ݀ܶܥߩ
మ்

భ்

మ்

భ்
     (7) 

       Although ߩ and ܥ  vary with temperature, average values are usually used so that ∆ܳ ൌ
ܳ∆ ∆ܶ per unit mass andܥ	 ൌ  ∆ܶ per unit volume (Swet, 1981).  The thermal performanceܥߩ	
of any type of solar collector can be evaluated by an energy balance that determines the portion 
of the incoming radiation delivered as useful energy to the working fluid.  For a flat plate 
collector, this energy balance is 

ߙ߬ഥܣܫ ൌ ௨ݍ	 	ݍ௦௦  	
ௗ
ௗ௧

     (8) 

Where ܫ is solar irradiation on the collector surface, W/m2; ܣ is collector area, m2; ߬ is 
effective solar transmittance of the collector cover; ߙ  is solar absorptance of the collector – 
absorber plate surface; ݍ௨ is rate of heat transfer from the collector absorber to the working fluid, 

W/m2; ݍ௦௦ is rate of heat loss from the collector – absorber to the surrounding, W/m2; and  
ௗ
ௗ௧

 

is rate of thermal energy storage at the collector (Kreith and Kreider, 1981).  The instantaneous 
efficiency, ݊ , of the collector is the ratio of the useful energy delivered to the total incoming 
solar radiation expressed as 
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Figure 5  Temperature profile inside the drying chamber 

4. 2  Effect of heat storage 
To assess the efficiency of the collector, the temperature difference between the collector 

and the outside was plotted (Figure 6).  The difference between the ambient temperature and that 
inside the dryer varied from 0 ºC at sunrise to a maximum of 34 ºC at noon.  At sun set a 
temperature difference of 5.2 ºC was still apparent between the air in the dryer and that outside, 
permitting drying to continue.  This extra heat in the dryer was definitely due to the heat storage 
in the system.  Although this could cause convection to draw in cold air and thereby induce 
rewetting of the drying commodity, we did not, notice this.  Our monitoring showed that the 
temperature of the chimney dropped faster than that of the dryer in the evening.  This would slow 
down the “chimney effect, thereby trapping warm air in dryer which could only escape slowly by 
transmission through the cover or by convection through the dryer walls.  These means of heat 
exit were already minimized through insulation of the dryer box.  Transmission of long wave 
radiation through the cover is slow.  The product thus stayed longer in warm low humidity air 
and drying the following day resumed with very little moisture gain. 

 
Figure 6  Temperature difference between the ambient air and the air in the system 
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The temperature of the air inside the system rose faster at the first pass through the collector 
than the second (Figure 7).  However, a regression of the data shows a progressive increase along 
the whole length of the system.  This rise in the afternoon was uniform, whereas in the morning 
it was not so apparent.  This is probably explained by the fact that by afternoon, the dryer 
elements have absorbed enough energy to continue heating the air even when the direct radiation 
is not so apparent. 
 

 
 

Figure 7  Average temperature variation along the air path in the drying system 
4. 3  Dryer performance on some vegetables 

Table 2 shows that considerable time is gained by drying using the solar dryer as compared 
to direct natural drying.  At the end of the drying cycle, the moisture content in the solar dried 
cabbage is half that of the sun dried one.  Comparison of natural air drying and drying using the 
adapted dryer shows that the product under natural drying contained twice as much water after 
three days than that dried in the solar dryer (Figure 8).  The kinks on the curve indicate over 
night periods when no drying was taking place.  Although this was not tested, an improvement 
could include installing a slider over the air intake to reduce air flow during periods of no drying.  
These results show a 50% improvement on the drying time over sun drying.  This means that the 
product in the dryer has less time of being infested by mould and other micro-organisms, and 
that the product is ready for packaging or storage sooner.  

 
Table 2  Results of drying trials on some high moisture agricultural commodities 

Product Initial Moisture 
content % w.b. 

Final Moisture 
Content % w.b. 

Drying 
time (hr) 

Amaranth (Amaranthus spp.)  87.9 2.9 30 

African red pepper (Capsicum 
annuum)  

80.9 10.8 96 

Sliced Green cabbage (Brassica 
oleracea)  

95.6 9.8 130 

Sliced Bitter leaf (Vernonia 84.3 1.2 30 

Te
m
p
er
at
u
re
 (
ºC
)

Drying Air Path (m)

y = ‐92.795 + 24.064x ‐ 0.978x2,  r2 = 0.99

Average Regression
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amydalina) 

Sliced Ripe plantains (Musa 
acuminata) 

75.3 20.8 100 

African yellow pepper (Capsicum 
annuum) 

86.8 13.4 336 

Fermented cassava chips (Manihot 
esculenta) 

60.0 10.0 168 

 
Figure 8  Drying curves of sun dried and solar dried sliced cabbage in the tunnel dryer 

 
Since the drying produce was left in the dryer during downpours and over night, some 

moisture pick up during these intervals, with drying continuing the next sunlight period.  In spite 
of these, the regression of the data for the whole drying period for the vegetables showed that 
drying did follow a standard exponential decay.  The correlation coefficient r2 in each case was 
greater than 0.7 and for red pepper (Capsicum annuum) and cabbage (Brassica oleracea), and 
this was higher than 0.9 showing a very good fit.  
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Figure 8 : Drying curves of sun dried and solar dried sliced cabbage in the tunnel dryer 
 
The estimated airflow of 9.68 m3/hr is comparable with natural convection systems (Weka , 

1999).  The overall efficiency of 17.68% indicates that the percentage of energy absorbed by the 
collector and used to dry the product is low, but this value is similar to that reported by 
Brenndorfer et al. (1987).  The moisture extraction efficiency was 79.15% and had resulted in 
good drying of the high moisture vegetables within an acceptable time limit.  With an initial 
moisture content of 80% wet basis, bitter leaf was successfully dried to a moisture ratio of less 
than 0.1 in three days.  Compared with amaranth, (Amaranthus spp.) which was not sliced, bitter 
leaf (Vernonia amydalina) dried faster (Figure 9), suggesting that pretreatment might play an 
important role in the efficient use of the dryer for drying leafy vegetables. 
 

 
Figure 9  Drying curves of Amaranth and Bitter leaf in the solar dryer 
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4. 4  Quality evaluation 
The appearance and taste of the final product dried with the dryer was also better than that 

produced through sun-drying.  Sun dried cabbage was darker in colour and tasted sour.  This, 
together with the fact that a good quantity of the vegetables can be dried within a short period, 
means that the producer can have a higher turnover for a better quality product.  The chances of 
better revenue are, therefore, high. 
4. 5  Operating cost 
        The main operating costs for the dryer are for labour and pretreatment of the vegetables.  
These are low in the rural sector where family labour is abundant.  The polyethylene cover will 
need to be replaced periodically, but this is a low cost item as well.  Analyses on the operation of 
drying using green pepper (Capsicum annuum) during the raining season showed that the initial 
high investments can get payback in 18 months.  If other commodities are dried, and the dryer is 
used during the dryer months when the drying conditions are even better, this payback period 
will be much shorter. 
5  Conclusions 

A solar tunnel dryer with double pass and heat storage was constructed and tested for drying 
high moisture vegetables and other commodities.  The investigations with cabbage, amaranth, 
bitter leaf and pepper showed that using this solar drying system leads to a significant reduction 
in drying time and an improvement of the product quality.  The results further show that heat 
storage permits continuous drying during periods of low sunshine.  The reduction in drying time 
was between 30% and 50% depending on the crop compared to natural sun drying.  The quality 
of the final product is acceptable in taste and appearance.  Although the initial cost is relatively 
high, the running cost is low and the payback period is less than two years.  Heat storage 
therefore permits drying to continue even when the environmental conditions such as rainfall and 
high relative humidity make it difficult for open-air sun drying to take place. 
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