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Abstract: A model of crop stem deflection by the combine harvester reel is formulated.  The equations derived thereof are 

evaluated on the basis of empirical data that were acquired through deflection of crop stems in a ready-for-harvest Japonica rice 

in the field.  The empirical data are found to be in agreement with the theoretically derived equations. Applications of crop 

stem deflection to reel design and operation are discussed.  The derived crop stem deflection model should be applicable in 

other situations in which it becomes necessary to study the deflection of crop stems, particularly in the domain of agricultural 

machinery engineering. 
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1  Introduction 

Between the moment that the reel first engages uncut 

crop stems and the moment that the stems so engaged are 

cut by the cutterbar, the crop stems undergo deflection 

under the action of combine harvester reel slats or tine 

bars.  This phenomenon, illustrated in Figure 1, should 

have important implications on the design and operation 

of the combine harvester reel. 

An earlier effort to study the interaction between the 

combine harvester reel and the crop was largely 

experimental, without attempting to model crop stem 

deflection mathematically (Quick, 1973).  In this paper, 

the objective is to understand crop stem deflection 

characteristics, under the action of the combine harvester 

reel, and to apply these characteristics in combine 

harvester reel design and operation.  A model of the 
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deflection of crop stems by the combine harvester reel is 

formulated.  The model is evaluated on the basis of 

empirical data acquired through deflection of the stems of 

a ready-for-harvest Japonica rice crop in the field.  

Applications of crop stem deflection characteristics, in 

combination with reel kinematics, for the determination 

of reel stagger, as well as the estimation of the 

appropriate number of reel slats or tine bars, are presented 

and discussed. 

 
Figure 1  Deflection of an uncut stem by the reel 



22  June, 2012             Agric Eng Int: CIGR Journal   Open access at http://www.cigrjournal.org             Vol. 14, No. 2 

 

2  Model formulation  

2.1  Assumptions 

1) A bunch of stems deflected by the reel shall be 

considered to behave like a single, initially vertical 

cantilever that is fixed at the base. 

2) At its point of action, the deflecting force shall be 

considered to be directed normal to the curvature of the 

cantilever. 

3) The stress-strain relationship for the deflected 

stems shall be assumed to be linearly elastic. 

The assumption of small deflections, commonly made 

in mechanical and structural engineering, is not made 

here.  Referring to Figure 2a, the coordinate system has 

been chosen so as to realize a right-handed system with 

positive deflection directed from right to left.  

According to the elementary theory of elastic bending 

(Den Hartog, 1977； Popov, 1990； Hibbeler, 2008), at 

an arbitrary point, denoted (Y, Z), along the length of the 

deflected cantilever, we may write: 

1 d

d

M

r s EI


                (1) 

Furthermore, it should be evident in Figure 2b that the 

bending moment at the point (Y, Z), is: 

[( )cos ( )sin ]m m m mM F Y Y Z Z           (2) 

where, Ym and Zm are the coordinates of the point of 

contact between the force F and the crop stem. 

 
Figure 2a  Deflection of the stem due to external force F 

 
Figure 2b  Free body diagram of a segment of the deflected stem 

 

Figure 3a illustrates the deflection model with the 

coordinates transformed in a manner that is similar, but 

not equivalent, to the transformation from rectangular 

Cartesian coordinates to polar coordinates, which is 

common in the study of kinematics (Tuma, 1974).  

Referring to Figure 3b, this transformation is obtained as 

follows: 

( )cos ( )sin

( )sin ( )cos
m m m m m

m m m m m

L L bc cf Y Y Z Z

N N ac ad Y Y Z Z

 
 

       
       

 

                     (3a) 

Equation (3a) can be readily combined into a single 

matrix equation, as follows: 

( ) cos sin ( )

( ) sin cos ( )
m m m m

m m m m

L L Y Y

N N Z Z

 
 

      
           

  (3b) 

 
Figure 3a  Transformed model of a deflected stem 
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Figure 3b  Construction for the derivation of Equation (3a) 

 

In Equation (3b), since L and N are both zero when Y 

and Z are both zero, it follows that: 

cos sin

sin cos
m m m m

m m m m

L Y

N Z

 
 

     
         

      (3c) 

The transformation matrix of Equation (3b) and (3c) 

is a special one.  It is equal to its own transpose and 

therefore symmetric.  Its transpose is also equal to its 

inverse and therefore the matrix is orthogonal, as can be 

seen in Equation (3d) below.  This also means that the 

matrix is equal to its own inverse.  Such a matrix is also 

known as an involutory matrix (Sawyer, 1982). 

cos sin cos sin 1 0

sin cos sin cos 0 1
m m m m

m m m m

   
   

     
           

  (3d) 

In the context of plane transformation geometry, this 

matrix has the form of a reflection matrix (Sawyer, 1982), 

that maps (Y, Z) coordinate into their mirror image (L, N).  

Therefore: 

m mL Y  and m mN Z           (3e) 

The relationships in Equation (3e) may not be 

apparent by looking a Figure 3a.  In any case, that figure 

is not drawn to scale.  However, the validity of Equation 

(3e) can be checked by substituting them into Equation 

(3c) to obtain the following: 

cos sin

sin cos
m m m m m

m m m m m

Y Y Z

Z Y Z

 
 

  
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         (3f) 

By squaring each of the equations in (3f), the 

following is readily obtained: 

2 2 2 2 2

2 2 2 2 2

cos 2 sin cos sin
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                   (3g) 

Finally, by adding corresponding terms in Equation 

(3g), the following is obtained, which completes the 

check for validity of Equation (3e): 
2 2 2 2

m m m mY Z Y Z               (3h) 

With the results obtained in Equation (3a) through 

(3h), it follows that, in Figure 3a, the straight line joining 

the origin O of the coordinate system to the point of 

contact between the external force F and the crop stem, 

makes an angle of 2m  with the vertical Y axis.  

Therefore: 

12 tan m
m

m

Z

Y
   

  
 

             (4) 

Equation (4) is based entirely on the geometry of 

deflection.  It does not involve material properties of the 

deflected cantilever.  Therefore, Equation (4) can be 

used whether the material of the deflected beam is purely 

elastic or otherwise. 

Moreover, from Equation (2), (3a) and in Figure 3c, it 

is evident that the bending moment at the point (Y, Z) on 

the deflected stem, due to the externally applied force F, 

is given by: 

( )mM F L L                (5) 

 
Figure 3c  Free body diagram of a segment of the deflected stem 

 

Figure 3d, which is extracted from Figure 2a and 3a, 

shows an enlarged stem element at the point (Y, Z) along 

the length of the deflected stem.  It can be seen in Figure 

3d that: 
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Figure 3d  Enlarged stem element 

 

From Equation (1), (5) and (6), it follows that: 

  d d d d
cos ( )

d d d dm m

L M L F L
L L

s EI EI

 
  

         

Therefore: 

cos( ) ( )dm m

F
L L L

EI
             (7) 

Timoshenko and Gere (1961) formulated a similar 

model, involving large lateral deflection of a column, 

which led to an elliptical integral.  Elliptical integrals 

can only be evaluated numerically.  In contrast, the 

introduction here of L as the variable of integration 

instead of s greatly simplifies the problem. 

Equation (7) can be readily integrated provided that 

the relationship between EI and L is known.  The 

following possible scenarios will be considered, 

compared and contrasted: 

1) The product EI, which is a measure of the stems’ 

ability to resist flexural deformation, does not vary with L.  

Since 0   when L=0, Equation (7) can then be 

integrated to obtain the following: 

2sin( )
2m m

F
L

EI
                 (8) 

2) The stems are naturally so formed as to be of 

uniform strength throughout their lengths if they are 

loaded as cantilevers with concentrated loads at or near 

their free ends.  Suggs and Splinter (1965) made a 

similar assumption in their study of the mechanical 

properties of tobacco stalks. 

Here, strength refers to the ability of the stems to 

withstand flexural loading.  Thus, uniform strength 

would require that, under the prescribed loading, the 

flexural (bending) stress does not vary along the length of 

the stems. 

The bending stress at the surface of the stalk, at any 

cross section along its loaded length, may be expressed as 

follows, if the cross section is assumed to be circular with 

a diametral neutral plane (Hearn, 1985): 

3

32M

D



                   (9a) 

where, D is the diameter of the cross section. 

Thus, from Equation (5) and (9a), the bending stress 

at the cross section at the base of the stem (L=0, diameter 

D0) would be: 

0 3
0

32 mFL

D



                (9b) 

Similarly, for an arbitrary cross section (arbitrary L, 

diameter D): 

3

32 ( )mF L L

D





             (9c) 

If the stress is to remain constant throughout the 

length of the stem then σ may be equated to σ0, leading to 

the following result: 
1

3
0

m

D L

D L L

 
   

            (9d) 

The second moment of area about a diameter of a 

circular cross section is given by (Popov, 1990): 
4

64

D
I


                (9e) 

Denoting the second moment of area at the base of the 

stem by I0 and using Equations (9d) and (9e) leads to the 

following result: 
4

4
3

0 0

m

I D L

I D L L

          
         (9f) 

Further, along with Equation (9f), if the modulus of 

elasticity, E, is assumed to be constant, then Equation (7) 

may be integrated to obtain the following: 
2

0

3
sin( )

2
m

m

FL

EI
               (9g) 

Apparently the nature of variation of EI with L may 

not alter the essential form of the equation corresponding 
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to Equation (8) or (9g).  In both equations, sin( )m  is 

proportional to L2
m. 

More generally, we assume that EI varies with L in an 

unknown but continuous manner that may therefore be 

represented in the form of a Taylor-McLaurin polynomial 

(Larson, Hostetler and Edwards, 1994; Zill, 1985) as 

follows: 

10 0

1 1
1

k
i

i
i

A L
EI E I 

 
  

 
           (10) 

where, E0I0 corresponds to the base of the cantilever and 

(k+1) is the number of terms in the Taylor-McLaurin 

polynomial.  Thus substituting into Equation (7) and 

integrating yields: 
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10 00 0
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 
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 
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                          (11) 

As a result of which: 

2

1 0 0

2
sin( ) 1

( 1)( 2) 2

k
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In Equation (12a), let us introduce the following 

notation: 

1

2

( 1)( 2)

k
i

i i m
i

B A L
i i

  
      
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Then it follows that for i=0: 

0 0B A                 (12c) 

In the above expression, B0 is a constant coefficient 

that should take on an appropriate value that agrees with 

Equation (12a).  If B0=1 then Equation (12a) can be 

re-written as follows: 
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sin( )
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m

m i
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



 
  
 
          (12d) 

Equation (12d) will be used with empirical data to 

evaluate the model, as detailed in section 3 below. 

3  Evaluation of the model 

Measurement of deflection of the stems of a Japonica 

rice crop in the field has been described and discussed 

elsewhere (Oduori, 1994; Sakai, Inoue, and Oduori, 

1993a). Relevant deflection data, Zm, were sampled for 

three different rates of continuous deflection, Ud, with the 

deflecting force applied at three different heights, Ym.  

For each run of the experiment, values of Ym and Ud were 

set and then the corresponding values of Zm were measured. 

Each set of treatments were replicated three times.  The 

results are reviewed here by way of evaluation of the 

model formulated in the preceding section. 

3.1  The relationship involving m, Xm, and Ym 

Experimentally obtained values of m were plotted 

against tan-1(Zm/Ym) in order to study the validity of 

Equation (4).  A typical plot is shown in Figure 4 for the 

case of Ym = 0.45 and Ud = 0.01.  In practice, Ud 

corresponds to the rate of deflection of the crop stems by 

the reel tine bar, which can be quite slow, being the 

horizontal component of the resultant of header advance 

velocity and tine bar peripheral velocity.  At some point 

in the cycle of reel motion, this horizontal component of 

the resultant velocity actually becomes zero. 

 

 Figure 4  Relationship involving Zm, Ym and m 

 

In Figure 4, a least-squares regression line of the form 
1

0 1 ( )tanm m mZ Y      was fitted to the empirical data. 

Results of the linear regression for all nine treatments are 

given in Table 1. 
 

Table 1  Results of the least-squares linear regression of  

m on tan-1(Zm/Ym)  

Height
/m 

Speed 
/m·s-1

Y Intercept 
/rad 

Gradient, β1 
(dimensionless) 

Coefficient of 
determination, R2 

0.35 0.005 -0.12 1.52 0.99 

0.35 0.010 -0.06 1.2 0.98 

0.35 0.015 -0.265 1.698 0.992 

0.40 0.005 -0.322 2.170 0.998 

0.40 0.010 -0.154 1.693 0.945 

0.40 0.015 -0.294 2.164 0.970 

0.45 0.005 -0.096 1.781 0.938 

0.45 0.010 -0.388 2.114 0.992 

0.45 0.015 -0.354 1.996 0.985 



26  June, 2012             Agric Eng Int: CIGR Journal   Open access at http://www.cigrjournal.org             Vol. 14, No. 2 

Using average values of the data in Table 1, we may 

write: 

10.228 1.814 tan m
m

m

Z

Y
   

    
 

       (13) 

Which appears to be in reasonable agreement with 

Equation (4), but in a few treatments, for instance, in row 

two, the gradient is “1.2” which is about half the 

predicted value of “2”. This values is an outlier, though 

some natural variability can be expected in the behavior 

of natural entities such as crop stems. 

With reference to Table 1, results of t-tests indicated 

that the mean of the empirical value of β1 was not 

significantly different from the theoretical value (β1=2 of 

Equation (4)).  On the other hand, the mean value of β0 

was found to be significantly different from zero; 

therefore the assumption of an initially vertical cantilever 

is not quite valid, probably, to a large extent, due to the 

spreading out of crop foliage towards the top.  Though 

β1 was found to be moderately correlated to Ym, a 

one-way ANOVA indicated that the effect of Ym on β1 

was not significant even at the 5% level. 

Let us now introduce the following quantity: 

2

sin( )
( ) m

m
m

f L
FL


             (13a) 

 
Figure 5  Example of a graph of f(Lm) against Lm 

 

In Figure 5, the quantity f(Lm) was plotted against Lm, 

with the values of F, Lm and m having been calculated 

from experimentally determined data.  It is evident that 

except for the initial stages of deflection of the stems, the 

quantity denoted f(Lm) remains substantially constant.  

This result implies that we may write: 
2sin( )m mCFL              (13b) 

In Equation (13b), C is a constant and the equation 

has the general form suggested by the special cases of 

Equation (8) and (9g) and even (12d).  The situation in 

the initial stages of deflection is probably complicated by 

the outward spread of the crop foliage as opposed to the 

idealized vertical cantilever model, but then it occupies 

only a small portion of the total deflection of the stems 

that is soon overtaken during the cycle of gathering of the 

crops by the reel. 

It appears that the field data are in good agreement 

with the model, except for the initial stages of deflection.  

The equations derived from the model, which led to 

Equation (4) and Equation (13b), may therefore be 

tentatively applied to reel design and operation. 

4  Applications 

4.1  Determination of reel stagger 

Application of crop stem deflection for the 

determination of combine harvester reel stagger, denoted 

Zr in Figure 6, has been presented and discussed 

elsewhere.  The underlying postulate is that crop stems 

should be cut by the cutterbar at the moment when, or 

before, the velocity of the ascending deflecting tine bar 

becomes tangential to the curvature of the deflected stems.  

As a consequence, the following equation was derived 

(Oduori, 1994; Sakai, Inoue, and Oduori, 1993a; Oduori, 

Sakai, and Inoue, 1993b; Oduori, Sakai, and Inoue, 1993, 

see Figure 7): 

1 0cos cosm m m

R
t

R
        

 
       (14) 

This equation shall be seen to have a central role in 

the determination of reel stagger. 

 
Figure 6  Relative positions of two successive tine bars 
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In Figure 7, the vertical distance labelled R0 is equal, 

in magnitude, to the reel advance per radian of rotation of 

the reel. 

 
Figure 7  Relationship between stem deflection and  

reel kinematic parameters 

4.2  Estimation of the appropriate number of tine 

bars on the reel 

Another possible application of the deflection of crop 

stems by the reel is in the estimation of the appropriate 

number, n, of tine bars that the reel should have.  The 

principle is illustrated in Figure 6.  The rationale is that 

as the stems deflected by the leading tine bar are cut the 

lagging tine bar should be in such a position as to support 

the stems that will be cut next; otherwise the possibility 

arises of the crop that is cut without being supported by 

the reel eventually being lost by falling to the ground 

ahead of header.  In practice some stems are sandwiched 

between those deflected by the leading tine bar and those 

deflected by the lagging tine bar, but the effect of these, 

on the equations to be derived concerning the number of 

tine bars on the reel, has been neglected. 

In Figure 6, it can be shown that: 

1sin r
m

Z
t

R
         

 
           (15a) 

Now, from Equation (14) and (15a), the following can 

be obtained: 

1 10cos cos sin r
m m

R Z

R R
           

  
   (15b) 

Furthermore, the number of tine bars on the reel can 

be calculated as follows: 

2
n




                  (16) 

The following points should be noted with regard to 

Equation (15b) and (16) above: 

1) The interaction of stems sandwiched between the 

leading and lagging tine bars has been neglected as 

mentioned above. 

2) Both m and Zr vary with the type and condition of 

the crop.  Therefore, the usefulness of Equation (15b) 

and (16) needs to be supported and validated by further 

research and acquisition of adequate empirical data. 

3) Since n must be an integer, at best its calculated 

value is likely to be only an estimate. 

Perhaps the best way to utilize Equation (14), (15a), 

(15b) and (16) would be to start with a known value of 

the number of tine bars on the reel, n, use Equation (16) 

to determine α and then useEquation (14) and (15a) to 

determine the reel stagger, Zr. 

5  Conclusions 

1) A model of the deflection of a crop stem, as caused 

by the reel of a combine harvester, was developed. 

2) Mathematical relations derived from the model 

have been evaluated against empirical data that were 

acquired through field measurement of the deflection of 

the stems of a Japonica rice crop.  The model has been 

found to be in reasonable agreement with the empirical 

data, at least for the relevant experimental conditions. 

3) The model, together with the equations of reel 

kinematics, have been applied for the determination of 

reel stagger.  Because the calculated values depend on 

parameters that vary with the type and condition of the 

crop, their usefulness for commercial machine design 

purposes is unknown at the present time. 

4) More extensive studies on crop stem deflection by 

the combine harvester reel are desirable. Particularly, 

studies involving more crops and wider ranges of the 

experimental conditions should be informative. 
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Nomenclature 

Ai, Bi constant coefficients (i = 0, 1, 2, ...) 

C  constant coefficient 

E  modulus of elasticity, N m-2  

F  deflecting force, N 

I  second moment of area, m4 

L, N  coordinates perpendicular to, and parallel to the 

deflecting force, respectively, m 

m  subscript implying maximum 

M  bending moment, N m 

n  appropriate number of tinebars on the reel 

r  radius of curvature, m 

R  radius of reel, m 

R0      distance whose magnitude is equal to header 

advance per radian of reel rotation, m 

s  length along the deflected cantilever, m  

t  time, s 

Y, Z  Cartesian coordinates in the plane, m 

Yr  height of the axis of the reel above the ground, 

m 

Z  deflection of the cantilever, m 

Zr  reel stagger, m  

α  angular displacement between successive tine 

bars, rad 

βi  regression coefficients (i = 0, 1, 2, ...) 

  angular deformation of the deflected cantilever , 

rad 

ρ(t)    position vector of the tine bar relative to the 

instantaneous centre of rotation, m 

ω  rotational velocity of reel, rad s-1 
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