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Abstract: A model of crop stem deflection by the combine harvester reel is formulated.  The 
equations derived thereof are evaluated on the basis of empirical data that were acquired through 
deflection of crop stems in a ready-for-harvest Japonica rice in the field.  The empirical data are 
found to be in agreement with the theoretically derived equations. Applications of crop stem 
deflection to reel design and operation are discussed.  The derived crop stem deflection model 
should be applicable in other situations in which it becomes necessary to study the deflection of 
crop stems, particularly in the domain of agricultural machinery engineering. 
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1  Introduction  

Between the moment that the reel first engages uncut crop stems and the moment that the 
stems so engaged are cut by the cutterbar, the crop stems undergo deflection under the action of 
combine harvester reel slats or tine bars.  This phenomenon, illustrated in Figure 1, should have 
important implications on the design and operation of the combine harvester reel. 
 

An earlier effort to study the interaction between the combine harvester reel and the crop was 
largely experimental, without attempting to model crop stem deflection mathematically (Quick, 
1973).  In this paper, the objective is to understand crop stem deflection characteristics, under the 
action of the combine harvester reel, and to apply these characteristics in combine harvester reel 
design and operation.  A model of the deflection of crop stems by the combine harvester reel is 
formulated.  The model is evaluated on the basis of empirical data acquired through deflection of 
the stems of a ready-for-harvest Japonica rice crop in the field.  Applications of crop stem 
deflection characteristics, in combination with reel kinematics, for the determination of reel 
stagger, as well as the estimation of the appropriate number of reel slats or tine bars, are 
presented and discussed. 
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Figure 1  Deflection of an uncut stem by the reel 

 
2  Model formulation  
 
2.1  Assumptions 
 
1) A bunch of stems deflected by the reel shall be considered to behave like a single, initially 
vertical cantilever that is fixed at the base. 
2) At its point of action, the deflecting force shall be considered to be directed normal to the 
curvature of the cantilever. 
3) The stress-strain relationship for the deflected stems shall be assumed to be linearly elastic. 
 

The assumption of small deflections, commonly made in mechanical and structural 
engineering, is not made here.  Referring to Figure 2a, the coordinate system has been chosen so 
as to realize a right-handed system with positive deflection directed from right to left.  According 
to the elementary theory of elastic bending (Den Hartog, 1977； Popov, 1990； Hibbeler, 2008), 
at an arbitrary point, denoted (Y, Z), along the length of the deflected cantilever, we may write: 
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M
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d
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1
                                                              (1) 

 
Furthermore, it should be evident in Figure 2b that the bending moment at the point (Y, Z), is: 

 
    mmmm ZZYYFM  sincos                                    (2) 

 
Where: Ym and Zm are the coordinates of the point of contact between the force F and the crop 
stem. 
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Figure 2a  Deflection of the stem due to external force F 
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Figure 2b  Free body diagram of a segment of the deflected stem 

 

Figure 3a illustrates the deflection model with the coordinates transformed in a manner that is 
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similar, but not equivalent, to the transformation from rectangular Cartesian coordinates to polar 
coordinates, which is common in the study of kinematics (Tuma, 1974).  Referring to Figure 3b, 
this transformation is obtained as follows: 
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Equation (3a) can be readily combined into a single matrix equation, as follows: 
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Figure 3a  Transformed model of a deflected stem 
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Figure 3b  Construction for the derivation of Equation (3a) 

 
In Equation (3b), since L and N are both zero when Y and Z are both zero, it follows that: 
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The transformation matrix of Equation (3b) and (3c) is a special one.  It is equal to its own 

transpose and therefore symmetric.  Its transpose is also equal to its inverse and therefore the 
matrix is orthogonal, as can be seen in Equation (3d) below.  This also means that the matrix is 
equal to its own inverse.  Such a matrix is also known as an involutory matrix (Sawyer, 1982). 
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In the context of plane transformation geometry, this matrix has the form of a reflection 

matrix (Sawyer, 1982), that maps (Y, Z) coordinate into their mirror image (L, N).  Therefore: 
 

mm YL   and mm ZN                                                      (3e) 

 
The relationships in Equation (3e) may not be apparent by looking a Figure 3a.  In any case, 

that figure is not drawn to scale.  However, the validity of Equation (3e) can be checked by 
substituting them into Equation (3c) to obtain the following: 
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By squaring each of the equations in (3f), the following is readily obtained: 

 











mmmmmmmmm

mmmmmmmmm

ZZYYZ

ZZYYY
22222

22222

coscossin2sin

sincossin2cos
                   (3g) 

 
Finally, by adding corresponding terms in Equation (3g), the following is obtained, which 

completes the check for validity of Equation (3e): 
 

2222
mmmm ZYZY                                                    (3h) 

 
With the results obtained in Equation (3a) through (3h), it follows that, in Figure 3a, the 

straight line joining the origin O of the coordinate system to the point of contact between the 
external force F and the crop stem, makes an angle of 2m  with the vertical Y axis.  Therefore: 

 









 

m

m
m Y

Z1tan2                                                          (4) 

 
Equation (4) is based entirely on the geometry of deflection.  It does not involve material 

properties of the deflected cantilever.  Therefore, Equation (4) can be used whether the material 
of the deflected beam is purely elastic or otherwise. 
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Figure 3c  Free body diagram of a segment of the deflected stem 

 

Moreover, from Equation (2), (3a) and in Figure 3c, it is evident that the bending moment at 
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the point (Y, Z) on the deflected stem, due to the externally applied force F, is given by: 
 

 LLFM m                                                            (5) 
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Figure 3d  Enlarged stem element 

 
Figure 3d, which is extracted from Figure 2a and 3a, shows an enlarged stem element at the 

point (Y, Z) along the length of the deflected stem.  It can be seen in Figure 3d that: 
 

  mds

dL
cos                                                          (6) 

 
From Equation (1), (5) and (6), it follows that: 
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Therefore: 

 

   dLLL
EI

F
mm cos                                               (7) 

 
Timoshenko and Gere (1961) formulated a similar model, involving large lateral deflection 

of a column, which led to an elliptical integral. Elliptical integrals can only be evaluated 
numerically. In contrast, the introduction here of L as the variable of integration instead of s 
greatly simplifies the problem. 
 

Equation (7) can be readily integrated provided that the relationship between EI and L is 
known.  The following possible scenarios will be considered, compared and contrasted: 
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1）The product EI, which is a measure of the stems’ ability to resist flexural deformation, 

does not vary with L.  Since 0  when 0L , Equation (7) can then be integrated to obtain 
the following: 
 

  2

2
sin mm L

EI

F
                                                         (8) 

 
2）The stems are naturally so formed as to be of uniform strength throughout their lengths if 

they are loaded as cantilevers with concentrated loads at or near their free ends.  Suggs and 
Splinter (1965) made a similar assumption in their study of the mechanical properties of tobacco 
stalks. 
 

Here, strength refers to the ability of the stems to withstand flexural loading.  Thus, uniform 
strength would require that, under the prescribed loading, the flexural (bending) stress does not 
vary along the length of the stems. 

 
The bending stress at the surface of the stalk, at any cross section along its loaded length, 

may be expressed as follows, if the cross section is assumed to be circular with a diametral 
neutral plane (Hearn, 1985): 

 

3

32

D

M


                                                           (9a) 

 
Where: D is the diameter of the cross section. 

 
Thus, from Equation (5) and (9a), the bending stress at the cross section at the base of the 

stem ( 0L , diameter 0D ) would be: 
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Similarly, for an arbitrary cross section (arbitrary L , diameter D ): 
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If the stress is to remain constant throughout the length of the stem then   may be equated to 

0 , leading to the following result: 
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The second moment of area about a diameter of a circular cross section is given by (Popov, 

1990): 
 

64

4D
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                                                           (9e) 

 
Denoting the second moment of area at the base of the stem by 0I  and using Equations (9d) 

and (9e) leads to the following result: 
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Further, along with Equation (9f), if the modulus of elasticity, E, is assumed to be constant, 

then Equation (7) may be integrated to obtain the following: 
 

 
0
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3
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FLm
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Apparently the nature of variation of EI with L may not alter the essential form of the 

equation corresponding to Equation (8) or (9g).  In both equations,  msin  is proportional 

to
2

mL . 

 
More generally, we assume that EI varies with L in an unknown but continuous manner that 

may therefore be represented in the form of a Taylor-McLaurin polynomial (Larson, Hostetler 
and Edwards, 1994; Zill, 1985) as follows: 
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Where: 00IE  corresponds to the base of the cantilever and )1( k  is the number of terms in the 

Taylor-McLaurin polynomial.  Thus substituting into Equation (7) and integrating yields: 
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As a result of which: 
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In Equation (12a), let us introduce the following notation: 
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Then it follows that for 0i : 

00 AB                                                                 (12c) 

 
In the above expression, 0B  is a constant coefficient that should take on an appropriate value 

that agrees with Equation (12a).  If 10 B  then Equation (12a) can be re-written as follows: 
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Equation (12d) will be used with empirical data to evaluate the model, as detailed in section 

3 below. 
 
3  Evaluation of the model 
 

Measurement of deflection of the stems of a Japonica rice crop in the field has been 
described and discussed elsewhere (Oduori, 1994; Sakai, Inoue, and Oduori, 1993a). Relevant 
deflection data, mZ , were sampled for three different rates of continuous deflection, dU , with 

the deflecting force applied at three different heights, mY . For each run of the experiment, values 

of mY  and dU  were set and then the corresponding values of mZ  were measured. Each set of 

treatments were replicated three times. The results are reviewed here by way of evaluation of the 
model formulated in the preceding section. 
 
3.1 The relationship involving m, Xm, and Ym 

Experimentally obtained values of m  were plotted against )(1tan mm YZ  in order to study 

the validity of Equation (4). A typical plot is shown in Figure 4 for the case of 45.0mY  and 

01.0dU . In practice, dU  corresponds to the rate of deflection of the crop stems by the reel 

tine bar, which can be quite slow, being the horizontal component of the resultant of header 
advance velocity and tine bar peripheral velocity.  At some point in the cycle of reel motion, this 
horizontal component of the resultant velocity actually becomes zero. 
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Figure 4  Relationship involving mZ , mY  and m  

 

In Figure 4, a least-squares regression line of the form  mmm YZ1
10 tan  was 

fitted to the empirical data. Results of the linear regression for all nine treatments are given in 
Table 1. 
 

Table 1  Results of the least-squares linear regression of m  on )(1tan mm YZ  

Height, mY  

(m) 

Speed, dU  

(m/s) 

Y Intercept, 0  

(rad) 

Gradient, 1  
(dimensionless) 

Coefficient of 

determination, 2R  

0.35 
0.35 
0.35 
0.40 
0.40 
0.40 
0.45 
0.45 
0.45 

0.005 
0.010 
0.015 
0.005 
0.010 
0.015 
0.005 
0.010 
0.015 

-0.12 
-0.06 

-0.265 
-0.322 
-0.154 
-0.294 
-0.096 
-0.388 
-0.354 

1.52 
1.2 

1.698 
2.170 
1.693 
2.164 
1.781 
2.114 
1.996 

0.99 
0.98 

0.992 
0.998 
0.945 
0.970 
0.938 
0.992 
0.985 

 
Using average values of the data in Table 1, we may write: 

 









 

m

m
m Y

Z1tan814.1228.0                                        (13) 

 
which appears to be in reasonable agreement with Equation (4), but in a few treatments, for 
instance, in row two, the gradient is “1.2” which is about half the predicted value of “2”. This 
values is an outlier, though some natural variability can be expected in the behavior of natural 
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entities such as crop stems. 
 

With reference to Table 1, results of t-tests indicated that the mean of the empirical value of 

1  was not significantly different from the theoretical value ( 21   of Equation (4)). On the 

other hand, the mean value of 0  was found to be significantly different from zero; therefore the 

assumption of an initially vertical cantilever is not quite valid, probably, to a large extent, due to 
the spreading out of crop foliage towards the top. Though 1  was found to be moderately 

correlated to mY , a one-way ANOVA indicated that the effect of mY  on 1  was not significant 

even at the 5% level. 
 

Let us now introduce the following quantity: 
 

   
2
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                                                      (13a) 
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Figure 5  Example of a graph of f(Lm) against mL  

 
In Figure 5, the quantity )( mLf  was plotted against mL , with the values of F , mL  and m  

having been calculated from experimentally determined data. It is evident that except for the 
initial stages of deflection of the stems, the quantity denoted )( mLf  remains substantially 

constant. This result implies that we may write: 
 

  2sin mm CFL                                                       (13b) 

 
In Equation (13b), C  is a constant and the equation has the general form suggested by the 

special cases of Equation (8) and (9g) and even (12d). The situation in the initial stages of 
deflection is probably complicated by the outward spread of the crop foliage as opposed to the 
idealized vertical cantilever model, but then it occupies only a small portion of the total 



13 
 

Corresponding author: Moses F. Oduori, P. O. Box: 30197, 00100 (GPO), E-mail: foduori@uonbi.ac.ke. 

 

deflection of the stems that is soon overtaken during the cycle of gathering of the crops by the 
reel. 
 

It appears that the field data are in good agreement with the model, except for the initial 
stages of deflection. The equations derived from the model, which led to Equation (4) and 
Equation (13b), may therefore be tentatively applied to reel design and operation. 
 
4  Applications 
 
4.1 Determination of reel stagger 
 

Application of crop stem deflection for the determination of combine harvester reel stagger, 
denoted rZ  in Figure 6, has been presented and discussed elsewhere. The underlying postulate is 

that crop stems should be cut by the cutterbar at the moment when, or before, the velocity of the 
ascending deflecting tine bar becomes tangential to the curvature of the deflected stems. As a 
consequence, the following equation was derived (Oduori, 1994; Sakai, Inoue, and Oduori,, 
1993a; Oduori, Sakai, and Inoue, 1993b; Oduori, Sakai, and Inoue, 1993, see Figure 7): 
 

mmm R

R
t 






   coscos 01                                        (14) 

 
This equation shall be seen to have a central role in the determination of reel stagger. 
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Figure 6  Relative positions of two successive tine bars 

 
In Figure 7, the vertical distance labelled 0R  is equal, in magnitude, to the reel advance per 

radian of rotation of the reel. 
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Figure 7  Relationship between stem deflection and reel kinematic parameters 

 
4.2 Estimation of the appropriate number of tine bars on the reel 
 

Another possible application of the deflection of crop stems by the reel is in the estimation of 
the appropriate number, n , of tine bars that the reel should have. The principle is illustrated in 
Figure 6. The rationale is that as the stems deflected by the leading tine bar are cut the lagging 
tine bar should be in such a position as to support the stems that will be cut next; otherwise the 
possibility arises of the crop that is cut without being supported by the reel eventually being lost 
by falling to the ground ahead of header. In practice some stems are sandwiched between those 
deflected by the leading tine bar and those deflected by the lagging tine bar, but the effect of 
these, on the equations to be derived concerning the number of tine bars on the reel, has been 
neglected. 
 

In Figure 6, it can be shown that: 
 







 

R

Z
t r

m
1sin                                               (15a) 

 
Now, from Equation (14) and (15a), the following can be obtained: 

 














  

R

Z

R

R r
mm

101 sincoscos                                 (15b) 

 
Furthermore, the number of tine bars on the reel can be calculated as follows: 

 



15 
 

Corresponding author: Moses F. Oduori, P. O. Box: 30197, 00100 (GPO), E-mail: foduori@uonbi.ac.ke. 

 





2

n                                                                 (16) 

 
The following points should be noted with regard to Equation (15b) and (16) above: 

 
1)  The interaction of stems sandwiched between the leading and lagging tine bars has been 

neglected as mentioned above. 
 

2)  Both m  and rZ  vary with the type and condition of the crop.  Therefore, the usefulness 

of Equation (15b) and (16) needs to be supported and validated by further research and 
acquisition of adequate empirical data. 
 

3)  Since n  must be an integer, at best its calculated value is likely to be only an estimate. 
 

Perhaps the best way to utilize Equation (14), (15a), (15b) and (16) would be to start with a 
known value of the number of tine bars on the reel, n , use Equation (16) to determine   and 
then useEquation (14) and (15a) to determine the reel stagger, rZ . 

 

5  Conclusions 

 
1) A model of the deflection of a crop stem, as caused by the reel of a combine harvester, 

was developed. 
 
2) Mathematical relations derived from the model have been evaluated against empirical data 

that were acquired through field measurement of the deflection of the stems of a Japonica rice 
crop. The model has been found to be in reasonable agreement with the empirical data, at least 
for the relevant experimental conditions. 

 
3) The model, together with the equations of reel kinematics, have been applied for the 

determination of reel stagger. Because the calculated values depend on parameters that vary with 
the type and condition of the crop, their usefulness for commercial machine design purposes is 
unknown at the present time. 

 
4) More extensive studies on crop stem deflection by the combine harvester reel are desirable. 

Particularly, studies involving more crops and wider ranges of the experimental conditions 
should be informative. 
 
Nomenclature 
 

iA , iB  constant coefficients (i = 0, 1, 2, ...) 

C   constant coefficient 

E   modulus of elasticity, N/m2  

F   deflecting force, N 

I   second moment of area, m4 
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L , N  coordinates perpendicular to, and parallel to the deflecting force, 
respectively, m 

m   subscript implying maximum 

M   bending moment, N m 

n   appropriate number of tinebars on the reel 

r   radius of curvature, m 

R   radius of reel, m 

0R  distance whose magnitude is equal to header advance per radian of reel 

rotation, m 

s   length along the deflected cantilever, m  

t   time, s 

Y , Z   Cartesian coordinates in the plane, m 

rY   height of the axis of the reel above the ground, m 

Z   deflection of the cantilever, m 

rZ   reel stagger, m  

   angular displacement between successive tine bars, rad 

i   regression coefficients (i = 0, 1, 2, ...) 

   angular deformation of the deflected cantilever , rad 

)(t  position vector of the tine bar relative to the instantaneous centre of 
rotation, m 

   rotational velocity of reel, rad/s 
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