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ABSTRACT 
 

One of the primary determinants of Sunagoke moss Rachomitrium japonicum growth is water 
availability. There is need to develop non-destructive sensing of Sunagoke moss water content to 
realize automation and precision irrigation in a closed bio-production system. Machine vision 
can be utilized as non-destructive sensing to recognize changes in some kind of features that 
describe the water conditions from the appearance of wilting Sunagoke moss. The goal of this 
study is to propose and investigate Bio-inspired algorithms i.e. Neural-Genetic Algorithms 
(neural-GA) and Neural-Ant Colony Optimization (neural-ACO) to find the most significant set 
of image features suitable for predicting cultured Sunagoke moss water content in a closed bio-
production system. Features extracted consisted of 13 colour features, 90 textural features (grey, 
RGB, HSV and HSL colour co-occurrence matrix textural features) and three morphological 
features. Each colour space consisted of ten textural features algorithms: entropy, energy, 
contrast, homogeneity, sum mean, variance, correlation, maximum probability, inverse 
difference moment and cluster tendency. The specificity of this problem was that we were not 
looking for single image feature but several associations of image features that may be involved 
in determining water content of Sunagoke moss. The results show that neural-ACO has lower 
average validation set Mean Square Error (MSE) than neural-GA, but there is no significant 
difference between their prediction performances. Neural-ACO has better performance for 
selecting relevant features than neural-GA and there is significant statistical difference between 
them. Methods using feature selection technique has better result than methods without feature 
selection technique. Finally, ten relevant image features for predicting water content of Sunagoke 
moss were obtained from neural-ACO.  

 
 

Keywords: Ant Colony Optimization, Features extraction, Feature selection, Genetic Algorithms, 
Machine vision, Sunagoke moss, Water content sensing. 
 

1. INTRODUCTION  
 
Sunagoke moss Rachomitrium japonicum is a good potential material for living roof and wall 
greening for urban heat island mitigation. Among all kinds of moss, Sunagoke moss is the most 
suitable for the greening of building surfaces (Ondimu and Murase, 2006). This moss can grow 
on inorganic materials such as concrete, because it does not need any soil and fertilizer for 
growing, nor does it add too much extra load to the building roof structure. Moreover, it is 
almost maintenance-free. Sunagoke moss is incapable of photosynthesis when the water content 
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is low. Higher water contents may actually decrease the rate of photosynthesis by increasing 
resistance to diffusion of CO2 (Oechel and Collins, 1976). To establish water contents that are 
appropriate for its optimum rates of net fixation, the water states that trigger its deficit and excess 
water stresses need to be determined. Water affects evapotranspiration and canopy 
photosynthesis. Evaporation of plants is affected by many factors (Bacci et al., 2008), both 
environmental (e.g., air temperature, radiation and humidity) and plant related characteristics 
(e.g., growth phase, leaf area, fresh weight, leaf water potential). 
 
Sunagoke moss mats are being produced in tunnels as shown in figure 1. There are two 
important components during the production process: 1) illumination component as shown in 
figure 1(a) in which moss mats are given appropriate light condition to optimize photosynthesis 
process during cultivation; and 2) water condition as shown in figure 1(b) in which moss mats 
are sprayed proper amount of water. Irrigation is an essential component of moss production. 
Conventional irrigation as shown in figure 1(b) often applies a fixed water irrigation rate for the 
whole target and do not consider the variation in the spraying target area. Different parts of moss 
mat have different capacities to hold and transport water (Kellner, 2001). Water affects 
evapotranspiration and canopy photosynthesis, and hence net primary productivity. Therefore, 
there is need to develop non-destructive sensing of Sunagoke moss water content to realize 
automation and precision irrigation for Sunagoke moss production in tunnels. 
 

          
(a)      (b) 

Figure 1. Sungoke moss production in tunnel: (a) illumination component; (b) water component. 
 
There are many methods for sensing water condition in Sunagoke moss. The direct measurement 
of canopy parameters is considered to be relatively inefficient, destructive to the plants and can 
not always provide accurate results at the large scale production of Sunagoke moss in plant 
factory. Even a slight contact of foreign material with the plant tissue disturbs physiological 
activity of the plant (Murase et al., 1997). It may be possible to recognize changes in some kind 
of features that describe the water conditions from the appearance of wilting Sunagoke moss by 
machine vision. Shape and textural features have been used for some time for pattern recognition 
in datasets such as remote sensed imagery, medical imagery, photographs, etc. (Newsam and 
Kammath, 2005). An analysis of the morphology of the plant features could be particularly 
useful to determine indicators that characterize the plant quality (Kurata and Yan, 1996; Recce et 
al., 1996; Foucher et al., 2004). Many studies have reported use combination of colour, 
morphology and textural features to detect stress in plant (Ahmad and Reid, 1996; Escos et al., 
2000; Leemans et al., 2002). This study reports an attempt to evaluate the water content 
prediction ability of image features in Sunagoke moss. Non-linear relationships between image 
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features and water content can be identified by Back-Propagation Neural Network (BPNN). 
BPNN theory, generally accepted as a useful tool for the recognition of various patterns. 
Cybenko (1989) showed that a three-layer neural network with one hidden layer allowed any 
continuous function to be successfully identified.  
 
Selecting features that are suitable for an application is one of the most important parts in solving 
the problem. Colour Features (CF), Morphological Features (MF) and Textural Features (TF) are 
all able to represent some information about image. The main problem is first to find efficient 
features for image representation, then to find effective measure that uses these representations, 
individually or as a combination. This study also reports an attempt to evaluate Bio-inspired 
algorithms (Genetic Algorithms (GA) and Ant Colony Optimization (ACO) as Feature Selection 
(FS) technique) to identify and remove as much irrelevant and redundant features as possible. FS 
techniques have become an apparent need in many bioinformatics applications (Handels et al., 
1999; Utku, 2000; Saeys et al., 2007). Verma and Zhang (2007) observed how neural-GA 
(combination of Artificial Neural Network (ANN) and GA) for FS could classify 
microcalcification patterns in digital mammograms. They showed that neural-GA is able to find 
an appropriate feature-subset, which also produces a high classification rate. Hendrawan and 
Murase (2009) observed that wrapper technique (neural-GA) as FS method has better 
performance than filter techniques or statistical FS such as Chi-Squared, Mutual Information, 
Correlation-based Features Selection and Linear Regression for selecting relevant image features. 
In this study we will discuss on a novel approach of wrapper technique (neural-ACO) for 
selecting relevant image features and compare the performance with neural-GA.  
 
The goal of this study is to propose and investigate Bio-inspired algorithms (Neural-GAs and 
Neural-ACO) to find the most significant sets of image features suitable for predicting water 
content of cultured Sunagoke moss using machine vision with the most minimum prediction 
error. Many researchers have analyzed feature selection techniques for prediction. As a result, 
the selection of the relevant subset has improved prediction accuracy. However, due to the small 
number of samples compared to the huge number of features dimension and irrelevant features, 
the most approaches face difficulties to select the relevant feature-subset. Therefore, the ultimate 
goal of this research is to propose intelligent approaches for selecting relevant subset of 
informative features from image data for predicting water content of Sunagoke moss. 
 

2.  MATERIALS AND METHODS 
 

2.1 Materials and equipment 
 
Study samples were made from living cultured Sunagoke moss mat Rhacomitrium japonicum 
(500 mm x 500 mm, M-300, VARORE Co., Japan) as shown in figure 2(a). The samples are 
made of living cultured Sunagoke moss growing in polyvinyl (PVC) netting and anchored in 
glass wool media. Ten samples of cultured Sunagoke moss (figure 2(b)), placed in a 110 mm x 
80 mm x 25 mm glass vessel were used in this study. Distilled water was given to the samples in 
the amount of 4.0 gg-1 (4.0 gram of water content per gram of initial dry weight).Water content 
was defined as the average amount of water available for each sample in each day of data 
acquisition in grams per gram of its initial dry weight. Water content was determined as: 

dw

dwtw
ContentWater


            (1) 
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where: tw is the total weight or wet weight (g) and dw is initial dry weight (g) of Sunagoke moss. 
Dry weight of moss was determined by drying it in the growth chamber (Biotron NK 350, Japan) 
with the optimum environment parameters (Hendrawan and Murase, 2008): air temperature = 
15oC, RH = 80%, the CO2 gas = 400 ppm, light intensity = 30 kflux, light duration = 12 h until 
the weight of moss was stabilized without any further decrement. The average initial dry weight 
of samples was 12.5 g. Each sample was soaked with 4.0 gg-1 of water content and let to dry until 
it reached the initial dry weight (0 gg-1). 
 

            
(a)      (b) 

Figure 2. Cultured Sunagoke: (a) moss mat; (b) study sample. 
 
2.2 Methods 
 
The experimental design aiming at the prediction of Sunagoke moss water content is presented in 
figure 3. The first process is image acquisition, in which the moss images were captured using 
digital camera (Nikon Coolpix SQ, Japan) placed at 330 mm perpendicular to the sample surface 
as shown in figure 4. The image size was 1024 x 768 pixels with the spatial resolution of the 
images of 0.1 mm/pixel. Imaging was done under controlled and well distributed light conditions. 
Light was provided by two 22W lamps (EFD25N/22, National Corporation, Japan). Light 
intensity over the moss surface was uniform at 100 μmol m-2 s-1 PPF (Photometer, Li6400, USA) 
during image acquisition. Light intensity was measured at five points on the moss surface area 
that were four points at the edge and one point at the middle part. In every image capturing 
process, the intensity of light was always measured to maintain the light condition to remain 
stable and uniform at 100 μmol m-2 s-1 PPF. A total of 300 data images were acquired. All of 300 
images obtained at image acquisition went through a transformation process to convert images 
from red-green-blue (RGB) colour space to hue-saturation-value (HSV), hue-saturation-lightness 
(HSL) and grey level colour spaces. Features extraction process extracted three different image 
features (CF, MF and TF). Then, the full feature sets, or their reduced versions obtained after 
proper FS in the FS process, were fed to a BPNN for predicting water content. Two alternative 
Bio-inspired approaches (GA and ACO) for conducting FS were studied. A comparison study 
was conducted to analyze the performance of each FS technique. All software included features 
extraction, BPNN, neural-GA and neural-ACO were built in Visual Basic 6.0 (self-built 
software). 
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Figure 3. Non-destructive sensing for determining Sunagoke moss water content. 
 

 
 

Figure 4. Image acquisition. 

2.2.1 Colour Features (CF)  

 
The RGB colour space is the default colour space for most available image formats. Any other 
colour space can be obtained from a linear or non-linear transformation from RGB. RGB is the 
most commonly used colour space for storing and representing digital images, since the data 
captured by a camera is normally provided as RGB. RGB correspond to the three primary 
colours: red, green and blue, respectively. The RGB CF can be described as following 
(Hendrawan and Murase, 2009): 
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where: R (red value); G (green value); B (blue value); M is the total number of pixels; xi is 
green/red ratio value and x  is green/red ratio mean value.  
 
HSV and HSL colour systems were developed from RGB colour system. These two colour 
systems are related to each other and approximately to human’s concept of tint, shade and tone. 
Hue is pure colour according to its wavelength, saturation is the amount of the colour with 
respect to white, and the third axis (called value and lightness respectively) is the amount of light 
and embodies the achromatic concept of intensity. These spaces have many advantages (Grande 
et al., 2008). In particular the use of hue for distinguishing features often corresponds to human 
perception and, what is more important it ignores shading effects. This can be crucial in dealing 
with granular materials, where shading effects may be dominant, because of the discrete, three-
dimensional nature of the particles. The detail conversion method from RGB to HSV and HSL 
colour spaces can be seen in Angulo and Serra, 2007. Features extracted from HSV and HSL 
colour systems included hue mean value, saturation(HSV) mean value, value(HSV) mean value, 
saturation(HSL) mean value and lightness(HSL) mean value which are calculated using the same 
equation as red mean value, green mean value and blue mean value. 

2.2.2 Morphological Features (MF)  
 
Accurate measurement of green canopy area is special concern to Sunagoke moss due to the 
relationship with water content. MF included browning index, green canopy index and perimeter 
index. Browning process on Sunagoke moss can be influenced by virus, fungi, water content or 
environment condition. The threshold point of browning index and green canopy index can be 
determined using a combination of RGB colour value and green/red ratio value (Hendrawan and 
Murase, 2008). Perimeter is used in calculating the border of an object (green canopy area). 
Water content directly affects changes in green canopy index, perimeter index and browning 
index (Hendrawan and Murase, 2009). The green canopy, perimeter and browning area were 
evaluated by pixel count (PC) method as shown in figure 5. The PC method counted the number 
of pixels in the picture field (Igathianathane et al., 2006). 
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Browning pixel 
If  G/R ratio < threshold(G/R) AND  
R < threshold(R) AND G < threshold(G) AND  
B < threshold(B) Then Browning = 1 

Background pixel = 0 

Object pixel (x,y) = 1

Perimeter pixel 

pixel (x,y+1) 

pixel (x-1,y) 

pixel (x,y-1) 
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Figure 5  PC method for determining MF. 

2.2.3 Textural Features (TF)  

 
Texture is a measure of the variation of intensity at scales smaller than the picture field overall 
scale (Petrou and Sevilla, 2006). Two-dimensional co-occurrence (grey-level dependence) 
matrices are generally used in texture analysis because they are able to capture the spatial 
dependence of grey-level values within an image (Haralick et al., 1973). The textural analysis 
can be considered as one of applicable techniques for extracting image features (Haralick et al., 
1973; Murase et al., 1994). Texture has been one of the most important characteristic which have 
been used to classify and recognize objects and scenes. A 2D co-occurrence matrix, P, is an n x n 
matrix, where n is the number of grey-levels within an image. The matrix acts as an accumulator 
so that P[i,j] counts the number of pixel pairs having the intensities i and j. Pixel pairs are 
defined by a distance and direction which can be represented by a displacement vector d = 
(dx,dy), where dx represents the number of pixels moved along the x-axis, and dy represents the 
number of pixels moved along the y-axis of an image slice. 
 
The grey colour space involves conversion of RGB images to grey-level images before 
extraction of the Spatial Grey-Level Dependence Matrices (SGDM) with the equation as 
following (Ondimu and Murase, 2008): 

Grey = 0.3 R + 0.59 G + 0.11 B                              (10) 
Colour texture analysis as espoused by Colour Co-occurrence Matrix (CCM) method is based on 
the hypothesis that use of colour features in the visible spectrum provides additional image 
characteristics over the traditional grey-level representation. Hendrawan and Murase (2009) 
observed red CCM TF, green CCM TF, blue CCM TF and grey CCM TF for identifying water 
content. The results showed that combination of angle (θ = 0) and distance (d = 1) performed 
better than the other combination of θ and d to identify water content. Therefore, in this study, 
TF were extracted at distance (d = 1) and angle (θ = 0). The range of red CCM, green CCM, 
blue CCM, hue CCM, saturation(HSV) CCM, value(HSV) CCM, saturation(HSL) CCM, lightness(HSL) 
CCM and grey CCM within a given image determines the dimensions of a two-dimensional co-
occurrence matrix. Each colour space has 256 grey-levels, which makes the co-occurrence 
matrix 256 x 256. One set of TF consists of ten equations. The following TF were used in this 
research (Kurani et al., 2004):  
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where: P(i,j) is the (i,j)th element of a normalized co-occurrence matrix, and μ and σ are the mean 
and standard deviation of the pixel element given by the following relationships: 
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where: N(i,j) is the number counts in the image with pixel intensity i followed by pixel intensity j 
at one pixel displacement to the left, and M is the total number of pixels. 
Based on equations 11 – 20, a total of 90 TF were extracted i.e. 10 TF each for grey CCM, red 
CCM, green CCM, blue CCM, hue CCM, saturation(HSV) CCM, saturation(HSL) CCM, value(HSV) 
CCM and lightness(HSL) CCM. 

2.2.3 BPNN for prediction  

 
Prediction is common task in many fields. ANN has been shown to be successful as predictive 
tools in a variety of ways such as predicting the level of some event outcome (Patterson, 1996). 
In general, ANN is good at learning perceptive type of tasks such as the recognition of complex 
patterns. Comparative studies made by researchers suggest that ANN compare favourably with 
conventional statistical pattern recognition methods. A three layers BPNN structure as shown in 
figure 6 has been developed for predicting Sunagoke moss water content. The number of neurons 
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in the input layer was determined by the number of input features. Five models of hidden nodes 
architecture were developed i.e. 10, 15, 20, 25 and 30 hidden nodes. The output layer consisted 
of single neuron. The output was water content corresponding to the input features. The training, 
validation and testing performance criterion for the prediction was Mean Square Error (MSE) 
given by equation 24.  


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ii

n

StS
N
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1
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1

                           (24) 

where Nn is number of input feature vectors, Si is the water content predicted by BPNN model, 
and Sti is the target water content determined by equation 1. The 300 samples data of Sunagoke 
moss were randomized and divided into three parts which were 200 data as training-set, 50 data 
as validation-set and 50 data as testing-set. The models were trained using BPNN; training was 
stopped after 400 iterations. Learning rate of 0.5 and momentum of 0.5 were chosen through trial 
and error.  
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Figure 6. Architecture of three layers Back-Propagation Neural Network. 

2.2.4 Neural-GA for optimizing FS  

 
A basic GA, as generally described by Goldberg (1989) and Holland (1975) was used for 
optimizing FS. GA is search algorithms based on the mechanics of natural selection and natural 
genetics. In this research, a neural-GA was developed for FS based on the neural network pattern 
recognition. The objective function in neural-GAs is minimizing validation-set MSE of feature-
subset. The steps shown in figure 7 can be described as follows: 
1. Generate population randomly in which individuals (number of individuals ni = 50) 

characterized by chromosomes represent a set of possible solutions (e.g. ga1: 
0,1,1,0,0,0,0,1,0,0,1,0,…..m), where m is the number of total features which equals to 106 
features. The chromosome defined contains 106 genes, one gene for each feature, which can 
take 2 values. A value of 0 indicates that the corresponding feature is not selected, and the 
value 1 means that the feature is selected.  
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2. Compute the fitness function which reflects the degree of goodness of the individuals for the 
problem and evaluate the fitness of all individuals of the population by using BPNN. The 
fitness of the chromosome is calculated according to the prediction rate (validation-set MSE) 
of the evolved subset of features.  

3. Select the fittest individuals to be parents for reproducing offspring using roulette wheel 
selection strategy.  

4. Create offspring with two points crossover and mutation operators by changing the selected 
individuals during the mating periods. Two points crossover (point1 and point2) are selected 
randomly, where point1<point2, and point1>1, point2<m. 

5. Displace the parents with good offspring to compose the subsequent generation according to 
probability best chromosome which is set to 0.2.  

6. Stopping criterion. The search will terminate if the iteration has reached 500 iterations. 
Individual with the best fitness in the last population is considered to be the optimal 
individual. 

 
Initialization  
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 ga1 = 0,1,1,0,0,0,1,0,1,…. m 
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Evaluate each individual using BPNN 
 
 
 
 
 
 
 
 Selection 
 
 Crossover and Mutation 

 
Probability of best chromosome  

 Update global best solution 
 
 
 
 
 

Figure 7 Neural-GA for feature selection. 

2.2.5 Neural-ACO for optimizing FS  

 
ACO was initially proposed by Colorni, Dorigo and Maniezzo (Dorigo and Stutzle, 2004). ACO 
was inspired by the foraging behaviour of real ants. The main underlying idea was that of 
parallelizing search over several constructive computational threads, all based on a dynamic 
memory structure incorporating information on the effectiveness of previously obtained results 
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and in which the behaviour of each single agent is inspired by the behaviour of real ants. The 
steps of neural-ACO shown in figure 8 can be described as follows: 
1. Set the initial parameters i.e. the number of ant (na) population (a1, a2, a3,….ana) in which na 

= 50; global iterations = 500; heuristic (ηιψ) which is defined as the inverse of the validation 
MSE between two features (ι, ψ) as the input of BPNN; intensity of pheromone trail level (τ 
= 100); the best selected ants (k = 8); pheromone constant (α = 1); heuristic constant (β = 1) 
and evaporation rate of pheromone ρ[0, 1].  

2. Generating ants for solution generation. At the first iteration, assign any ant randomly to one 
feature and visiting features, each ant builds solutions completely. For the next iterations, 
each ant movement for finding the trail path is based on the pheromone and heuristic 
probability. For ant a, the probability pιψ of moving from state ι to state ψ depends on the 
combination of two values i.e. the heuristic η of the move and the pheromone trail level τ of 
the move. Probabilities are computed as follows: pιψ is equal to 0 for all moves which are 
infeasible, otherwise it is computed by means of the following formula, where α and β is a 
user-defined parameter (0 < α < 1; 0 < β < 1). Parameter α and β control the relative 
importance of the trail and the attractiveness, respectively. 






aalloweda

ap
).(

.












 


          (25) 

If an ant is not able to decrease the validation-set MSE in ten successive steps, it will finish 
its work and exit. Each ant consist of feature-subset with selected features as ant paths (e.g. 
a1: 0,1,1,0,0,0,0,1,0,0,1,0,…..m), where m is the number of total features which equals to 
106 features. Each ant in the population represents a candidate solution to the feature subset 
selection problem. A value of 0 indicates that the corresponding feature is not selected and 
will not be added as the input of BPNN, while a value of 1 means that the feature is selected 
and will be added as the input of BPNN.  

3. Evaluation of ants (a). Evaluate ants (feature-subsets) using BPNN. Each ant solution (Tant) is 
calculated according to the prediction rate (validation MSE) of the evolved subset of features. 
The values of the BPNN inputs are the feature-subsets. One output of BPNN is the solution 
for determining water content of Sunagoke moss.  

4. Update the global best solution (Tbest) by the current ant solution (Tant). The objective 
function is minimizing validation MSE of BPNN.  



 

otherwiseT

)q(T)q(TifT
T

ant

antbestbest
best        (26) 

5. Pheromone updating. An iteration is defined here as the interval in (t, t+1) where each of the 
ant moves once. We then define an epoch to be every n iterations, when each ant has 
completed a tour. After each epoch the pheromone trails intensity are updated according to 
the following formula: 





k

1a

)t()1()nt(            (27) 

where ∆τιψ represents the sum of the contributions of all best k ants that used move (ι, ψ) to 
construct their solution between time t and t+1. Using the feature subsets of the best k ants, 
the pheromone trails intensity are updated using the following equation: 
For j = 1 to k 
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hg
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jg
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          (28) 

In the first iteration, each ant will randomly choose a feature subset of m features. Only the 
best k subsets, k < na, will be used to update the pheromone trail and influence the feature 
subsets of the next iteration. In the second and following iterations, each ant will start with 
m-e features that are randomly chosen from the previously selected k-best subsets, where e 
is an integer that ranges between 1 and m-1. 

6. Generation of new ants. In this step previous ants are removed and new ants are generated. 
7. Stopping criterion: the algorithm stops with the total-best solution TTB. The search will 

terminate if the global iteration has been reached.  
 
 Initialization 
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Figure 8. Neural-ACO for feature selection. 
 

3.  RESULTS AND DISCUSSION 

 
3.1 Water content and image features 
 
Figure 9 shows the changes in Sunagoke moss appearance due to drying process in ten days 
experiment. Drying process in Sunagoke moss was affected by evapotranspiration process. 
Hendrawan and Murase (2009) mentioned that evapotranspiration was much higher when the 

Generating ant’s path randomly: 
a1 = 0,1,1,0,0,0,1,0,1,…. m 
a2 = 1,1,0,0,0,0,0,1,0,…. m 
ana = 1,0,0,1,1,1,0,0,1,…. m 

Evaluate each ant’s path using BPNN 

Update global best solution 

Determine best k ants 

Update pheromone 

Termination

End 

no 

yes

Iteration = 1no yes

Calculate path probability 

Generating ant’s path based on probability: 
a1 = 1,1,0,0,0,0,0,0,1,…. m 
a2 = 0,1,0,0,1,0,0,1,1,…. m 
ana = 0,1,0,1,1,0,0,0,0,…. m 
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moss layer is wet. The graph shows that moss at high water condition has faster drying rate than 
moss at low water condition. The evapotranspiration process is composed of evaporation and 
transpiration. Water content has a linear correlation with evapotranspiration. It means that as 
water content increases, the evapotranspiration rate also increases.  
Visible light photography has been effective in determining the percentage of maximal net CO2 

uptake of plant using green/red ratio (Graham et al., 2006). Red referred to a broad band of 
wavelengths (600-699 nm) and green to a broad band of wavelengths (500-599 nm). During the 
photosynthesis process, plant absorbs red wavelengths that makes it reflect red wavelengths less 
than green wavelengths. The more it absorbs red wavelengths the higher the green/red ratio value. 
Because photosynthesis has correlation with water existence, the changes of green and red 
wavelengths reflection can be used as indicators of the water existence in plant. If Sunagoke 
moss does not have enough water or it has too much water, then photosynthesis process will not 
be optimum. Photosynthesis of Sunagoke moss will be optimum if it has appropriate water 
content condition. The optimal water content based on photosynthesis rate (light in the 
environment growth condition: 100 μmol m-2s-1) was between 2.0 – 3.0 gg-1 (Hendrawan and 
Murase, 2009).  
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Figure 9. Changes in Sunagoke moss appearance due to drying process. 
 
Figure 10 shows the relationships of Sunagoke moss water content and CF. In dry condition, CF 
such as average green index, saturation(HSV) mean value and value(HSV) mean value were low, 
they increased gradually until the water content was between 2.0 - 2.5 gg-1. In water content 
above 2.5 gg-1 they decreased and remained fairly stable after the water content reached 2.75 gg-1. 
This was reversed for average red index. 
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Figure 10. Sunagoke moss water content and CF: (a) average green index and average red index; 

(b) saturation(HSV) mean value and value(HSV) mean value. 
 
Figure 11 shows the relationships of Sunagoke moss water content and MF. It shows that water 
content affects to the browning process of Sunagoke moss. In dry condition, browning index was 
high, it decreased gradually until the water condition between 2.0 - 2.5 gg-1, it remained fairly 
stable there after. This was reversed for green canopy index. Figure 12 shows the relationships of 
Sunagoke moss water content and TF. In dry condition, TF such as green CCM energy, 
saturation(HSL) CCM homogeneity, saturation(HSL) CCM maximum probability, saturation(HSV) 
CCM energy and saturation(HSV) CCM maximum probability increased up to 2.0 - 2.5 gg-1 of 
water content and remained fairly stable there after. This was reversed for green CCM entropy 
which showed a decreasing trend of values and reached the lowest value when the water 
condition was between 2.0 - 2.5 gg-1. Hence optimum water content of Sunagoke moss based on 
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CF, MF and TF can be achieved between 2.0 - 2.5 gg-1. When the P-value (significant level) in 
Table 1 is less than 0.01, there is a significant difference between groups with a confidence level 
of 99%. According to this rule, average green index, average red index, saturation(HSV) mean 
value, value(HSV) mean value, browning index, green canopy index, green CCM entropy, green 
CCM energy, saturation(HSL) CCM homogeneity, saturation(HSL) CCM maximum probability, 
saturation(HSV) CCM energy and saturation(HSV) CCM maximum probability as shown in figure 
10 to 12 were significantly different from each other. 
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Figure 11. Sunagoke moss water content and MF (browning index and green canopy index). 
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(c) 
Figure 12. Sunagoke moss water content and TF: (a) RGB CCM TF (green CCM entropy and 

green CCM energy); (b) HSL CCM TF (saturation(HSL) CCM homogeneity and 
saturation(HSL) CCM maximum probability); (c) HSV CCM TF (saturation(HSV) CCM 
energy and saturation(HSV) CCM maximum probability). 
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Table 1  One way ANOVA results 
 

Parameters Relation SS df MS F P-value F-crit.
average green index Between group 0.0814 6 0.0135 50.8077 2.75x10-22 3.1027
 Within group 0.0168 63 2.67x10-4    
 Total 0.0982 69     
average red index Between group 0.0057 6 0.0009 11.6751 9.45x10-9 3.1027
 Within group 0.0052 63 8.24x10-5    
 Total 0.0109 69     
saturation(HSV) mean value Between group 0.1146 6 0.0191 24.3033 1.10x10-14 3.1027
 Within group 0.0495 63 7.86x10-4    
 Total 0.1641 69     
value(HSV) mean value Between group 0.0261 6 0.0043 10.6234 4.01x10-8 3.1027
 Within group 0.0257 63 4.09x10-4    
 Total 0.0518 69     
browning index Between group 13953.3 6 2325.54 25.4081 4.22x10-15 3.1027
 Within group 5766.24 63 91.5276    
 Total 19719.5 69     
green canopy index Between group 6233.44 6 1038.91 42.7911 2.14x10-20 3.1027
 Within group 1529.54 63 24.2785    
 Total 7762.99 69     
green CCM entropy Between group 0.9804 6 0.1634 136.8163 3.48x10-34 3.1027
 Within group 0.0752 63 0.00119    
 Total 1.0557 69     
green CCM energy Between group 5.33x10-8 6 8.89x10-9 101.9301 1.65x10-30 3.1027
 Within group 5.50x10-9 63 8.72x10-11    
 Total 5.88x10-8 69     
saturation(HSL) CCM homogeneity Between group 2.89x10-4 6 4.82x10-5 9.1911 3.18x10-7 3.1027
 Within group 3.30x10-4 63 5.24x10-6    
 Total 6.19x10-4 69     
saturation(HSL) CCM max. probability Between group 5.80x10-4 6 9.67x10-5 22.2945 6.81x10-14 3.1027
 Within group 2.73x10-4 63 4.34x10-6    
 Total 8.53x10-4 69     
saturation(HSV) CCM energy Between group 3.64x10-7 6 6.06x10-8 15.0593 1.33x10-10 3.1027
 Within group 2.54x10-7 63 4.02x10-9    
 Total 6.17x10-7 69     
saturation(HSV) CCM max. probability Between group 5.86x10-4 6 9.76x10-5 22.4539 5.87x10-14 3.1027
 Within group 2.74x10-4 63 4.35x10-6    
 Total 8.60x10-4 69     
where SS = Sum of Squares; MS = Mean Square; F-crit. = F critical 
 

3.2 Water content prediction using BPNN  

 
BPNN model performance was tested successfully to describe the relationship between 
Sunagoke moss water content and image features. Figure 13 shows water content prediction 
using BPNN based on average validation MSE with the inputs of individual feature-subsets (CF, 
MF, grey CCM TF, red CCM TF, green CCM TF, blue CCM TF, hue CCM TF, saturation(HSV) 
CCM TF, value(HSV) CCM TF, saturation(HSL) CCM TF and ligthness(HSL) CCM TF) in different 
hidden nodes number. From figure 13, we can see that MF has the lowest average validation 
MSE when using 30 hidden nodes.  
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Figure 13  Average validation MSE of each individual feature-subset with different number of 

hidden nodes: (1) CF; (2) MF; (3) grey CCM TF; (4) red CCM TF; (5) green CCM 
TF; (6) blue CCM TF; (7) hue CCM TF; (8) saturation(HSV) CCM TF; (9) value(HSV) 
CCM TF; (10) saturation(HSL) CCM TF; (11) lightness(HSL) CCM TF. 

 
Table 2 shows the overall prediction results using the best selected number of hidden nodes in 
BPNN. It shows that most of the TF (grey CCM TF, red CCM TF, green CCM TF, blue CCM 
TF, saturation(HSV) CCM TF, value(HSV) CCM TF, saturation(HSL) CCM TF and lightness(HSL) 
CCM TF) had lower training MSE than CF and MF. The saturation(HSV) CCM TF had the lowest 
training MSE of 7.80x10-3 (gg-1)2. MF had lowest validation MSE than other models. The hue 
CCM TF had the highest training and validation MSE. The training MSE of BPNN models less 
than 1% were obtained. It can be said that the performance of BPNN models is satisfactory as 
shown in Table 2. In general, training of BPNN may be terminated at the convergence with total 
training MSE value less than 1% (Patterson, 1996). Table 3 shows that the significant level is 
less than 0.01, which means there is a significant difference between the groups of training-set 
MSE, validation-set MSE and testing-set MSE with a confident level of 99%.  
All models showed negligible absolute deviation in predicting the water content for ten iterations. 
Based on the average of training, validation and testing, lightness(HSL) CCM TF showed the 
lower absolute deviation, followed by saturation(HSV) CCM TF, hue CCM TF, MF, blue CCM TF, 
saturation(HSL) CCM TF, red CCM TF, grey CCM TF, green CCM TF, value(HSV) CCM TF and 
CF in that order, respectively. It means that lightness(HSL) CCM TF showed the highest 
consistency and highest reliability in predicting water content in Sunagoke moss. On the other 
hand, CF showed the least consistency. The validation results show that BPNN model using MF 
as the inputs had the best performance to predict water content with the validation MSE of 
6.70x10-3 (gg-1)2 followed by blue CCM TF, lightness(HSL) CCM TF, saturation(HSV) CCM TF, 
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saturation(HSL) CCM TF, value(HSV) CCM TF, green CCM TF, grey CCM TF, red CCM TF, CF 
and hue CCM TF in that order, respectively. 
 

Table 2. Performance of water content prediction using BPNN 
Average Mean Square Error (gg-1)2 

Training-set Validation-set Testing-set BPNN Model 
Mean Deviation 

(abs.) 
Mean Deviation 

(abs.) 
Mean Deviation 

(abs.) 
CF 1.41x10-2 1.81x10-3 1.74x10-2 4.68x10-3 7.89x10-3 1.50x10-3 
MF 1.44x10-2 1.24x10-3 6.70x10-3 5.95x10-4 7.35x10-3 1.18x10-3 
grey CCM TF 1.31x10-2 8.00x10-4 1.60x10-2 2.95x10-3 6.19x10-3 1.26x10-3 
r CCM TF 1.39x10-2 9.89x10-4 1.68x10-2 3.14x10-3 4.47x10-3 6.82x10-4 
g CCM TF 1.28x10-2 9.38x10-4 1.53x10-2 3.46x10-3 5.09x10-3 1.09x10-3 
b CCM TF 8.59x10-3 3.00x10-4 7.07x10-3 5.59x10-4 8.98x10-3 2.37x10-3 
h CCM TF 1.83x10-2 5.67x10-4 2.13x10-2 8.76x10-4 3.46x10-3 1.24x10-3 
s(HSV) CCM TF 7.80x10-3 2.86x10-4 8.73x10-3 8.64x10-4 4.15x10-3 8.15x10-4 
v(HSV) CCM TF 1.30x10-2 1.07x10-3 1.46x10-2 3.88x10-3 4.23x10-3 7.73x10-4 
s(HSL) CCM TF 1.02x10-2 6.11x10-4 9.24x10-3 6.83x10-4 8.31x10-3 2.28x10-3 
l(HSL) CCM TF 7.91x10-3 3.99x10-4 8.63x10-3 5.01x10-4 6.82x10-3 5.73x10-4 

where r = red, g = green, b = blue, h = hue, s(HSV) = saturation(HSV), v(HSV) = value(HSV), s(HSL) = saturation(HSL) and l(HSL) 
= lightness(HSL) 
 

Table 3. One way ANOVA results 
Parameters Relation SS df MS F P-value F-crit. 

Training-set Between group  1.05x10-3 10 1.05x10-4 121.703 5.38x10-51 2.5052 
 Within group 8.54x10-5 99 8.62x10-7    
 Total 1.13x10-3 109     
Validation-set Between group  2.46x10-4 10 2.46x10-4 38.46 9.91x10-30 2.5052 
 Within group 6.34x10-4 99 6.41x10-6    
 Total 3.09x10-3 109     
Testing-set Between group  3.64x10-4 10 3.64x10-5 19.2275 3.81x10-19 2.5052 
 Within group 1.88x10-4 99 1.90x10-6    
 Total 5.52x10-4 109     
where SS = Sum of Squares; MS = Mean Square; F-crit. = F critical 
 
Figure 14 shows comparison analysis of validation MSE on each BPNN model which included 
CF, MF, grey CCM TF, combination of all RGB CCM TF (red CCM TF; green CCM TF; blue 
CCM TF), combination of all HSV CCM TF (hue CCM TF; saturation(HSV) CCM TF; value(HSV) 
CCM TF), combination of all HSL CCM TF (hue CCM TF; saturation(HSL) CCM TF; 
lightness(HSL) CCM TF) and combination of all features. Table 4 shows one way ANOVA results 
which explains the significant difference in figure 14. When the significant level in Table 4 is 
less than 0.01, there is a significant difference between the groups with a confidence level of 
99%. Based on the average validation results show that BPNN model using MF had the highest 
performance to predict water content followed by combination of all HSV CCM TF, HSL CCM 
TF, RGB CCM TF, grey CCM TF and CF in that order, respectively. However, based on partial 
analysis using t-test, the results show that there is no significant difference between MF and HSV 
CCM TF and also no significant difference between MF and HSL CCM TF, but there is a 
significant difference between MF and other BPNN models (CF, grey CCM TF, RGB CCM TF 
and all features) at α = 0.01 significant level. HSV CCM TF and HSL CCM TF also have 
significant difference with other BPNN models (CF, grey CCM TF, RGB CCM TF and all 
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features). From this analysis we can conclude that MF, HSV CCM TF and HSL CCM TF are 
recommended as individual feature-subset to be used for predicting water content using BPNN 
with the average validation MSE of 6.70x10-3(gg-1)2, 6.76x10-3(gg-1)2 and 7.10x10-3(gg-1)2 in that 
order, respectively. 
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Figure 14. Comparison of validation-set MSE on each BPNN model: (1) CF; (2) MF; (3) grey 

CCM TF; (4) RGB CCM TF; (5) HSV CCM TF; (6) HSL CCM TF; (7) All features. 
 

Table 4  One way ANOVA results 
Relation SS df MS F P-value F-crit. 

Between group  1.22x10-3 6 2.04x10-4 41.7606 3.91x10-20 3.1027 
Within group 3.08x10-4 63 4.89x10-6    
Total 1.53x10-3 69     
where SS = Sum of Squares; MS = Mean Square; F-crit. = F critical 
 
One individual feature-subset stand alone might not be significant for the prediction but might be 
very significant if combined with other features. FS techniques (neural-GA and neural-ACO) 
were used to select relevant image features to predict water content. 
 

3.3 Neural-GA   

 
GA for FS involve many generations. In each generation, evaluation of an individual (a feature-
subset) involves training neural networks. The chromosome contains 106 genes, one gene for 
each feature, which can take two values. A value of 0 indicates that the corresponding feature is 
not selected, while a value of 1 means that the feature is selected. An initial population of 
chromosomes is randomly generated. Crossover process in GA was conducted using two points 
crossover. Two points were selected randomly. Mutation process was also conducted randomly. 
Some best chromosomes were kept to be used in the next generation. The roulette wheel 
selection strategy was used in the algorithm. The application of genetic operators to population 
members is determined by their fitness (how good a feature-subset is with respect to an 
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evaluation strategy). Better feature-subsets have a great chance of being selected to form a new 
subset through crossover or mutation. The research was conducted by the prediction rate based 
on validation MSE to calculate the fitness for reproduction of GA. The parameter settings for GA 
include population size: 50; probability of best chromosomes: 0.2; probability of crossover (PC): 
0.8 and 0.5; probability of mutation (PM): 0.1 and 0.01; and number of generation was 
developed until the fitness function converged or 500 generations. Table 5 describes the 
performance of water content prediction using neural-GA. The combination of PC = 0.8 and PM 
= 0.1 had the lowest validation MSE (3.54x10-3 (gg-1)2) on predicting water content of Sunagoke 
moss. Neural-GA was also able to reduce irrelevant features and decrease the features from 106 
to 47 features. 

Table 5. Performance of water content prediction using neural-GA 
Mean Square Error (gg-1)2 GA parameter 

Number of 
Selected Features Training-set Validation-set Testing-set 

PC: 0.8; PM: 0.1 47 3.46x10-3 3.54x10-3 6.67x10-3 
PC: 0.5; PM: 0.1 52 3.94x10-3 4.58x10-3 3.10x10-3 

PC: 0.8; PM: 0.01 52 2.95x10-3 5.11x10-3 8.61x10-3 

PC: 0.5; PM: 0.01 51 3.78x10-3 4.34x10-3 3.11x10-2 

3.4 Neural-ACO   

 
The ACO parameters used in this research consist of pheromone constant (α = 1), heuristic 
constant (β = 1 or β = 0), pheromone evaporation rate (ρ = 0.1 or ρ = 0.2), number of ants = 50, 
number of iteration = 500 and best ants selected (k value = 8). Table 6 describes the performance 
of water content prediction using neural-ACO. The combination of α = 1,  β = 1 and ρ = 0.1 had 
the lowest validation MSE (2.02x10-3 (gg-1)2) on predicting water content of Sunagoke moss. 
Neural-ACO was also able to reduce irrelevant features and decrease the features from 106 to 10 
features. 
 
The pheromone evaporation rate ρ can be critical. The pheromone evaporation rate (ρ = 0.1) had 
more accuracy on predicting water content based on validation MSE. Pheromone trail 
evaporation can be seen as an exploration mechanism that avoids quick convergence of all the 
ants towards a suboptimal path. An evaporation mechanism allows a continuous improvement of 
the learned problem structure. Evaporation decreases the pheromone trails with exponential 
speed. 
 

Table 6. Performance of water content prediction using neural-ACO 
Mean Square Error (gg-1)2 ACO parameter 

Number of 
Selected Features Training-set Validation-set Testing-set 

α: 1;  β: 1;  ρ: 0.1 10 4.23x10-3 2.02x10-3 5.87x10-3 
α: 1;  β: 1;  ρ: 0.2 21 6.37x10-3 3.96x10-3 3.87x10-3 

α: 1;  β: 0;  ρ: 0.1 13 8.54x10-3 4.89x10-3 3.99x10-3 

α: 1;  β: 0;  ρ: 0.2 7 7.46x10-3 4.02x10-3 1.09x10-2 
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Figure 15. Comparison of β parameter in neural-ACO. 

 
The possibility of using heuristic information to direct the ants’ probabilistic solution 
construction is important because it gives the possibility of exploiting problem-specific 
knowledge. In this research we use static heuristic information where the values η are computed 
once at initialization time and then remain unchanged throughout the whole algorithm’s run. 
Figure 15 shows that heuristic information η is important to be included. The value of β = 1 
means that heuristic information is considered to be as important as pheromone trails and the 
value of β = 0 means that heuristic information is not included in the algorithm (η = 1). Figure 15 
shows that β = 1 has better performance and better consistency for minimizing prediction error 
than β = 0. Furthermore, using analysis of t-test it was shown that there is a significant statistical 
improvement by using β = 1 at α = 0.01 significant level. 
 
The utilization of FS technique in selecting relevant features for predicting water content can be 
critical. Figure 16 shows the performance of two FS algorithms. It shows the superiority of 
neural-ACO for FS, since it achieved better prediction performance with lower number of 
features compare to neural-GA. From figure 16(a), we can see that neural-ACO (average 
validation MSE of neural-ACO = 2.02x10-3 (gg-1)2) has lower average validation set MSE than 
neural-GA (average validation MSE of neural-GA = 3.54x10-3 (gg-1)2), but there is no significant 
difference between their prediction performances. The results show that methods using FS 
(neural-GA and neural-ACO) has better result than methods without FS (MF, HSV CCM TF or 
HSL CCM TF). Furthermore, using analysis of t-test it was shown that there is a significant 
statistical difference between model using FS and model without FS at α = 0.01 significant level. 
The performance of BPNN model in both FS models (neural-GA and neural-ACO) for predicting 
water content of Sunagoke moss was satisfactory. The smallest training MSE of BPNN model 
less than 1% was obtained. From figure 16(b), neural-ACO has better performance for selecting 
relevant features than neural-GA and there is significant statistical difference between neural-
ACO and neural-GA (t-test at α = 0.01 significant level). In conclusion, neural-ACO was tested 
successfully to find the best combination of relevant features and reduce the number of features 
in the feature-subset. The ten relevant features selected included: green canopy index MF, 
perimeter index MF, blue CCM energy TF, hue CCM contrast TF, hue CCM correlation TF, 
value(HSV) CCM correlation TF, hue CCM variance TF, hue CCM cluster tendency TF, green 
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CCM maximum probability TF and blue CCM maximum probability TF. ACO has powerful 
exploration ability. Several characteristics make ACO a unique approach: it is a constructive, 
population-based metaheuristic which exploits an indirect form of memory of previous 
performance. This combination of characteristics is not found in GA. 
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Figure 16. Comparison of neural-ACO and neural-GA based on: (a) validation MSE and (b) 
number of selected relevant image features. 

 
4.  CONCLUSIONS 

 
In conclusion, neural network model was able to correlate non-linear relationships between 
image features and water content. Morphological Features (MF), HSV Colour Co-occurrence 
Matrix Textural Features (HSL CCM TF) and HSL CCM TF were recommended as individual 
feature-subset to be used for predicting water content using Back-Propagation Neural Network 
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(BPNN) with average validation Mean Square Error (MSE) of 6.70x10-3(gg-1)2, 6.76x10-3(gg-1)2 
and 7.10x10-3(gg-1)2 in that order, respectively. However, the use of combination of some 
relevant image features for predicting water content shows better performance than individual 
feature-subset. Therefore, Feature Selection (FS) techniques have been proposed. The use of FS 
techniques has successfully selected relevant feature-subset to improve prediction performance. 
In this paper, we presented a novel FS search procedure for prediction based on Bio-inspired 
approaches. To show the utility of FS method we compare two proposed algorithms i.e. Neural-
Genetic Algorithms (neural-GA) and Neural-Ant Colony Optimization (neural-ACO). The 
results show that neural-ACO has lower average validation set MSE than neural-GA, but there is 
no significant difference between their prediction performances. Neural-ACO has better 
performance for selecting relevant features than neural-GA and there is significant statistical 
difference between them (t-test at α = 0.01 significant level). Methods using FS has better result 
(average validation MSE of neural-GA = 3.54x10-3 (gg-1)2 and neural-ACO = 2.02x10-3 (gg-1)2) 
than methods without FS (MF, HSV CCM TF or HSL CCM TF). Furthermore, using analysis of 
t-test it was shown that there is a significant statistical difference between model using FS and 
model without FS at α = 0.01 significant level. 
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