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Abstract: Effective water-quality protection should target Best Management Practices (BMPs) on watershed areas that

contribute most to water-quality impairment instead of the typical voluntary implementation of practices, which may not be

better than a random distribution of BMPs within a watershed. This paper demonstrates a strategic approach for targeting

watershed areas to maximize water-quality benefits from BMP implementation. Almost half of the Smoky Hill River

Watershed, Kansas, USA is cropland, a major sediment and nutrient source. The impacts of reduced tillage, edge-of-field

vegetative filter strips, and contoured-terraced practices on erosion and nutrient loads both overland and at the watershed outlet

were evaluated using either random or targeted implementation, based on simulated average subbasin erosion rate. The

targeted approach was more effective in reducing sediment and nutrients, both at subbasin and watershed levels. Annual

average overland pollutant load reductions of 10% required BMP adoption on less than half the land area with targeted versus

random placement. The benefits of targeting were greater for initial increments of BMP adoption and decreased as

implementation area increased.
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1 Introduction

Agricultural nonpoint sources (NPS) of sediment,

nutrients, and bacteria, primarily in surface runoff, have

been identified as the major causes of water-quality

problems in streams and lakes (USEPA, 2000; Ice, 2004).

Minimizing watershed pollutant yields requires

coordinated implementation of agricultural best

management practices (BMPs). Strategic targeting and

prioritization of areas for implementation of BMPs is

conceptually preferable to a “voluntary”basis, which has

no guarantee of resulting in better pollution abatement

than a random distribution of practices within a watershed

(Diebel et al., 2008). Identifying fields/areas with high
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pollution potential and treating these fields first would be

a more efficient way to allocate financial and educational

resources and control NPS pollution.

Targeting has three primary facets: (1) “practice”

targeting, where management measures are prioritized

based on relative effectiveness toward meeting a

pollution-reduction (or other environmental) target; (2)

spatial targeting, where areas within a watershed are

prioritized based on relative pollution-generation

potential; and (3) temporal targeting, where practices and

locations within a watershed are selected based on

relative potential to reduce delivery of pollutants during a

critical time frame (e.g., season). Watershed models can

directly address each targeting issue by assisting with

prioritization of practices, spatial targeting of actions, and

assessment of temporal delivery of pollutants to a water

resource.

One widely used watershed model is the Soil and
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Water Assessment Tool (SWAT), a distributed,

deterministic, continuous, watershed-scale simulation

model developed by the USDA Agricultural Research

Service (Arnold et al., 1998; Di Luzio et al., 2004). It

uses spatially distributed data on topography, soils, land

cover, land management, and weather to predict water,

sediment, nutrient, and pesticide yields. A modeled

watershed is divided spatially into subwatersheds using

digital elevation data according to the threshold drainage

area specified by the user. Subwatersheds are modeled

as having uniform slope and climatic conditions, and they

are further subdivided into lumped, nonspatial hydrologic

response units (HRUs) consisting of all areas within the

subwatershed having similar soil, land use, and land

management characteristics. Within each HRU, SWAT

simulates runoff and erosion processes, soil water

movement, evapotranspiration, crop growth and yield,

soil nutrient and carbon cycling, and pesticide and

bacteria degradation and transport. It allows simulation

of a wide array of agricultural structures and practices,

including tillage, fertilizer and manure application, and

edge-of-field filter strips. The channel component

routes flows, settles and entrains sediment, and degrades

nutrients, pesticides and bacteria during transport.

SWAT simulates on a daily time-step and can be set to

produce daily, monthly or annual load estimates.

Evaluation of monthly and annual streamflow and

water-quality outputs indicate that SWAT functions well

in a wide range of regions, conditions, practices, and time

scales (Gassman et al., 2007). Relatively poor results in

some cases, particularly for daily flow and pollutant

outputs, were attributed partly to input and calibration

data uncertainty and partly to model limitations. In

general, the model had more difficulty simulating wet

years than dry years and tended to overestimate soil water

in dry soil conditions and underestimate soil water in wet

soil conditions. SWAT directly addresses practice

targeting by simulating the effects of farm/plot scale

BMPs, spatial targeting by its use of subwatersheds and

HRUs to subdivide larger areas, and temporal targeting

by its use of daily, continuous simulation.

Watershed modeling strategies for identifying and

prioritizing critical areas and impacts of BMPs have been

demonstrated by a number of studies, briefly reviewed

below. Simulation models integrated with geographical

information systems (GIS) have also been used at the

watershed scale to aid in critical area selection. Mass et

al. (1985) described critical area selection criteria from

both land-resource and water-resource perspectives.

Critical areas can be determined based on several factors,

including the type of water-quality impairment, the

dimensions and dynamics of the watershed as well as the

water body, and the investment in BMP (Mass, Smolen

and Dressing, 1985). Dickinson, Rudra and Wall (1990)

identified areas with estimated sediment-yield rates

exceeding a selected tolerable-yield rate and areas with

estimated soil-loss rates exceeding a selected soil-loss

tolerance value as “target zones”. They then applied

two levels of soil-erosion control (reduced cropping

factor, ‘C’, and increased surface roughness factor, ‘n’)

under four different remedial strategies, and concluded

that targeting was very effective in reducing sediment

loads compared with a random approach, and more so in

the areas of localized high erosion and sediment yield

rates. Feather, Hellerstein and Hansen (1999) assessed

Conservation Reserve Program effectiveness resulting

from a shift in spatial targeting from sole use of an

erodible-land criteria to use of an Environmental Benefits

Index (since 1990) and estimated that benefits have

doubled.

Tim, Mostaghimi and Shanholtz (1992) integrated

simulation modeling with GIS and used soil-erosion rate,

sediment yield, and phosphorus (P) loading to identify

areas in 15.05 km2 Nomini Creek Watershed in Virginia

that were potentially high, medium, and low sources of

NPS pollution. Tripathi, Panda and Raghuwanshi (2003)

simulated the 92.46 km2 Nagwan Watershed in Bihar,

India by using the SWAT model to identify and prioritize

critical areas on the basis of average annual sediment

yield and nutrient losses. Using the AGNPS model,

Yang et al. (2005) estimated that targeted retirement of

cropland could have achieved 20% reductions in erosion,

compared to the actual 12%, at almost 40% less total cost.

BMP placement scenarios and their effectiveness at the

watershed scale are reported in Secchi et al. (2007).

Parajuli, Mankin and Barnes (2008) applied SWAT to
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targeting of edge-of-field vegetative filter implementation

for sediment and fecal bacteria control. They reported

that targeting could be used to improve reduction

effectiveness for both sediment and bacteria, but had

greater impact on sediment. Further, Veith, Wolfe and

Heatwole (2004) applied an optimization procedure that

uses a genetic algorithm to search for the combination of

site-specific practices that meets pollution reduction

requirements and minimizes cost.

In the state of Kansas, USA, total suspended solids

are a leading cause of water-quality impairment in the

impaired water bodies (KDHE, 2000). The Kanopolis

Lake, which is the receiving water body of Smoky Hill

River Watershed in central Kansas, has a High-Priority

Total Maximum Daily Load (TMDL) designation for

eutrophication (KDHE, 2005). To reduce eutrophication

rates, lower pollutant-load targets have been established

for contributing pollutants such as sediment, nitrogen (N),

and P (Minson, 2006). Meeting TMDL targets will

require coordinated implementation of multiple BMPs.

The goal of this study was to develop

watershed-modeling-based information that could help

local stakeholders and decision makers target BMP

implementation based on water-quality benefits.

Specific objectives were to (1) demonstrate a strategic

approach that uses the SWAT model to identify areas

within the Smoky Hill River Watershed that have the

greatest potential to contribute to water-quality

improvement and (2) quantify sediment, N, and P load

reductions due to the targeting strategy relative to the

random implementation of practices.

2 Methods and materials

2.1 Model

A complete review of SWAT including historic

developments and applications can be found in Gassman

et al. (2007). A detailed description of the components

and mathematical equations representing the hydrologic

processes can be found in Neitsch et al. (2005). A brief

description of flow, sediment, and nutrients is given

below.

The SWAT model uses a modification of United

States Department of Agriculture – Soil Conservation

Service (USDA-SCS) Curve Number (CN) method

(USDA-NRCS, 2004), in which surface runoff is

estimated as a function of daily CN adjusted for the

moisture content of the soil on that day. SWAT uses

modified Universal Soil Loss Equation (USLE) (Williams,

1975) to estimate erosion. Sediment routing equation

uses modification of Bagnold’s equation (Bagnold, 1977).

SWAT first calculates the maximum amount of sediment

that can be transported from a reach segment. Sediment

deposition or degradation occurs depending on the

incoming sediment concentration.

Nitrogen is modeled by SWAT in the soil profile and

in the shallow aquifer. Organic-N associated with

humus and mineral forms of N held by soil colloids and

in dissolved form are the three major forms of N

simulated. External sources of N include rain, fertilizer

or manure application or residue, and bacterial fixation.

Nitrogen is removed from the soil by plant uptake,

leaching, volatilization, denitrification, and erosion.

Amounts of nitrate transported with runoff, lateral flow,

and percolation are estimated as mass of nitrate lost from

the soil layer by multiplying volume of water and

concentration of nitrate-N in the soil layer. The amount

of organic-N transported with sediment is a function of

concentration of organic-N in the top 10 mm, sediment

yield on a given day (Mg), and N enrichment ratio, which

is the ratio of the concentration of organic-N transported

with the sediment to the concentration in the soil surface

layer.

Similar to N, the three major forms of P that the

model tracks include organic P associated with humus,

insoluble forms of mineral P, and plant-available P in soil

solution. Phosphorus may be added to the soil by

fertilizer, manure or residue application and removed

from the soil by plant uptake and erosion. Soluble P

transported in surface runoff is estimated based on the

amount of P in solution in the top 10 mm, surface runoff

on a given day, soil bulk density in the top 10 mm, and

the P soil partitioning coefficient (ratio of soluble-P

concentration in the surface 10 mm of soil to soluble-P

concentration in surface runoff). Sediment-bound-P

transport is similar to organic-N transport described

earlier. QUAL2E model (Brown and Barnwell, 1987)
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has been incorporated into SWAT to process in-stream

nutrient dynamics.

2.2 The study area and model inputs

The Smoky Hill River Watershed, which drains into

Kanopolis Lake (Figure 1), has an area of 6,316 km2,

including both the Big Creek Watershed (HUC 10260007)

and Middle Smoky Hill River Watershed (HUC

10260006), and covers parts of 11 counties in central

Kansas. Kanopolis Lake has a High-Priority TMDL

designation for eutrophication (KDHE, 2005).

Preliminary experimental studies indicated that sediment

and, in turn, sediment-bound nutrients, from moderately

erodible soils are likely the major pollutant sources

contributing to the eutrophication impairment in the

Kanopolis Lake (Mankin et al., 2007).

Figure 1 Smoky Hill River Watershed, Kansas, USA

ArcView Geographical Information System interface

of the SWAT 2000 version (AVSWAT-2000 Version 1.0)

(Arnold et al., 1998; Di Luzio et al., 2002; Di Luzio et al.,

2004) was used in this study. A 7.5-minute (30-m

interval) digital elevation model (DEM) was used to

derive the geomorphological parameters of the study

watershed. Elevation in the watershed ranges from

430 m to 921 m, with an average slope of 3.2%. The

STATSGO soil database used to define soil properties

identified 25 different soil types in the study area.

Watershed soils are mostly silty loam. The

landuse/landcover map used was derived from

multi-temporal Landsat Thematic Mapper 5 imagery of

the year 1992 (using a method described in Bhuyan et al.,

2002). Landuse/landcover (Table 1) is dominated by

cropland (48%) and rangeland (46%) (Figure 1). The

main crops grown in the watershed are winter wheat and

grain sorghum. The annual average precipitation in the

watershed was 691 mm/yr (from 1971-2000), ranging

from 620 mm/yr in the west to 882 mm/yr in the east.
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Table 1 Landuse/landcover distribution in the Kanopolis

Lake watershed

Landuse/landcover % area Landuse/landcover % area

Forest 4.6 Summer crop 18.6

Range-high 16.2 Urban 0.5

Range-low 0.2 Water 0.3

Range-medium 29.4 Winter wheat 30.2

Rangeland was differentiated into high, medium, and

low vegetative cover classes. These classes were

modeled in terms of minimum cover-factor (0.003 for

high, 0.042 for medium, and 0.15 for low), leaf-area

index (2.5, 1.7, and 1.0), and canopy height (1.0 m, 0.4 m,

0.2 m) (Koelliker and Bhuyan, 2000). Measured daily

precipitation was obtained from sixteen raingage stations

and minimum and maximum daily temperature from ten

stations in and around the watershed (Figure 1). This

weather data was obtained from the National Climatic

Data Center. Other weather parameters such as wind

speed, solar radiation, and relative humidity were

generated by the SWAT model using inbuilt weather

generator. A threshold area of 25 km2 was specified in

AVSWAT; this resulted in the watershed being

delineated into 128 subwatersheds, with areas up to 459

km2. These subwatersheds roughly aligned with the

HUC-14 or smaller subwatersheds. A zero threshold

was used for landuse and soil, which resulted in a total of

2,519 HRUs. The simulation was run for a 10-year

period, from 1992 to 2001.

All cropland in the watershed was simulated in a

typical cropping practice of a 3-year conventionally tilled

(CT), wheat-sorghum-fallow rotation with fertilizer and

pesticides applied (Table 2). All rangeland was

simulated in grazing operation, with a stocking rate of

0.05 km2/cow-calf (12 acres per cow-calf) pair as the

baseline scenario. The stocking rate used in the study

was suggested as typical by extension specialists and

local experts. Grazing-operation parameters required by

SWAT were calculated based on a report by Ohlenbusch

and Watson (1994) (see Tuppad, 2006 for more details).

Flows and nutrient loadings from seven municipal

wastewater treatment plants were input as point sources.

Table 2 Wheat-sorghum-fallow rotation (3 years)*

Date Conventional Till Reduced Till

Year 1

30-Jun Harvest and kill Winter Wheat Harvest and kill Winter Wheat

15-Jul Tandem Disk Plow
Pesticide (Glyphosate (Roundup) at 0.56 lb ae/A (0.63 kg/ha) + 2,4-D amine at
0.5 lb ae/A (0.5616 kg/ha))

14-Aug Chisel Plow --

31-Aug --
Pesticide (Glyphosate (Roundup) at 0.56 lb ae/A (0.63 kg/ha) + 2,4-D amine at
0.5 lb ae/A (0.5616 kg/ha))

13-Sep Chisel Plow --

Year 2

1-May Chisel Plow Field Cultivator

14-May Fertilizer (DAP#: 73 kg/ha, urea: 117 kg/ha) Fertilizer (DAP: 73 kg/ha, urea: 117 kg/ha)

15-May Field Cultivator Field Cultivator

1-Jun Plant/begin growing season - Grain Sorghum (GS) Plant/begin growing season - Grain Sorghum (GS)

15-Jun
Pesticide (Atrazine 1 lb ai/A (1.0123 kg/ha) + crop oil concentrate
at 1qt/A (1 qt = 946ml) 0.5 kg/ha)

Pesticide (Atrazine 1 lb ai/A (1.0123 kg/ha) + crop oil concentrate at 1qt/A
(1 qt = 946ml) 0.5 kg/ha)

13-Oct Harvest and kill GS Harvest and kill GS

Year 3

1-Jun Offset Disk, Heavy duty
Pesticide (Glyphosate (Roundup) at 0.56 lb ae/A (0.63 kg/ha) + 2,4-D amine at
0.5 lb ae/A (0.5616 kg/ha))

15-Jul Chisel Plow --

14-Aug Chisel Plow Field Cultivator

20-Aug
Pesticide (Glyphosate (Roundup) at 0.56 lb ae/A (0.63 kg/ha) +
2,4-D amine at 0.5 lb ae/A (0.5616 kg/ha))

Pesticide (Glyphosate (Roundup) at 0.56 lb ae/A (0.63 kg/ha) + 2,4-D amine at
0.5 lb ae/A (0.5616 kg/ha))

14-Sep Fertilizer (DAP: 49 kg/ha, urea: 104 kg/ha) Fertilizer (DAP: 49 kg/ha, urea: 104 kg/ha)

15-Sep Field Cultivator Field Cultivator

16-Sep Plant/begin growing season–Winter Wheat Plant/begin growing season–Winter Wheat

Note: #Diammonium Phosphate; *Additional details in Tuppad (2006).
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2.3 Targeted versus random selection criteria

The strategic targeting method for this watershed

focused on the use of BMPs to reduce overland erosion

sources of sediment. Spatial targeting of potential

sediment contributing areas was done at the subwatershed

level. Annual average sediment-yield (Mg/ha) for each

subbasinfrom SWAT model was used as the sole criterion

for selecting the subbasins for targeting. Subbasins

were ranked based on SWAT sediment-yield estimates

from the baseline scenario (0% BMP adoption or 100%

CT practice). Starting with the subbasin having the

greatest sediment yield, the next highest ranked subbasin

was successively added until the cumulative cropland

area equaled the targeted percentage of total cropland

area in the watershed (nominally, 10%, 25%, 50%, and

100%). Cropland targeting was implemented in each

subbasin on an “all-or-nothing”basis, which resulted in

actual percentages of 10%, 26%, 52%, and 100% of total

cropland area for the scenarios simulated in this study.

In the absence of spatial targeting, farmers from any

location in the watershed are equally likely to volunteer

for BMP implementation (Diebel et al., 2008; Parajuli,

Mankin and Barnes, 2008). This was simulated by

selecting the subbasins randomly for implementation.

For the random method, subbasins were ordered

randomly by SWAT subbasin number. Following the

randomly ordered listing, subbasins were successively

added until the cumulative cropland area equaled the

percentage of total cropland area in the watershed used in

the targeting scenarios (10%, 26%, 52%, and 100%).

The resulting distributions of selected subwatersheds for

both targeted and random selection methods are shown in

Figure 2.

a: 10%, Targeted

c: 52%, Targeted

e: 26%, Random

b: 26%, Targeted

d: 10%, Random

f: 52%, Random

Figure 2 Subbasins selected for BMP implementation by percentage watershed-cropland area and selection method

2.4 Best management practices evaluated

Three BMPs were evaluated in this study: reduced

tillage (RT); edge-of-field vegetative filter strips (VFSs);

and contoured-terraces with graded channels (TERR).

As with the CT system, the RT practices and the

fertilizers and pesticides applied were based on the most

common practices carried out in the study area (Table 2).

Type and dates of tillage operations, and dates and rates

of fertilizers and pesticides applied, were obtained from

local experts and extension specialists at Kansas State

University.

Edge-of-field VFSs were modeled by using the
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filter-strip (FILTERW variable in *.hru file) feature in

SWAT, in which sediment and nutrient trapping

efficiencies were determined by the simple exponential

relationship:

Trapping efficiency = 0.367 (filter-strip width, m)0.2967

(1)

A filter-strip width of 6 m (which translates into a

trapping efficiency of 62%) was used in this study

(USDA-NRCS, 2003).

The contoured-terrace system was modeled by using a

P-factor of 0.12 (for subbasins with overland slopes of

1% to 2% and 9% to 12%) or 0.1 (for subbasin with

overland slopes of 3% to 8%) (Wischmeier and Smith,

1978). The P-factor is an HRU-level parameter, which

is defined in the management (*.mgt) file in SWAT.

2.5 Targeting analysis

The impact of each BMP adoption scenario was

evaluated for sediment, total-N, and total-P. Impacts

were assessed at both the subbasin level and the

watershed level. Subbasin-level pollutant losses (termed

overland pollutant “yields”in this study) included both

overland and edge-of-field processes. An area-weighted

average of all subbasin yields for each scenario was used

for analysis. Watershed-level pollutant losses (termed

pollutant “loads” in this study) included in-stream

processes and represented overall pollutant loading at the

watershed outlet. This value was taken as the modeled

load at the watershed outlet, without including Kanopolis

Lake. Effectiveness of each BMP scenario was

expressed as a percentage reduction of pollutant

(sediment, total-N, or total-P) yield or load relative to the

baseline (no BMP) scenario. Studies have shown that

the uncertainty associated with estimated BMP

effectiveness is substantially smaller than that associated

with the absolute prediction (Arabi, Govindaraju and

Hantush, 2007).

3 Results and discussion

3.1 Model validation

The SWAT model was run and validated based on a

set of standard, default input parameters but was not

calibrated. Modeled daily streamflow for the baseline

scenario was compared to measured flow at USGS gaging

station 06864500, upstream of Kanopolis Lake (Figure 1),

resulting in modeling efficiency (Nash and Sutcliff, 1970)

of 0.52 and coefficient of determination (R2) of 0.54.

This uncalibrated model efficiency was classified as

“satisfactory” according to Moriasi et al. (2007).

Comparing this uncalibrated result against all daily model

statistics reported by Gassman et al. (2007) from a

literature review of more than 250 published SWAT

studies, the R2 was better than 12 (29%) of calibration

values and 10 (26%) of validation values reported, and E

was better than 38 (38%) of calibration values and

40 (50%) of validation values reported. These results

were considered sufficient for use in calculating relative

differences between simulated scenarios for targeting

purposes.

3.2 Subbasin sediment yield reductions

Reduction in annual average overland sediment yield

achieved with 100% adoption of RT as a BMP (all

cropland converted from CT to RT) was 29.2%

(Figure 3a). The reduction in sediment loss due to RT

implementation on 10% of the cropland area was 6.8% by

the targeted approach, compared with 2.4% by the

random approach. This difference increased at 26% RT

adoption, with 14.1% reduction for targeted approach,

compared with 6.2% reduction for the random approach.

These results can also be summarized as the

percentage area required to achieve the same (e.g., 10%)

overland sediment-yield reductions by using the two

methods. The RT practice must be implemented on

36% of the watershed’s cropland to achieve 10%

sediment yield reduction by using random

implementation, whereas the strategic targeting approach

would require implementation on only 17% of the

cropland in the watershed to achieve the same sediment

yield reduction (Figure 3a). In this example, the random

approach required BMP implementation in about 2.2

times more watershed area than the targeted approach

did.

Modeled pollutant reductions using VFS were greater

than the reductions for RT. Reduction in annual average

overland sediment yield achieved with 100% VFS

adoption (6-m VFS added to all cropland) was 80.6%

(Figure 3d). The reduction in sediment loss due to VFS
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adoption in 10% of the cropland area was 15.4% by the

targeted approach, compared with 5.4% by the random

approach. This difference increased at 26% VFS

adoption, with 31.2% reduction for targeting, compared

with 13.1% reduction for random. To achieve 10%

sediment yield reduction, VFS must be implemented on

25% of the watershed by using random implementation,

whereas the strategic targeting approach would require

implementation on only 8% of the cropland in the

watershed.

In another Kansas watershed, Parajuli, Mankin and

Barnes (2008) found implementation of VFS on 10% of

watershed cropland area resulted in 46% sediment

reduction using a similar targeting approach compared to

28% reductions for random implementation. Similarly,

implementation of VFSs on 25% of the cropland area

resulted in 63% reduction using targeting and 33%

reduction using random implementation. These results

showed a greater magnitude of sediment reduction,

presumably due to their use of larger (15-m) VFSs, but a

similar two-fold or greater improvement of targeting

compared to random implementation.

The TERR BMP resulted in similar pollutant

reduction trends as with VFS. Reduction in annual

average overland sediment yield achieved with 100%

BMP implementation was 86.1% (Figure 3g). Treating

10% of the total cropland area with BMP implementation

resulted in a 22.2% reduction in overland sediment yield

by targeted approach and 7.8% reduction by random

approach. BMP adoption on 26% of cropland area

achieved a reduction of 44.9% by the targeted approach,

compared with 18.8% by random approach. To achieve

10% sediment yield reduction, TERR BMP must be

implemented on 14% of the watershed cropland by using

random implementation, whereas the strategic targeting

approach would require implementation on only 5% of

the cropland in the watershed.

Figure 3 Effect on subbasin pollutant yields of implementing cropland BMPs (Reduced Tillage (RT), Vegetative Filter Strip (VFS),

Contoured-terraced (TERR)) using the targeted and random method
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3.3 Subbasin nutrient yield reductions

Overall, reductions of nutrients were slightly less than

that of sediments for 100% RT adoption: 25.9% for

total-N (Figure 3b) and 23.9% for total-P (Figure 3c).

Strategic targeting, however, showed relatively greater

improvements than with sediments for the first increment

of cropland treated. At 10% RT implementation,

targeting reduced total-N yields by 6.0% compared to

2.3% for random and total-P yields by 5.6%, compared

with 2.0% for random. Similar to sediment, more than

double the land area was required to achieve 10%

reduction in total-N and total-P yields for the random

approach, compared with the targeted approach.

Overall, reductions of nutrients were slightly less than

with sediments for 100% VFS adoption: 74.5% for

total-N (Figure 3e) and 74.7% for total-P (Figure 3f).

Strategic targeting, however, showed relatively greater

improvements than with sediments for the first increment

of cropland treated. At 10% VFS implementation,

targeting reduced total-N yields by 12.9%, compared with

5.6% for random, and reduced total-P yields by 12.6%,

compared with 5.4% for random.

Similar overland nutrient yield reduction potential

was found for the TERR BMP scenario. Overall,

total-N yield was reduced by 77.0% (Figure 3h), and

total-P yield was reduced by 77.3% (Figure 3i), due to

100% BMP adoption. At 10% BMP implementation,

targeting reduced total-N yields by 16.2%, compared with

7.2% for random, and reduced total-P yields by 16.0%,

compared with 7.1% for random.

The random approach demonstrated a nearly linear

reduction in overland yields of all pollutants with

increasing BMP implementation area (Figure 3). In

contrast, the targeted approach resulted in greater

improvements (steeper slopes in the pollutant-yield

curves) for the initial areas of cropland BMP

implementation. Targeting provides greater benefits

relative to the random approach for the first increments of

BMP implemented than for later increments of

implementation; the relative benefits of targeting decrease

as the area of targeted implementation increases.

3.4 Watershed-outlet sediment load reductions

Annual average sediment load delivered to the

watershed outlet was reduced by 7.0% with all cropland

in RT, compared with having all cropland in CT (Figure

4a). With 10% BMP adoption, the reduction achieved

was 2.2% by the targeted approach, compared with 0.7%

by the random approach. This difference increased at

26% BMP adoption, with 5.3% reduction for the targeted

approach, compared with no change (0.6% reduction) for

the random approach. For sediment, a 10% reduction at

the watershed outlet was not achievable. However, the

targeted approach was found to achieve a 5% reduction in

outlet sediment load by implementing BMPs on about

25% of the cropland area, which was less than one-third

of the cropland area required by the random approach

(84%) (Figure 4a).

Annual average outlet sediment load was reduced by

51.1% with VFS implemented in all cropland (Figure 4d).

With 10% BMP implementation, the reduction achieved

was 5.3% by the targeted approach, compared with 3.2%

by the random approach. Parajuli, Mankin and Barnes

(2008) reported 10% VFS implementation had a slightly

greater impact at the watershed outlet, resulting in 12%

reductions for targeting compared to 2% reductions for

random implementation. These differences between

watersheds indicate the importance of watershed-specific

analyses of the impacts of targeting. At 26% BMP

implementation, the differences in our study increased,

with 14.0% reduction for the targeted approach compared

with 4.7% reduction for random approach. The targeted

approach was found to achieve a 10% reduction in outlet

sediment load by implementing BMPs on about 17% of

the cropland, which was less than one-third the cropland

area required by the random approach (55%) (Figure 4d).

In the TERR BMP, annual average outlet sediment

load was reduced by 60.1% with 100% BMP

implementation (Figure 4g). With 10% BMP

implementation, the reduction achieved was 9.7% by the

targeted approach, compared with 5.6% by the random

approach. For 26% BMP adoption, the load reduction

achieved was 31.8% through targeted approach and 8.3%

through the random approach. The targeted approach

was found to achieve a 10% reduction in outlet sediment

load by implementing BMPs on about 9% of the cropland,

which was about one-fourth the cropland area required by
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the random approach (33%) (Figure 4g).

Figure 4 Effects on watershed-outlet pollutant loads of implementing cropland BMPs (Reduced Tillage (RT),

Vegetative Filter Strip (VFS), Contoured-terraced (TERR)) using the targeted and random method

3.5 Watershed-outlet nutrient load reductions

In contrast to results for sediments, watershed-outlet

loads of nutrients were similar to overland yields.

Implementation of RT in 100% of the watershed resulted

in outlet load reductions of 24.4% for total-N (Figure 4b)

and 22.6% (Figure 4c) for total-P. These reductions

were 5.8% less than overland-N reduction and 5.3% less

than overland-P reduction. Both total-N and total-P

were 4% less for 100% VFS implementation or 100%

contoured-terraced BMP compared to overland yields.

Adoption of RT BMP on all cropland resulted in a

29.2% reduction in overland sediment yield (Figure 3a)

but only 6.8% reduction in the sediment load at the

watershed outlet (Figure 4a). Similarly, 100% VFS

adoption reduced overland yields by 80.6% (Figure 3d),

but reduced watershed-outlet loads by only 51.1% (Figure

4d), and 100% contoured-terraced BMP adoption resulted

in overland yield reduction of 86.1% (Figure 3g), but

watershed-outlet load reduction of only 60.1% (Figure

4g). These results indicate the importance of stream

sediment routing to simulate watershed-scale sediment

loads. The SWAT model first estimates the maximum

amount of sediment that can be transported from a reach.

Then, based on the initial concentration of sediment in the

reach at the beginning of the time step, deposition or

degradation dominance is estimated and, accordingly, the

amount of sediment that could settle or re-entrain is

estimated. In-stream dynamics play an important role in

transporting the pollutants downstream, and simulating

these processes requires careful consideration.

3.6 Discussion of targeting method application

These results suggest that targeting can increase

effectiveness of BMP implementation for water-quality

improvement, particularly at the initiation of a watershed
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restoration effort. However, the targeting approach

demonstrated in this study may have several important

limitations or challenges that must be considered.

Targeted BMP implementation might be more

expensive (in terms of money and effort) than random

implementation. Once fields are targeted for

implementation, the corresponding land-owner must be

identified, located, approached, and sold on

implementation. The cost savings from achieving

greater pollutant-yield reductions per unit area

implemented must offset any greater cost per unit area

incurred to implement targeting. In this study, total

implementation costs per unit area up to two times greater

for targeted fields would result in the same cost per unit

load reduction and would likely be justified as cost

effective. If implementation costs exceeded this level,

random implementation would likely be the more

cost-effective option.

The results demonstrated that the water-quality

reduction per unit area converted to a BMP decreased

with each successive subbasin area converted to a BMP

in the watershed (Figures 3 and 4). As such, the

water-quality return per unit money or effort invested in

targeting would also diminish as implementation

progressed. This implies that the most cost-effective

strategy might be to transition from targeting during the

early phase of implementation efforts when returns

(pollutant-yield reductions per unit monetary investment

in implementation, for example) are still high, to random

(first-come, first-served) implementation when returns are

lower. Early, targeted implementation program success

could be followed by more widespread adoption across

all remaining fields and landowners in the watershed.

The baseline conditions for this study assumed the

watershed started with no BMPs. But BMPs typically

have been implemented on some portion of a watershed

before targeting begins. Overcoming this limitation of

this study requires additional data about specific locations

of existing BMPs and additional modeling effort to

exclude these areas from the pool of cropland areas

eligible for implementation. The process of comparing

results of BMP implementation scenarios to baseline

results, however, would remain the same. If information

is available about the overall extent of existing BMPs but

not their specific locations, then the starting point for

targeting efforts will likely fall somewhere between the

random and targeted reduction levels for the given

percentage of BMP implementation. If the starting point

is at or below the level achieved by random

implementation, targeting would likely still be effective.

If the starting point is closer to the level achieved by

targeting, then benefits of early-program targeting would

already have been achieved and use of targeting from that

point forward may not be cost effective.

4 Summary and conclusions

The concept of identifying, selecting, and targeting

critical areas of point-and nonpoint-source pollution has

been widely recognized for pollution control. A

watershed modeling approach was used to quantify the

impacts of implementing three different BMPs on

incremental increases in cropland area to evaluate the

effectiveness of a targeted approach versus a random

approach in reducing the estimated overland pollutant

yields and watershed-outlet pollutant loads. Priority

areas for the targeted approach were selected on the basis

of the erosion rates as estimated by the SWAT

hydrologic/water-quality model.

The targeted watershed modeling approach using

SWAT was more effective in reducing both overland and

watershed outlet pollutant loads, with less area, than

randomly selecting areas for BMP adoption. Annual

average, watershed-scale, overland pollutant yield

reductions of 10% generally required BMP adoption on

less than half the land area when targeting was used

rather than random placement of BMPs. Targeting

produced even greater benefits when watershed-outlet

loads were considered.

The benefits of targeting were greater for the initial

increments of BMP adoption, and decreased as the

proportion of BMP adoption on targeted land areas

increased. Although simulated subbasin sediment yield

was the sole criteria used for identifying target

subwatersheds, this strategy could be extended to other

selection criteria, landuse types, soil types, and other

BMPs. For example, there is a substantial acreage of
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rangeland in these subbasins that also should be assessed for targeting.
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