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ABSTRACT 
 
Empirical models and Artificial Neural Networks (ANNs) were utilized for the prediction of 
Equilibrium Moisture Content (EMC) in raisin. Six empirical models including GAB, Smith, 
Henderson, Oswin, Halsey and D’Arsy-watt were applied for this estimation. Two types of 
Multi Layer Perceptron (MLP) neural networks entitled Feed Forward Back Propagation 
(FFBP) and Cascade Forward Back Propagation (CFBP) were used. In order to train the input 
patterns, two training algorithms consist of Levenberg-Marquardt (LM) and Bayesian 
regularization (BR) were used. Thermal and relative humidity limits were 30-80 °C and 
10.51-83.62 %, respectively. The best result for mathematical models belonged to D’Arsy-
Watt with R2 and the mean relative error of 0.9943 and 10.84 %, respectively. The best 
outcome for the use of ANN also appertained to FFBP network with LM training algorithm, 
topology of 2-3-3-1 and threshold function order of TANSIG-TANSIG-PURELIN. With this 
optimized network, R2 and the mean relative error were 0.9969 and 8.32 %, respectively. 
These results show the supremacy of ANN, in compare with empirical models. In order to 
predict the EMC in raisins, empirical models can therefore be replaced with the ANN. 
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1.  INTRODUCTION 

 
Raisin (Dried Grape) is one of the most important Iranian horticultural products with high 
export value for the country. Standard process of post harvest, such as drying, packaging and 
storage of grapes would guarantee the quality of raisin and increases its export value as well 
as producers income.   
 
Water activity and environmental air temperature affect the Equilibrium Moisture Content 
(EMC) x=f (aw, T). EMC is a durability criteria and any change in quality of food and 
agricultural products during storage and packaging is crucial important (Veltchev and 
Menkov, 2000). Fundamental relationship between EMC and relative humidity of food 
products is known as sorption isotherms (Palipane and Driscoll, 1992). Sorption 
characteristics of food and agricultural products are used for designing, modeling and 
optimizing some processes such as drying, aeration and storage (Labuza, 1975; Bala, 1997). 
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Aeration which relates the air relative humidity and moisture content is essential for 
optimizing raisin quality. Zarabi (2002) investigated moisture sorption isotherms of grape 
(Thompson Seedless cultivar) at low temperatures. In his research, sorption isotherms of 
grape has been determined in temperatures between 20 to 40 °C and Halsey model given the 
best result for the prediction of EMC.  
 
Gabas et al (1999) proposed a model for water absorption of Italian grape cultivars. They 
determined moisture sorption isotherm for the temperatures between 35 to 75 °C and found 
that GAB model was the best for EMC prediction.  
 
Artificial neural networks have been used for some industrial applications such as  modeling 
the moisture content of thin layer corn during drying process for wet milling quality at 
constant air flow rate, absolute humidity and variable temperatures (Trelea et al., 1997) and 
sorption isotherm of black tea (Panchariya et al., 2002). 
 
Many researchers have investigated the EMC of food and agricultural products which 
include: moisture sorption characteristics of starch gels (McMinn et al., 2004), moisture 
adsorption isotherms of almond at different temperature and water activity levels for nut and 
almond powder (Pahlevanzadeh and Yazdani, 2005) and hysteresis phenomenon in foods 
(Caurie, 2007). 
 
Equilibrium moisture characteristics play very important role in post harvest stage. 
Mathematical models are the most common methods for the estimation of equilibrium 
moisture content. These models which are fitted to experimental data have many problems, 
such as reduction of computation velocity and accuracy of processing control systems as well 
as production of numerous equations. The precise prediction of EMC not only decreases the 
storage losses of raisin but also affects processing systems. Upon mathematical model or 
ANNs determination through their programming into a control system, it could be possible to 
predict EMC, if aeration will dry or wet the mass of raisin at a safe level. 
 
The objective of the present study is the application of empirical models and artificial neural 
networks for the prediction of EMC of raisin in order to simulate sorption isotherm at thermal 
boundary of 30-80 °C and 10.51-83.62% of relative humidity. In other words, a two 
dimensional mapping was created for EMC prediction using temperature and relative 
humidity. To attain this purpose, moisture sorption isotherm was obtained by standard static 
gravimetric method and then predicted by mathematical model and neural networks. Various 
topologies were used to predict EMC, followed by comparison of optimized cases of the two 
methods, and finally the best approach was proposed.  

2.  MATERIALS AND METHODS 

2.1 Mathematical Sorption Isotherm Models 
 
The most common physical models for deriving EMC of agricultural products include the 
models of GAB, Smit, Henderson, Oswin, Halsey and D’Arsy-Watt. These models have been 
proposed and tested for the relationship between the EMC and water activity (Bassal et al., 
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1993; Zomorodian, 2001; San Martin et al., 2001; Garcia-Alvarado et al., 1995; Sanny et al., 
1997). Formulas of the models are shown in Table 1. 

 
Table 1. Selected isotherms equations for experimental data fitting 
Model Formula Formula No. 
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Where wa is water activity in decimal; EMC  the equilibrium moisture content in %d.b., T
the environmental absolute temperature in K, and R the universal gas constant (8.314 J mol-1 
K-1). mX , k , a , b , c , d , e , A, B, C, h , 1h and 2h are constants for different materials 
calculate by experimental method. Supremacy of each model for prediction of EMC is 
expressed by two indices of coefficient of determination ( 2R ) and mean relative error ( mrE ). 
The fit was performed by non-linear regression based on the minimization of the square sum 
by means of the software Statgraphics plus 4.1. 
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2.2 Artificial Neural Networks 

An artificial neural network consists of neurons, which have been related with special 
arrangement. Neurons are in layers and every network includes some neurons in input layer, 
one or more neurons in output layer and neurons in one or more hidden layers. Algorithms 
and architectures of artificial neural networks are different through variation in neuron model 
and relationship between neurons, and their weights. The learning purpose in artificial neural 
networks is weights updating, so that with presenting set of inputs, desired outputs are 
obtained. The most common types of artificial neural networks include: feed forward, feed 
back and competitive (Menhaj, 1998; Jam and Fanelli, 2000). Training is a process that 
finally results in learning. Each network is trained with presented patterns. During this 
process, the connection weights between layers are changed until the differences between 
predicted values and the target (experimental) is reduced to the permissible limit. Weights 
interpret the memory and knowledge of network. With the aforementioned conditions, 
learning process take place. Trained ANN can be used for prediction of outputs of new 
unknown patterns (Heristev, 1998). The advantages of using ANN are: high computation 
rate, learning ability through pattern presentation, prediction of unknown pattern and 
flexibility affront the noisy patterns. In this research, feed and cascade forward networks as 
well as several learning algorithms were utilized.  
 
Feed Forward Back Propagation (FFBP) consists of one input layer, one or several hidden 
layers and one output layer. For learning this network, back propagation (BP) learning 
algorithm is usually used. In the case of BP algorithm, the first output layer weights were 
updated. A desired value exists for each neuron of output layer. The weight coefficient was 
updated by this value and learning rules. BP algorithm presents suit results for subsequent 
problems but for the other problems gives an improper result. In some cases, the learning 
process was upset due to local minimum. This happens because of lying the answer at the 
smooth part of threshold function.  
 
During training this network, calculations were carried out from input of network toward 
output and values of error were then propagated to prior layers. Output calculations were 
conducted layer to layer so that the output of each layer was the input of next one. 
 
Cascade Forward Back Propagation (CFBP) is similar to FFBP network in using the BP 
algorithm for weights updating, but the main symptom of this network is that each layer 
neurons relates to all previous layer neurons. 
 
Two training algorithms including Levenberg-Marquardt and Bayesian regulation back 
propagation algorithms were used for updating network weights.  
 
Gradient-based training algorithms, such as back propagation, are most commonly used by 
researchers. They are not efficient because the gradient vanishes at the solution. Hessian 
based algorithms allow the network to learn features of a complicated mapping more suitable. 
The training process converges quickly, as the solution is approached, because the Hessian 
does not vanish at the solution. To benefit the advantages of Hessian based training, 
Levenberg-Marquardt algorithm was used. The LM algorithm is a Hessian based algorithm 
for non-linear least squares optimization (Hagan and Menhaj, 1994). 
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Bayesian Regularization (BR) algorithm is a training process of back propagation which is 
initialized with random distribution of initial weights and biases. After presentation of input 
patterns to the networks, updating initial weight begins to obtain final distribution using 
algorithm. This procedure is robust to high noise level and has a good approximation with 
arbitrary accuracy of training and it can improve generalization performance. In this 
algorithm, instead of the Sum of Squared Error (SSE) on the training set, a cost function, 
which is the SSE plus a penalty term, is automatically adjusted (Girosi et al., 1995).  
 
Structural learning with forgetting is the main technique used for regularization (Girosi et al., 
1995; Kozma et al., 1996). It has a good approximation with arbitrary accuracy of training 
and can also improve generalization performance.  
 
2.3 Experiments 
 
Raisin Samples supplied from Qazvin province, Iran. Moisture content of raisin was about 15 
% (d.b.). Salt saturated solutions including lithium chloride, potassium acetate, magnesium 
chloride, potassium carbonate, magnesium nitrate, sodium nitrate and potassium chloride (all 
made by MERK Company) were used to provide needed relative humidity.  
 
One of the most common methods used for EMC determination is gravimetric; as it has high 
precision and dose not need a complex implement (Spiess and Wolf, 1983). After separating 
the raisins' tails, they were fragmented into pieces of 1 to 2 mm in size. Fifty grams of such 
raisins pieces were placed into 2 Petri dishes (90 mm in diameters). Dishes were then 
transferred into a decicator and kept for 15 days while they weighted every single day. 
Equilibrium was derived when the difference of any successive weighing was lower than 
0.001 g (Gabas et al., 1999; Ayranchi et al., 1990; Tsami et al., 1990). 
 
To establish a fix relative humidity at water activity domain of 0.11- 0.84, eight salt saturated 
solutions were utilized. Creation of such relative humidity by the saturated solutions has been 
reported through the literature (Rahman, 1995). In order to control the saturation of solutions, 
they were covered and placed in an oven of 80 °C for 6 hr, the period of time that should not 
be longer; otherwise, salt crystals appear in the solutions. 
 
The temperature needed for the experiment was provided by the use of an incubator. After 15 
days, weighting was done in 3 days interval. Three to four weeks were needed for the 
samples to reach the equilibrium. 
 
Lower relative humidity and upper experimental temperature cause a decrease in the time 
required for the equilibrium. In order to determine the final moisture content, the equilibrated 
samples were placed in a vacuum oven (70 ±1 °C and 150 mbar) for 6 h (Tsami et al., 1990). 
All the experiments were conducted in three replications. EMC of samples was determined as 
follows:      

 100×
−

=
d

dw
M

MM
EMC  (7) 

Where, wM and  dM are the weight of wet and dry samples, respectively. 
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2.4 Designing the ANNs 
 
Considering and applying the two inputs in all experiments, the EMC value derived for 
different conditions. Networks with two neurons in input layer (Relative humidity and 
temperature) and one neuron in output layer (EMC) were designed. Figure 1 shows the 
considered neural network topology and input and output parameters. Boundaries and levels 
of input parameters are shown in Table 2. Neural network toolbox (ver. 4.1) of MATLAB 
software was used in this study.  
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Figure 1. Artificial neural network topology 
 

Table 2. Input parameters for ANNs and their boundaries 
No. of 
Levels 

Maximum Minimum Parameters

58030Air Temperature (° C)
883.6210.51 Relative Humidity (%)

In order to obtain desired answer, two networks of FFBP and CFBP were utilized. Training 
process by these networks is iterative. When the error between desired and predicted values is 
minimum, training process meets the stability. The increasing method was used for selection 
layers and neurons for evaluation of various topologies. By this method, when the network is 
trapped into the local minimum, new neurons are gradually added to the network. This 
method has more practical potential to detect the optimum size of the network. The 
increasing method has some advantages which are: a) the network complexity gradually 
increases with increasing neurons; b) the optimum size of the network always obtains by 
adjustments and c) monitoring and evaluation of local minimum carry out during the training 
process. Various threshold functions were used to reach the optimized status (Demuth & 
Beale, 2003):  
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Where m is the number of output layer neurons, ijW the weight of between ith and jth 
layers, iY the ith neuron output and jb : bias of  jth neuron for FFBP and CFBP networks. 
About 75% of all data were randomly selected for training network with suitable topology 
and training algorithm (Figure 2). 
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Figure 2. Distribution of training and testing data set 
 
The following criterion of root mean square error has defined to minimize the training error 
(Demuth and Beale, 2003): 
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Where MSE  is the mean square error, ipS the network output in ith neuron and pth pattern, ipT
the target output at ith neuron and pth pattern, N the number of output neurons and M the 
number of training patterns. To optimize the selected network from prior stage, the secondary 
criteria were used as follow: 
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Where 2R is the determination coefficient, mrE the mean relative error, mrSD  the standard 
deviation of mean absolute error, kS the network output for kth pattern, kT the target output 
for kth pattern and n the number of training patterns. To increase the accuracy and processing 
velocity of network, input data was normalized at boundary of [0, 1]  
 



Chayjan R.A. and M. Esna-Ashari. “Comparison between Artificial Neural Networks and 
Mathematical Models for Equilibrium Moisture Characteristics Estimation in Raisin”. 
Agricultural Engineering International: the CIGR Ejournal. Manuscript 1305.Vol. XII, April, 
2010. 

4.  RESULTS AND DISCUSSION 
 
4.1 Sorption Curves 

The averages of EMC in three replication as well as water activities of salt solutions are 
shown in Figure 3. These curves are the moisture adsorption isotherm of raisin. Increasing 
temperature in a water activity decreases the EMC. Increasing in water activity caused an 
increase in raisin EMC of all temperatures. The changes in water activity more than 0.5 is 
quite obvious. (In the temperature above 60 °C with low water activity, the EMC value has 
also no significant change.) 
 
Raisin like other high glucose dried fruits absorbs less moisture in low water activity, but 
more in high water activity. Because of moisture absorbing properties of biopolymers in all 
food materials, curve slope increases and this phenomenon is also seen in raisin because of its 
high absorbing moisture rate which is in turn related to glucose. In low water activity, 
physical properties of glucose, has not significant effect on moisture absorption. No shaped 
glucose, absorb more moisture compare with crystal glucose. 
 
4.2 Mathematical Models 
 
Mathematical models of GAB, Smith, Henderson, Oswin, Halsey and D’Arsy-Watt used for 
raisins EMC empirical data fitting. Non linear regression method with software was used for 
fitting the data. Three indices of variation coefficient ( 2R ), mean square error (MSE) and 
mean relative error ( mrE ) utilized for appropriate fitness determination. 
 
Results of empirical models fitting at temperatures between 30 to 80 °C are shown in Table 3. 
For this temperature range, D’Arsy-Watt model produced the best results where 2R = 0.9943 
and mrE =10.84 %. Therefore this model produced the best results for six temperature levels 
that could be used for the estimation of raisins EMC at various temperatures and water 
activities. Any of empirical models has an equation with constants. The values have been 
depicted in Table 3. 
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Figure 3. The EMC of raisin at different water activities and temperatures 
 

Table 3. Coefficients and outputs of mathematical models  
Model a b c d or k e or

mX
MSE
 

R2
mrE

SMITH -3.24 27.57 - - - 7.28 0.9708 37.38 
OSWIN 15.50 0.818 - - - 1.60 0.9929 13.00 
GAB - - 1.157 0.719 128.92 1.40 0.9946 12.78 
HALSEY 7.97 1.11 - - - 2.02 0.9911 17.90 
DARCY-WATT -0.7748 -10.36 -4.39 0.7877 9.04 1.43 0.9943 10.84 
HENDERSON -0.121 0.716 - - - 2.30 0.9910 16.83 

4.3 ANNs Approach 
 
FFBP and CFBP networks were used for mapping between inputs and outputs of patterns. 
Two strategies were utilized to investigate different threshold functions affecting network 
optimization that include similar and various threshold functions for all layers (Table 4). Both 
strategies together with learning algorithms of LM and BR were used for FFBP and CFBP 
networks. Several topologies were tested and the best results which used from each network, 
training algorithm and Threshold function/functions, are represented in Table 4. 
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Table 4. Training algorithm for different nourons and hidden layers for several networks at 
the uniform threshold function for layers 

Epo
ch MRESD

 
mrE2RMSE No. of 

Layers 
and 
Neurons 

Threshold Function Training  
Algorith
m

Networ
k

169.43 10.67 0.9946 0.00015 2-3-3-1 TANSIG  
1423.39 15.11 0.9874 0.00019 2-4-2-1 LOGSIG LM
29 19.51 15.98 0.9873 0.00017 2-3-3-1 LOGSIG- TANSIG - LOGSIG  
4810.21 8.32 0.9969 0.00016 2-3-3-1 TANSIG - TANSIG -

PURELIN 
 FFBP

1342.23 26.20 0.9892 0.00059 2-4-2-1 TANSIG  
2448.55 26.97 0.9876 0.00050 2-4-2-1 LOGSIG BR
20 57.96 31.12 0.9855 0.00056 2-4-2-1 TANSIG - TANSIG– LOGSIG  
2715.44 11.72 0.9930 0.00083 2-4-2-1 LOGSIG - TANSIG- PURELIN  
1810.84 12.76 0.9927 0.00021 2-2-2-1 TANSIG  
1424.97 16.85 0.9926 0.00015 2-3-3-1 LOGSIG LM
12 23.77 15.61 0.9925 0.00022 2-3-3-1 TANSIG– LOGSIG – TANSIG  
2112.30 11.87 0.9957 0.00011 2-3-3-1 TANSIG– TANSIG –

PURELIN 
 CFBP

21313.50 143.39 0.8074 0.050 2-3-2-1 TANSIG  
2474.96 44.40 0.9886 0.0046 2-4-2-1 LOGSIG BR
24 20.97 18.95 0.9886 0.0015 2-4-2-1 LOGSIG – LOGSIG- TANSIG  
3715.42 13.59 0.9899 0.00076 2-4-2-1 LOGSIG - TANSIG- PURELIN  

The best results for FFBP network with LM algorithm in the first strategy belonged to 
TANSIG threshold function and 2-3-3-1 topology. This composition produced 
MSE=0.00015, 2R =0.9946 and mrE =10.67 and converged in 16 epochs. The best result for 
the second strategy of FFBP network with LM algorithm is belonged to 2-3-3-1 topology and 
TANSIG  - TANSIG -PURELIN threshold functions, and produced MSE=0.00016, 

mrE =8.32 and 2R =0.9969. 
 
The best results for FFBP network with BR algorithm and the first strategy is belonged to 
TANSIG threshold function and 2-4-2-1 topology. This composition produced 
MSE=0.00059, 2R =0.9892 and mrE =26.20 and converged at 13 epochs. Also for FFBP 
network, BR algorithm and the second strategy, the best topology was 2-4-2-1 with LOGSIG-
TANSIG-PURELIN threshold functions. This composition produced mrE =11.72, 2R =0.9930 
at 27 epochs. In addition, for FFBP network, LM algorithm presented the better result than 
BR algorithm. 
 
Furthermore, in this stage, application of LM algorithm has better result than BR algorithm 
because it produced less mrE and more 2R values.  
 
The best results for CFBP network in the first strategy and LM algorithm belonged to 2-2-2-1 
topology. This composition produced mrE =12.76 and 2R =0.9927 at 18 training epochs. 
CFBP network for the second strategy and LM algorithm for 2-3-3-1 topology and threshold 
functions of TANSIG-TANSIG-PURELIN showed the MSE=0.00011, mrE =11.84 and 

2R =0.9957. 
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The best results for CFBP network in the first strategy with BR algorithm and 2-4-2-1 
topology produced MSE=0.0046, mrE = 44.40 and 2R =0.9880 at 22 epoch. The best result 
for CFBP network with BR algorithm and the second strategy was related to LOGSIG -
TANSIG- PURELIN threshold function and 3-5-5-1 topology. This composition produced 
MSE=0.00076, mrE =13.56 and 2R =0.9899. 
 
With regard to the results, the second strategy of FFBP network, LM algorithm with 
LOGSIG-TANSIG-PURELIN threshold functions and 2-3-3-1 topology showed the best 
performance. These findings showed that, the best result in all cases belonged to second 
strategy. This is because topology of the second strategy, mrE and 2R have the better values. 
Experimental and predicted data set and their error are shown in Figure 4 and MSE for 
training and testing patterns in Figure 5. Results showed that mrE is the least value for this 
network, so this network selected as an optimized one. MATLAB software output 
demonstration for optimized network is shown in Figure 6.  
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Figure 4. Predicted values of EMC using ANNs versus experimental values and real error  
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Figure 5. Mean square error of training and testing patterns for the best ANN 
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Figure 6. Matlab software output demonstration for optimized network (IW and LW are 
weight matrix, b is bias matrix) 

Values of weight matrix between layers and biases are: 

(Weight matrix between input layer and layer1) IW {1, 1}  =
















−

−

99.113.0
23.052.6
01.218.7

(Weight matrix between layers 1 and 2) LW {2, 1} =
















−−
−−
−−

70.214.053.0
43.111.148.2
05.202.002.0

(Weight matrix between layers 2 and 3) LW {3, 2} = [ ]76.102.007.1 −

(Bias to layer 1) b {1}=















−

70.2
02.2

24.4
; (Bias to layer 2) b{2}=
















−

04.0
11.0

07.2
; (Bias to layer 1) 

b{3}= [ ]75.1
The average value of indices for mathematical model and optimized ANNs are shown in 
Figure 7. Mathematical model and ANNs have a significant difference in producing 2R
having the average value for mathematical model of 0.9943 and for optimized ANN of 
0.9969 (Figure 7-A). The relative error produced by ANNs (8.32%) is less than that of 
mathematical model (10.84 in Figure 7-A).  
 
Modeling and afterwards choosing a model that fits the experimental data using Emr, for 
practical purposes, should always be lower than 10 % (Mohapatra and Rao, 2005); therefore, 
none of the mathematical models are reliable to predict EMC values for entire temperature 
range. But ANN method is suitable, as it ANN model can predict the EMC of raisin with an 
acceptable accuracy, also the ANN models predicted the EMC of raisin with MRESD  around 
the mrE values. These results show that the overtraining for the presented models is not 
happened and mrE with MRESD  are the suitable indices for comparing of two methods. 

mrE and MRESD  also have the controlling role for MSE and 2R .
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5.  CONCLUSIONS 
 
An artificial neural network is used as a new method for nonlinear mapping to predict EMC 
of raisin (black currant) through two independent parameters including air temperature and 
relative humidity. The following conclusions can be drawn from the experiments: 
• Raisin like other high glucose dried fruits absorbs less moisture in low water activity 
but more in high water activity. This is because in low water activity, glucose has not 
significant effect on moisture absorption. 
• The best result for mathematical model belonged to D’Arsy-Watt model at 
temperature with R2 and mean relative error of 0.9943 and 10.84 %, respectively.  
• The best ANN for data training was FFBP with LM algorithm and TANSIG-
TANSIG-PURELIN threshold functions for layers, three neurons for the first hidden layer 
and three for the second one. With this optimized network, R2 and mean relative error were 
0.9969 and 8.32 %, respectively. 
• The EMC of raisin could be predicted by ANN method, with less mean relative error 
and more determination coefficient compared to the mathematical models. 
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