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ABSTRACT 
 

Citrus greening reduces fruit production and quality and will likely result in rapid tree decline 
and death. Because citrus greening symptoms are usually observed on the leaf surface, detection 
of citrus greening leaf symptoms can significantly aid in scouting for infected trees and 
managing the disease, thus reducing its spread and minimizing losses for citrus growers. This 
article presents the microscopic image analysis using color co-occurrence method to differentiate 
citrus leaves with eight conditions: greening blotchy mottle, green islands, iron deficiency, 
manganese deficiency, zinc deficiency, young flush leaves and normal mature leaves. Thirty-
nine statistical features were extracted from transformed hue (H), saturation (S), and intensity (I) 
images using the color co-occurrence method for each leaf sample. The number of extracted 
texture features was reduced by a stepwise discriminant analysis. A discriminant function based 
on a measure of the generalized squared distance was used for classification. Three classification 
models were performed using (1) all leaf conditions, (2) all conditions except young flush leaves 
and (3) all conditions except young flush leaves and blotchy mottle. The three classification 
models obtained accuracies of 86.67 %, 95.60 % and 97.33 %, respectively. The overall 
performance was demonstrated in a confusion matrix. The model HSI_14, which used all 
conditions except young flush and blotchy mottle, resulted in the best accuracy for positive 
(96.67 %) and negative (97.5 %) symptoms.

Keywords: Citrus leaf, disease detection, machine vision, color co-occurrence method, texture 
features, discriminant analysis 
 

1.  INTRODUCTION 
 

Huanglongbing (HLB), commonly known as citrus greening, is one of the most dangerous 
diseases that affect citrus production, and has threatened to destroy an estimated 60 million trees 
in Africa and Asia (Ruangwong et al., 2006). Citrus greening was found in Miami-Dade County, 
Florida in August 2005. Florida citrus growers are fighting this disease which has the potential to 
destroy the state's $9 billion commercial citrus industry (The American Phytopathological 
Society, 2008).  

 
Citrus greening is a bacterial disease that affects the phloem system of citrus trees and causes the 
leaves of infected trees to become yellow, the trees to become unproductive, decline and possibly 
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die within a few years. The bacterium is spread by an insect, the citrus psyllid. Citrus greening 
infects all types of citrus species, cultivars, and hybrids and some citrus relatives. The symptoms 
of citrus greening usually include blotchy, chlorotic mottling of leaves, yellow shoots, misshapen 
or lopsided small fruit that fail to color properly and stay green, hence the name of the disease 
“greening”. The name huanglongbing means "yellow shoot", which is descriptive of the yellow 
sectors of infected trees (Gottwald et al., 2007). Currently, there is no cure for citrus greening, 
but early detection of the disease and appropriate management of the insect vector should 
alleviate the severity of the greening disease and minimize its spread. Many image processing 
and computer vision technologies have been developed to achieve the automatic identification of 
disease symptoms. The design and implementation of these technologies will greatly aid in 
scouting for the disease, selective chemical application, reducing costs and thus leading to 
improved productivity and fruit quality. 

 
The identification of various plants and crops using image processing techniques has been 
attempted by several researchers. Haralick et al. (1973) used gray level co-occurrence features to 
analyze remotely sensed images. They computed gray level co-occurrence matrices for one pixel 
offset with four directions (0°, 45°, 90° and 135°). For a seven-class classification problem, they 
obtained approximately 80 % classification accuracy using texture features. Tang et al. (1999) 
developed a texture-based weed classification method using Gabor wavelets and neural networks 
for real-time selective herbicide application. The method comprised a low-level Gabor wavelet-
based feature extraction algorithm and a high-level neural network-based pattern recognition 
algorithm. The model was specifically developed to classify images into broadleaf and grass 
categories for real-time herbicide application. Their analyses showed that the method is capable 
of performing texture based broadleaf and grass classification accurately with 100 % 
classification accuracy. Burks et al. (2000) developed a method for classification of weed species 
using color texture features and discriminate analysis. The image analysis technique used for this 
method was the color co-occurrence matrix (CCM) method. The method had the ability to 
discriminate between multiple canopy species and was insensitive to leaf scale and orientation. 
The use of color features in the visible light spectrum provided additional image characteristic 
features over traditional gray-scale representation. The CCM method involved three major 
mathematical processes: 

1) Transformations of an RGB color representation of an image to an equivalent HSI color 
representation.  

2) Generation of color co-occurrence matrices from the HSI pixels 
3) Generation of texture features from the CCM matrices. 

 
CCM texture feature data models for six classes of ground cover (giant foxtails, crabgrass, velvet 
leaf, lambs quarter, ivy leaf morning glory, and soil) were developed and stepwise discriminant 
analysis techniques were utilized to identify combinations of CCM texture feature variables, 
which have the highest classification accuracy with the least number of texture variables (Burks 
et al., 2000). A discriminant classifier was trained to identify weeds using the models generated. 
Classification tests were conducted with each model to determine their potential for classifying 
weed species. Overall classification accuracies above 93 % were achieved when using hue and 
saturation features alone. A complete discussion of the CCM approach is found in Shearer and 
Holmes (1990). Pydipati et al. (2006) analyzed detection in citrus leaves using machine vision. 
The image data of the leaves selected for disease monitoring was collected. Then, algorithms 
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based on image processing techniques for feature extraction and classification was then 
designed. Manual feeding of datasets, in the form of digitized RGB color photographs was 
conducted for feature extraction and training the SAS statistical classifier. After training the SAS 
classifier, the test data sets were used to analyze the performance of accurate classification.  

 
The overall objective of this research was to develop a machine vision based method for 
detecting citrus greening on leaves. This approach would use color texture features under 
controlled lighting in order to discriminate between greening and leaf conditions that are 
commonly confused with greening. This preliminary approach used low level magnification to 
enhance features. As a result, this would be conducted in a laboratory setting. Future studies 
would use field based detection. Specific objectives implemented to accomplish the overall 
objective were to: 

1) Use a digital color microscope system to collect RGB images from orange leaves with 
eight conditions (i.e., young flush, normal mature, blotchy mottle, green islands, zinc 
deficiency, iron deficiency, manganese deficiency and dead). 

2) Determine image texture features based on the color co-occurrence method (CCM). 
3) Create a set of reduced feature data models through a stepwise elimination process and 

classify different citrus leaf conditions. 
4) Compare the classification accuracies. 

 
2.  MATERIALS AND METHODS 

 
2.1 Citrus Leaf Samples 
 
The leaf samples used in this research were collected from two orange groves near Immokolee in 
southwest Florida, during summer and fall of 2008. Eight different classes of citrus leaves were 
selected for this study, and were graded manually into classes by an expert extension agent. The 
leaf sample conditions were blotchy mottle, green islands, iron deficiency, manganese 
deficiency, zinc deficiency, young flush and normal mature. Images of leaf samples are shown in 
figure 1. 
 

Figure 1. Citrus Leaf Conditions 
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Each nutritional deficiency of citrus has distinctive feature on the leaf surface. The leaf with iron 
deficiency has the dark green network of veins within the yellow leaf blade. The leaf with 
manganese deficiency has the symmetry of the yellowing across the mid-vein and the dark 
triangle at the leaf base. The leaf with zinc deficiency has the fairy symmetrical yellowing across 
the mid-vein (Polek et al., 2005). 

 
The citrus greening leaf symptoms are similar to other cultural conditions and diseases, but it has 
difference with others. A blotchy mottle pattern was most typical with light greening and dark 
green patches, and no symmetry. Green islands has non-symmetrical pattern on opposite sides of 
mid-vein. Figure 2 shows various canker condition images used in this study. 

 

Figure 2. 15 images of blotch module conditions 
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The visual symptom observed varied between leaf samples. Leaf samples were from trees with 
petioles intact and then sealed in Ziploc® bags to maintain the moisture level of the leaves. Sixty 
samples of each of the eight classes of leaves were collected. The samples were brought to a 
laboratory. The leaf samples were then sealed in new bags with appropriate labels and put in 
environmental control chambers maintained at 4 ºC. They were removed from cold storage about 
2 hours before imaging to allow them to reach room temperature. The leaf samples were then 
taken to an imaging station where images of the upper side of the leaf were acquired.  

 
2.2 Color Image Acquisition 

 
A digital microscope system (VHX-600K, Keyence, Japan) was used for acquiring color (RGB) 
images from citrus leaf samples, as shown in figure 3. The imaging system consisted of a 
halogen lamp (12V, 100W), a zoom lens (OP-51479, Keyence, Japan), a 2.11-million-pixel CCD 
image sensor (1/1.8-inch), a 15-inch Color LCD monitor (TFT, UXGA), and a computer 
installed with an image capture function and a hard disk drive unit (image format: JPEG and 
TIFF, Storage capacity: 700 MB). The setup of the light source was designed to minimize 
specular reflectance and shadow, and to maximize the contrast of the images. The height of the 
camera and its focus were adjusted to capture the whole leaf, centered on the main leaf vein. 
Automatic white balance calibration was conducted using a calibrated white balance function in 
this system before acquiring images from leaf samples. The digital color images were saved in 
uncompressed JPEG format (1200×1600, 8 bit/channel). 
 

Figure 3. Digital microscope system for acquiring color images from citrus leaf samples 
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2.3 Texture Analysis 
 
2.3.1 Color Co-occurrence Matrix Methodology  

 
The image analysis technique selected for this study was the CCM method. The use of color 
image features in the visible light spectrum provides additional image characteristic features over 
the traditional gray-scale representation. The CCM procedure consisted of three primary 
mathematical processes. First, the RGB images of leaves were converted to a hue, saturation and 
intensity (HSI) color space representation. Intensity was calculated using the mean value of the 
three RGB values. The hue and saturation values were determined using a geometrical 
transformation of the International Commission on Illumination’s (CIE) chromaticity diagram 
(Ohta, 1985). In this process, the CIE chromaticity diagram represented a two-dimensional hue 
and saturation space (Wyszecki et al., 1992). The pixel RGB values determine the chromaticity 
coordinates on the hue and saturation space, which are then used to geometrically calculate the 
value of hue and saturation. This process has been documented by Shearer (1986). Each pixel 
map was used to generate a color co-occurrence matrix after the HSI image was completed, 
resulting in three CCM matrices. That is, one CCM matrix for each of the HSI pixel maps. 
Through the use of spatial gray-level dependence matrices (SGDM’s), the color co-occurrence 
texture analysis method was applied. The gray level co-occurrence methodology is a statistical 
way to describe shape by statistically sampling the way certain gray-levels occur in relation to 
other gray-levels. Shear and Homes (1990) explained that these matrices measure the probability 
that a pixel at one particular gray level will occur at a distinct distance and orientation from any 
pixel given that pixel has a second particular gray level. For a position operator p, a matrix P(i,j) 
counts the number of times a pixel with grey-level i occurs at position p from a pixel with grey-
level j. Normalization of the matrix P by the total number of pixels calculates values between 0 
and 1, resulting in a gray-level co-occurrence matrix. 

 

Figure 4. Nearest neighbor mask for calculating 
spatial gray-level dependence matrices (SGDM’s) 

 
The SGDMs are represented by the function P(i,j,d,θ) where i represents the gray-level of 
location (x,y) in the image I(x,y), and j represents the gray-level of the pixel at a distance d and 
an orientation angle of θ from location (x,y). The nearest neighbor mask is shown in figure 4, 
where the reference pixel (x,y) is shown with ‘T’. All eight neighbors shown are one pixel 
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distance from the reference pixel ‘T’ and are numbered in a clockwise direction from one to 
eight. The neighbors at positions one and five are both considered to be at an orientation angle 
equal to zero degree, while positions eight and four are considered to be at an angle of 45 
degrees. The equation for normalizing the co-occurrence matrix is given in Eq.1, where P(i,j,1,0) 
is the intensity co-occurrence matrix. 
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An example image matrix I(x,y), with a gray scale ranges from zero to three is shown in Eq.2. 

(2) 
 

The hue, saturation and intensity CCM matrices were used to generate the texture features 
described by Haralick and Shanmugam (1974). Shearer and Holmes (1990) reported a reduction 
in the 16 gray scale texture features through elimination of redundant variables, and 11 texture 
feature equations. Donohue et al. (1985) added image contrast and modus texture features to 
those used by Ohta (1985), for a total of thirteen features when classifying cancer tissue. The 
same equations were used for each of the three CCM matrices, producing 13 texture features for 
each HSI component and thereby a total of 39 CCM texture statistics. The texture features were 
identified by a coded variable name where the first letter represented whether it was a hue (H), 
saturation (S) or intensity (I) feature and the number following represented one of the thirteen 
texture features described in Shearer (1990). Intensity texture feature equations are presented in 
table 1. 
 

Table 1. Intensity texture features 
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As an example, the feature (I7) is a measure of the entropy in the intensity CCM matrix, which 
represents the amount of order in an image. A physical representation of entropy (uncertainty) 
may be visualized by comparing a checkerboard-like image to an image where one half is black 
and the other half is white. The latter image is highly ordered having all pixels of the same 
intensity segregated into two distinct pixels groups, which gives greater certainty of the pixel 
value of the adjacent pixels. The checkerboard image has a lower amount of order due to 
intermixing of black and white squares, which results in a greater level of uncertainty of 
neighboring pixel values. The lower order in the image would therefore have more uncertainty 
and thus a higher entropy measure. 

 
2.3.2 Features Extraction 

 
Sixty images were taken of the top surface for each leaf class and centered on the mid. Digital 
images were stored in uncompressed JPEG format. The three classification models discussed 
previously were treated as separate classification problems. The 60 images from each class were 
divided into two datasets consisting of 30 samples for training and 30 samples for testing. The 
samples were first arranged in ascending order for the time the images were acquired. This 
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approach minimized negative time dependant variability, and reduced potential for data selection 
bias between the training and test datasets.  

 

Figure 5. Procedures for color image analysis 
 

A detailed illustration of the image acquisition and classification process is given in Figure 5. 
Algorithms for image segmentation and texture feature generation were developed in MATLAB 
R2007b (MathWorks. Inc. USA). In the initial step, the RGB images of all leaf samples were 
obtained. For reducing the computational burden with minimal loss of texture feature quality, the 
image size was reduced from 1600×1200 pixels to 800×600 pixels and the reduced images were 
then converted from eight bit to six bit per channel RGB format. The subsequent steps were 
repeated for each image in the dataset. After the images were reduced, edge detection of the leaf 
was completed on each image of the leaf sample using the MATLAB program. Figure 6 exhibits 
a detailed edge detection process.  
 

Conversion RGB to Gray 
Image

Conversion Gray Image to 
Binary Image

Edge Control of Binary 
Image using the 

Command ‘ imerode’ and 
imdilate ’ in Matlab

Optimal Edge Detection 
of the leaf sample

Conversion Gray to RGB 
Image

Figure 6. Procedures for leaf edge detection 
 
The Spatial Gray-Level Dependency Matrices (SGDMs) were then generated for each color 
pixel map of the image, one each for hue, saturation and intensity. It was decided during 
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preliminary testing that the experiment would use the 0° CCM orientation angle and one pixel 
offset.  
 
2.3.3 Statistical Analysis 

 
Once the texture statistics were generated for each image, statistical analyses were conducted 
using procedure STEPDISC (SAS, 1985) to reduce redundancy in the texture feature set. The 
training image dataset was used for the variable reduction analysis. SAS offers procedures for 
reducing variable set size and for discriminating between classes. PROC STEPDISC was used to 
reduce the number of texture features by a stepwise selection process. At each step of the 
process, the variables within and outside the model are evaluated. The variable within the model, 
at that particular step, which contributes least to the model as determined by the Wilk’s Lambda 
method is removed from the model. Likewise, the variable outside the model that contributes 
most to the model is added. When no more steps can be taken, the number of variables in the 
model is reduced to its final form. Based on these analyses, several data models were created, 
which are shown in table 2. Model HSI_18 consisted of all conditions, HSI_15 model consisted 
of all condition except normal young and the HSI_14 model consisted of all conditions except 
blotchy mottle and normal young leaves. 
 

Table 2. Texture feature models selected by stepwise discriminant analysis for fall season 
Condition Model1 Color feature2 Texture feature set3

All disease condition HSI_18 H, S, I S4, I2, H7, S13, H2, H9, S5, I7, S7, I9, S8, I1, 
I10, H4, I6, S6, H8, I13 

All conditions except 
young flush HSI_15 H, S, I S5, I2, H7, H2, S6, S4, H9, S8, I6, S13, H4, I4, 

I13, S7, I7
All conditions except 
blotch mottle and 
young flush 

HSI_14 H, S, I S5, I2, H7, H2, S4, H9, S13, S7, I7, I1, I9, S8, I10, 
I6

1 Classification model designation based on color features in the model and the total number of 
variable selected by STEPDISC. 
2 Color texture features included in initial data set prior to reduction (13 variables for color 
texture feature set). 
3 Selected texture features, given in order of discriminant power.  

 
3.  RESULTS AND DISCUSSION 
 
3.1 Classification of Citrus Disease Conditions 

 
The texture feature dataset was generated by containing 39 texture features for each image. The 
dataset consisted of  420 elements, representing 60 samples from each of the seven classes of 
leaves. To compare classification accuracies under various disease conditions, three models were 
created which are shown in table 2. These models represent the compilation of three different 
leaf conditions sets, which isolate leaf conditions that are difficult to discriminate. Table 3 shows 
four different models which have all leaf conditions except young flush, but have various 
combinations of color texture features. This set of models was selected to isolate crucial color 
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texture features which can lead to more efficient feature generation. The training and testing sets 
for each model mentioned in Tables 2 and 3 were obtained by selecting either, intensity, hue and 
saturation or all three HSI features from the total 39 texture features in the original data files. 

 
Table 3. Texture feature models to all conditions except young flush for fall season 

Classification model1 Color feature2 Texture feature set3

HSI_15 H, S, I S5, I2, H7, H2, S6, S4, H9, S8, I6, S13, H4, I4, I13, S7, I7

HS_10 H, S S5, H7, H5, H12, S4, S7, H8, S8, H3, S11 
I_8 I I2, I8, I9, I6, I5, I7, I10, I1

HSI_39 H, S, I All 39 texture features (H1 - H13, S1 - S13, I1 - I13)
1 Classification model designation based on color features in model and the total number of variable selected by STEPDISC. 
2 Color texture features included in initial data set prior to reduction (13 variables for color texture feature set). 
3 Selected texture features, given in order of discriminant power.  

 
Once several data models were formed, SAS procedure STEPDISC was used to reduce the 
number of texture features included in the models. As can be seen in table 3, significant 
elimination of redundant variables was accomplished. For instance, HSI_18 model had 39 
texture features in the unreduced form, and was reduced to 18 features through the stepwise 
linear reduction process. The simplification of the data model serves several important purposes: 
1) it reduces the computational burden of the redundant features, 2) it tends to improve the 
performance of classification algorithms, and 3) it reduces memory and storage demands. The 
most significant variable reduction was found in I_8 model, which were reduced from 39 to 8 
texture features after using STEPDISC.  

 
SAS procedure DISCRIM was used to test the various data model classification accuracies. Each 
of the models was trained and tested using the appropriate image data set. The classification 
results were recorded on an individual disease category basis. The results shown in table 4 are 
the classification summaries for models HSI_18, HSI_15 and HSI_14 given in table 2. As 
previously indicated, the test data consisted of 30 images from each category. The overall 
performance of HSI_18 model was 86.67 %, which is the lowest accuracy among the three 
models shown in table 2. HSI_15 and HSI_14 models had high classification accuracies (95.60 
% and 97.33 %). 
 

Table 4. Classification summary in percent correct for selected models 

Disease condition Classification model 
HSI_18 HSI_15 HSI_14 

Blotchy mottle 96.67 90.00 - 
Islands 96.67 93.33 96.67 
Iron deficiency 90.00 100.00 90.00 
MN deficiency 100.00 96.67 100.00 
Zinc deficiency 100.00 100.00 100.00 
Normal 100.00 93.33 100.00 
Young flush 23.33 - - 
Overall accuracy (%) 86.67 95.60 97.33 
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Based on the results shown in table 5, the classification model using only intensity texture 
features presented the worst performance at 81.11 % for the I_8 model. When compared with 
other models, HS_10 model had 87.78 %, HSI_15 model had 95.60 % and HSI_39 model had 
95.60 %. Therefore, other models provided better performance than the model that used only 
intensity texture features. 
 

Table 5. Classification summary in percent correct for selected models 

Disease condition Classification model 
HSI_15 HS_10 I_11 HSI_39 

Blotchy mottle 90.00 70.00 70.00 96.67 
Islands 93.33 76.67 73.33 93.33 
Iron deficiency 100.00 100.00 86.67 93.33 
MN deficiency 96.67 93.33 93.33 96.67 
Zinc deficiency 100.00 100.00 83.33 96.67 
Normal 93.33 86.67 80.00 96.67 
Overall accuracy (%) 95.60 87.78 81.11 95.60 

In table 5, the highest overall performance was 95.60 % for HSI_15 and HSI_39. This 
demonstrates that significant classification improvement occurs when intensity features are used, 
and there is no loss in accuracy when using the reduced HSI data set or the unreduced data set. 
As shown in table 6, most images were correctly classified into the appropriate category; 
however, young flush leaves had a very low classification at 23 %.  
 

Table 6. Classification result for HSI_18 model 
Actual 
leaf 
condition 

Classified leaf condition 
Blotchy 
mottle Islands Zinc 

deficiency
Iron 

deficiency
MN 

deficiency Normal Young 
flush 

Accuracy 
(%) 

Blotchy 
mottle 29 0 0 0 0 1 0 96.67 

Islands 0 29 1 0 0 0 0 96.67 
Zinc 
deficiency 0 0 30 0 0 0 0 100.00 

Iron 
deficiency 0 0 1 27 0 0 2 90.00 

MN 
deficiency 0 0 0 0 30 0 0 100.00 

Normal 0 0 0 0 0 30 0 100.00 
Young 
flush 4 0 0 3 1 15 7 23.33 

Total 33 29 32 27 31 46 9 86.67 

The negative influence of young flush leaves was further demonstrated in the results from table 4 
where the classification accuracy was 86.67 % while other leaf condition models that exclude 
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young flush leaves had accuracy above 95 %. Table 7 shows improved classification accuracy of 
95.56 % and thus proved that young flush leaves affected overall performance result. 
 

Table 7. Classification result for HSI_15 model 
Actual 
leaf 
condition 

Classified leaf condition 
Blotchy 
mottle Islands Zinc 

deficiency 
Iron 

deficiency 
MN 

deficiency Normal Accuracy (%)

Blotchy 
mottle 27 0 0 0 0 3 90.00 

Islands 0 28 1 1 0 0 93.33 
Zinc 
deficiency 0 0 30 0 0 0 100.00 

Iron 
deficiency 0 0 0 30 0 0 100.00 

MN 
deficiency 1 0 0 0 29 0 96.67 

Normal 2 0 0 0 0 28 93.33 
Total 30 28 31 31 29 31 95.56 

Table 8 demonstrates that HSI_14 model obtained the best accuracy (97.33 %) in three leaf 
condition models (table 2). However, HSI_14 model excluded citrus greening blotchy mottle, 
and thus ignored the most important greening identifier. Moreover, there was no significant 
difference in the classification results between HSI_15 and HSI_14 models. These effects can be 
seen in confusion matrices, where a model exhibits the classification between positive vs. 
negative greening symptoms. 
 

Table 8. Classification result for HSI_14 model 

Actual leaf 
condition 

Classified leaf condition 

Islands Zinc 
deficiency 

Iron 
deficiency 

MN 
deficiency Normal Accuracy (%)

Islands 29 1 0 0 0 96.67 
Zinc 
deficiency 0 30 0 0 0 100.00 

Iron 
deficiency 0 3 27 0 0 90.00 

MN 
deficiency 0 0 0 30 0 100.00 

Normal 0 0 0 0 30 100.00 
Total 29 34 27 30 30 97.33 

3.2 The Confusion Matrix for Greening Positive vs. Negative  
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The classification results for the confusion matrix obtained under the positive vs. negative 
greening model are shown in Tables 9, 10 and 11. In general, the HSI_18 model had the lowest 
classification accuracy among all symptom models. However, in the confusion matrix shown in 
Table 9, the discrimination of citrus greening symptoms had high success rate (96.7 %). 
 

Table 9. Confusion matrix in percent correct for HSI_18 model 

 
Positive for greening 
(Blotch mottle, 
Islands) 

Negative for greening 
(Young flush, Normal, MN, 
IR, ZN) 

Total 

Actual 
value 

True 
(success rate) 58/60 (96.67 %) 124/150 (82.67 %) 182/210 

(86.67 %) 
False 
(fail rate) 26/150 (17.33 %) 2/60 (3.33 %) 28/180 

(13.33 %) 

Table 10. Confusion matrix in percent correct for HSI_15 model 

 
Positive for greening 
(Blotch mottle, 
Islands) 

Negative for greening 
(Normal, MN, IR, ZN) Total 

Actual 
value 

True 
(success rate) 55/60 (91.67 %) 117/120 (97.50 %) 172/180 

(95.56 %) 
False 
(fail rate) 3/120 (2.50 %) 5/60 (8.33 %) 8/180  

(4.44 %) 

Table 11. Confusion matrix in percent correct for HSI_14 model 

 Positive for greening 
(Islands) 

Negative for greening 
(Normal, MN, IR, ZN) Total 

Actual 
value 

True 
(success rate) 29/30 (96.67 %) 117/120 (97.5 %) 146/150 

(97.33 %) 
False 
(fail rate) 3/120 (2.50 %) 1/30 (3.33 %) 4/150 

(2.67 %) 

On the other hand, the accuracy for greening was only 82.67 %, giving an overall accuracy of 
86.67 %. In the HSI_15 model, the young flush leaves were removed and a 95.6 % overall 
classification accuracy was achieved. This model also had good classification accuracies 
between positive (91.67 %) and negative (97.50 %) as shown in table 10. Model HSI_14 
excluded young flush leaves and blotchy mottle, and achieved an increase in classification 
performance when compared with the HSI_18 model (97.3 % versus 86.7 %). In the confusion 
matrix shown in table 11, HSI_14 used all disease conditions except young flush and blotchy 
mottle and had the same positive greening accuracy as HSI_18 model which used all disease 
condition. However, the overall accuracy was much higher than/with/etc. 97.3 %. When 
evaluating each model, it is likely that the similarity between young flush leaves and other 
conditions affected the detection accuracy of citrus greening disease.  

 
3.2 Stability Test of the Greening Classification Model 
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From the results stated above, leaf condition models were evaluated to determine which scenario 
would perform the best in distinguishing greening symptoms. It was also important to evaluate 
various texture feature combinations to determine which would provide high classification 
accuracy and demonstrate model stability, under varying training and testing conditions. The 
classification results presented above were obtained using test samples selected in a fixed order. 
In order to test the stability of the classification model, 30 training samples and 30 testing 
samples were randomly chosen from the 60 samples for each condition. They were used to train 
and test a selected model using the same procedures described earlier. 
 
Table 12. Classification results for shuffle data about HSI_15 model in percent correct 

Number of 
random data 

Blotchy 
mottle (%) 

Islands 
(%) 

Normal 
(%) 

MN 
(%) 

Zinc 
(%) 

Iron 
(%) 

Total 
(%) 

1 83.33 83.33 93.33 100.00 86.67 100.00 91.11 
2 90.00 96.67 96.67 93.33 96.67 100.00 95.56 
3 73.33 100.00 96.67 96.67 90.00 100.00 92.78 
4 83.33 90.00 96.67 86.67 96.67 90.00 90.56 
5 83.33 100.00 96.67 100.00 100.00 100.00 96.67 
6 83.33 96.67 96.67 100.00 100.00 90.00 94.44 
7 93.33 96.67 96.67 96.67 90.00 96.67 95.00 
8 80.00 83.33 100.00 96.67 90.00 93.33 90.56 
9 90.00 100.00 83.33 100.00 93.33 100.00 94.44 
10 90.67 100.00 96.67 96.67 96.67 100.00 97.78 
Average 
accuracy (%) 86.67 94.67 95.34 96.67 94.00 97.00 94.06 

Ten runs were repeated for training and testing. In this research, stability tests were provided for 
the HSI_15 model, since this model had demonstrated good performance on the leaf conditions 
of most significant interest. The average value shown in table 12 was 94.06 %. These results 
demonstrated that the classification model, excluding young flush leaves, was robust under 
varying leaf sample conditions, and therefore should provide a viable classification of greening 
conditions. 
 

4.  CONCLUSIONS 
 

Data analysis based on the color co-occurrence method is useful for detection of citrus greening 
disease. A color imaging system was selected to obtain RGB images from citrus leaves 
consisting of two normal leaf conditions, young flush and mature. In addition, five leaf 
conditions including greening blotchy mottle, green islands, manganese deficiency, iron 
deficiency, and zinc deficiency were investigated. Images of the leaf surface were extracted from 
the original RGB images, and then converted into hue, saturation, and intensity (HSI) color space 
representation. Each HSI image was used to generate spatial gray-level dependence matrices. 
Once SGDMs were generated, a total of 39 image texture features were obtained from each 
citrus leaf sample. Algorithms for selecting useful texture features were developed based on a 
stepwise discriminant analysis for three disease combinations including all conditions, all 
conditions excluding young flush, and conditions excluding blotchy mottle and young flush. 
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Through a discriminant function based on a measure of the generalized squared distance, 
classification models were constructed using the reduced texture feature sets. 

 
Beneficial elimination of redundant texture features were accomplished through the stepwise 
discriminant analysis. Various texture features models were selected from the color combinations 
of HSI. The elimination of redundant texture features significantly reduces the computation 
burden, and it also helps improve the performance of classification models. The classification 
model excluding blotchy mottle and young flush (HSI_14) gave the best accuracy (97.33 %), 
while HSI_18 model achieved the worst classification accuracy (86.67 %). When excluding only 
young flush condition, the classification had high accuracy of 95.60 %. The results suggested 
that young flush samples collected in fall created confusion between normal mature leaves. This 
fact also can be seen in the confusion matrix accuracies in tables 9 and 10. HSI_18 model had 
the lowest classification accuracy, but the success rate of positive for greening disease was 96.67 
%. It was the same or higher than others. A stability test for the classification model with the best 
performance was accomplished by 10 runs using randomly selected training and testing samples. 
The average classification accuracy was 94.06 %, indicating that the classification model is 
robust for classifying new citrus leaf samples according to their conditions. For further study of 
the influence of young flush, it is suggested that a new model consisting of a mixed data set of 
young flush and mature normal leaves should be evaluated to see how it compares to the model, 
which excluded young flush leaves. 

 
This research demonstrated that color imaging and texture feature analysis could be used at low 
magnification for differentiating citrus greening symptoms from other leaf conditions. Future 
studies may explore the utility of these algorithms in outdoor conditions. 
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