Customized Software in Distributed Embedded Systems: ISOBUS and the Coming Revolution in Agriculture

Authors

  • J. Lenz
  • R. Landman
  • A. Mishra

Abstract

The electrification of agricultural equipment has been evolving for many years and in some ways is lagging behind other industries. However this strategy of following the lead of other industries now offers Ag the opportunity to move forward at a revolutionary pace. Network standards defined by the Society of Automotive Engineers (SAE) and the International Organization for Standardization (ISO) committees are the basis for defining a rulebook for this industrystandardizing worldwide electronics interoperability. ISOBUS (ISO 11783) which defines a physical standard between tractors and implements will be an important enabler for most new product definitions. The foundation of this coming revolution will be provided through software. This paper outlines the electronics hardware and software architecture for off-road vehicles that allows for implementation of customized machine control features. There are several key areas discussed. The first enabler for this revolution is a software development and delivery system that defines a design methodology for creating and delivering software modules for a distributed set of controllers. This design methodology presents two advantages that today’s modern electronic technologies can deliver: 1) Customization with commodity hardware and 2) Service without replacing hardware parts anywhere in the world. The second enabler for this machine revolution is an ‘agile’ process to develop the software. Many product ideas are being valuated through a trial and error and continuous improvement process. Software will play an important enabler for these product definitions. A comparison between the worldwide trend for software processes, the Capability Maturity Model (CMM), and what type of process would fit the offroad industry is based around the maturity of the new product ideas. The strong supply chain link between dealers and customers for off-road machines, coupled with the emerging awareness of electronic functions and controls, sets a basis for a specialized software development process. An important enabler for this ‘agile’ process is the re-use of code and incremental testing with reviews. The history of the off-road machine business has been based on proven designs and long times between model updates. However, the worldwide adoption of the ISOBUS standard is poised to change this history. ISOBUS is not only establishing an open system for interoperability, it is establishing a sequence of features for diagnostics, sequenced operations, and information management. As customers discover these capabilities, they will expect them to be further advanced and customized for their specific needs. This requires adding agility into the proven durable processes so that manufacturers can respond faster to these growing needs. Electronics, and especially well-planned software systems, offer an agile technology for meeting this coming need. This paper presents the benchmarking of various embedded software development projects relating project content, project rigor, and quality. From this, insights into maintaining quality are gained in order to include agility into a durable development project. Also, risk and rewards of leveraging low cost country software development skills are addressed to stretch resources or even develop common resources for software systems.

Downloads

Published

2007-07-01

Issue

Section

Automation Technology for Off-Road Equipment-2006