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Abstract: Rapid and non-destructive adulteration detection is of particular importance to oil industries.  This paper presents an 
application of visible and near-infrared (VNIR) spectroscopy for detection of adulteration levels in olive oil.  Sunflower oil 
was used as an adulterant to olive oil, and the adulteration samples with different levels ranging from 0% to 40% were prepared 
and used for the experiments.  The spectra were first considered in the range of 500-900 nm and then smoothened and 
normalized to reduce the light scattering effects.  Principal component analysis (PCA) was performed on the spectra to have a 
primary data visualization and feature extraction.  The extracted PCA scores were used to calculate the Mahalanobis distances 
of the adulterated samples from the pure sample.  Further, the PCA scores were fed to the multi-class support vector machine 
(SVM) model to perform classification on the basis of different adulteration levels.  The results showed that the spectral 
normalization highlighted different regions over the spectrum affected due to the adulteration.  The PCA score biplots showed 
differences in the samples based on the different amounts of the adulteration.  Moreover, the Mahalanobis distance provided a 
quantitative measure of the differences between the adulterated oil and the pure oil samples.  The SVM modelling further 
supported the classification of the different levels of the adulteration.  Consequently, the VNIR spectroscopy in combination 
with the SVM could support the development of the classification protocols for detection of adulteration in olive oils. 
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1  Introduction  

Due to the increase in food fraud with adulteration 
methods and subsequently, the loss of large amounts of 
capital and consumer confidence, adulteration detection 
in foods through fast, accurate, and non-destructive 
techniques is significantly important (Manning and Soon, 
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2014). Vegetable oils are a group of foods which are not 
safe from adulteration (Jiménez-Carvelo et al., 2017). 
Among different vegetable oils, olive oil is involved in 
adulteration by cheaper and less nutritional value oils due 
to its importance in the diet and expense (Jabeur et al., 
2016). Therefore, detection of adulteration in olive oil is 
one of the most important issues to determine its quality. 
Tests and procedures used for adulterations detection are 
usually destructive, time-consuming, and require a lot of 
expensive laboratory equipment (Santos et al., 2017). 

One of the popular methods that can be employed as a 
non-destructive, rapid, and in an accurate way for 
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detection of adulteration is visible/near-infrared (VNIR) 
spectroscopy. The VNIR spectroscopy, as a cheap and 
fast method for determining the authenticity and 
adulteration detection, has shown promising results 
worldwide (Kamal and Karoui, 2015). Detection of food 
adulteration utilising VNIR has been reported previously 
in many cases. For instance, Alamprese et al. (2013) used 
ultraviolet (UV), Vis, near-infrared (NIR), and 
mid-infrared (MIR) for the detection of minced beef 
adulterated with turkey meat. In that study, 44 minced 
beef samples, 44 turkey meat samples, and 154 samples 
with the combination of both meat types were tested. 
Spectral data with different pre-processing methods were 
considered. The result of the data analysis in the visible 
range was relatively satisfactory even though the best 
result was obtained in NIR range. They concluded the 
fusion of the data in three ranges could result in the best 
classification accuracy (Alampress et al., 2013). Gayo et 
al. (2006) reported the use of VNIR technique for 
authenticity evaluation of crab meat. Partial least squares 
regression (PLSR) and principal component regression 
(PCR) were used as the chemometric approaches and 
both could detect the adulteration in crab meat with a 
similar performance. The standard error of prediction 
(SEP) obtained from PLS and PCR was 0.252 and 0.244, 
respectively. They suggested the VNIR technology could 
be successfully employed for authentic crab meat 
assessment (Gayo et al., 2006). 

In the case of oil, even though there are some reports 
in the literature concerning NIR spectroscopy method for 
detecting adulteration (Gurdeniz and Ozen, 2009; 
Graham et al., 2012; Nunes, 2014; Wu et al., 2016), 
however, few studies have been reported yet on the use of 
VNIR combined with advanced chemometric strategy for 
evaluation of oil adulteration. One such study was 
performed by Downey et al. (2002) where VNIR 
spectroscopy was used to examine the adulteration of 
extra virgin olive oil (EVOO) with sunflower oil. In that 
study, 137 oil samples from eastern Mediterranean 
regions were considered. Soft independent modelling of 
class analogy (SIMCA) was used to classify the samples. 
Based on their results, the classification accuracy was 
100% and 90% obtained from the first and second 
derivatives of spectra, respectively, in the wavelength 

range of 400-2498 nm (Downey et al., 2002).  
Apart from oil adulteration detection using VNIR, 

some works concerning VNIR application to oil quality 
evaluation have been already reported (García Martín, 
2015; Cayuela Sánchez et al., 2013; Giovenzana et al., 
2015).  

Advanced data analysis techniques have been 
developed so far as the substantial chemometric tools to 
analyse the multivariate data associated with the VNIR 
spectroscopy. Particularly for VNIR data, a useful 
chemometric strategy was reported by Wen et al. (2015) 
who investigated the presence of soybean and colza oils 
as adulterant materials in camellia oil samples. They 
employed competitive adaptive reweighted sampling 
(CARS) as variable selection method to extract the 
required information from the spectra. Furthermore, PLS 
was considered to establish the calibration models. In 
final, the performance of CARS was satisfactorily 
reported for the study aim (Wen et al., 2015). More 
recently, Xian et al. (2016) reported the chemometric 
methods including interval partial least squares (iPLS), 
synergy interval partial least squares (SiPLS), and 
backward interval partial least squares (BiPLS) to find the 
olive oil adulterated with deep frying oil using VNIR 
technique. The wavelength range was within 400-   
2500 nm. Based on the report, SiPLS and BiPLS showed 
the best results in adulteration detection (Xian et al., 
2016). 

According to the best our knowledge, no study has 
been reported yet on detecting the adulteration in olive oil 
using VNIR in the wavelength of 500-900 nm. The 
current study has been fulfilled this aim by employing an 
advanced chemometric strategy to extract the most 
appropriate information from the obtained spectra. The 
methodology first performed the spectral pre-processing 
to enhance the information present in the data. Later, 
principal component analysis (PCA) was used to explore 
the data and extract the features based on the variance 
explained by the data. Further, to quantify the differences 
in the adulterated oil and the pure one, the PCA scores 
were used to calculate the Mahalanobis distances. To 
perform classification, the PCA scores were used for 
multi-class support vector machines (SVMs). The results 
showed that VNIR in combination with SVM could be 
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used to develop the classification protocols for olive oils 
adulteration. 

2  Materials and methods  

2.1  Sample preparation 
A total of six bottles of virgin olive oil, which all 

were prepared from Tarom, a northern region in Iran, 
were considered. Oil extraction had already been 
performed in Roodbar, a northern region in Iran. From 
each bottle, nine samples were taken for conducting the 
experiments. Adulteration levels were considered as zero, 
5%, 10%, 20%, 30%, and 40% by using sunflower oil. 
Since the purpose of adulteration is being economic in 
order to reducing the costs, the original sunflower oil was 
not used and the adulteration was applied by a type of 
sunflower oil on the market. At each level of adulteration, 
considering six bottles of oil and nine replicates for each 
bottle, 54 spectrum data were obtained. During the test, 
oils were kept at a constant temperature room and were 
then prepared in the volume of 10 mL of tubes for 
sampling. 
2.2  NIR measurement  

In the present research, a spectrometer (model: 
Compact, LASERTACK Co., Canada) was used to 
collect the spectra of the oil samples in transmission 
mode of measurement. The spectrometer could acquire 
the spectra of the samples within 200-1100 nm with the 
wavelength and board resolutions of 1 nm and 16 bit, 
respectively. A precise grating has been used in the 
spectrometer to isolate the wavelengths onto the detector. 
The detector of the spectrometer was a CCD array (model: 
TOSHIBA TCD 1305 AP) with a number of pixel of 
3648. Using a cuvette holder accessory, the spectrometer 
could ideally acquire the absorption spectra of the liquid 
samples such as oils. The cuvette holder had been 
equipped with a 10 W tungsten/halogen lamp which 
could produce a consistent illumination for the samples 
using a 15 V power supply. The light passed the path of 
12 mm after entering the cuvette through the optical port 
and then, entered into the spectrometer via SMA 905 
standard port. Before acquiring the sample spectra, 
reference and dark measurements were conducted for 
calculating the relative spectra. Then, without changing 
the position of the cuvette, 5 mL of the sample was 

poured into the cuvette and the raw, absorption, and 
transmission spectra were recorded for each sample. The 
scan number and the integration time of the spectrometer 
were set as x and y, respectively. After collecting each 
sample spectrum, the cuvette was washed and well 
cleaned and the entire process was repeated from the 
beginning of the next sample. 
2.3  Chemometric strategy 
2.3.1  Spectral pre-processing 

The data acquired with spectroscopy techniques 
usually contains non-chemical biases such as changing 
the detector sensitivity, scattering effects, and interferences 
from external light sources. Therefore, data pre-processing 
in spectroscopy is an important step, before performing 
any advanced chemometric data analysis.  

Due to the low detector sensitivity in the extreme 
region of spectral bands, the wavelength range was 
reduced from 200-1000 nm to 500-900 nm. Further, to 
reduce the noises at the local level over the spectrum, 
smoothening with the help of Savitzky-Golay (SAVGOL) 
algorithm was performed. The SAVGOL smoothening 
was performed with the help of a 15-point window and 
the second order polynomial. Furthermore, to reduce any 
baseline shift and variations due to global signal intensity, 
the standard normal variates (SNV) were calculated for 
each spectrum. All the further data analysis was 
performed by using the pre-processed spectra.  
2.3.2  PCA 

PCA is the most popular data visualisation and feature 
extraction technique commonly used in spectroscopy 
domain (Wold et al., 1987). The major aim of the PCA is 
to identify the major independent sources of variation in 
the data which can support an enhanced visualisation of 
the data. Typically, in the case of spectroscopy data, the 
major sources are the wavelength regions of the spectrum 
which are causing variation in the data. Implementation 
of PCA involves performing orthogonal transformation of 
the correlated wavelengths to linearly uncorrelated 
variables defined as the principal components (PCs). 
Retaining the maximum amount of the variability in the 
data is the major aim of this data transformation. Further, 
the order of the PCs extracted from the data defines the 
amount of variability explained in the data i.e., the first 
PC represent the maximum amount of variability, the 
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second PC explains the most of the left variability 
(orthogonal of the first two PCs) and so on. The PCA 
decomposition model for spectra set matrix X (n × p) can 
be understood as Equation (1): 

X = TWT                 (1) 
where, T is the score in lower explained by the number of 
principal components specified and W is a p × p matrix 
whose columns are the eigenvectors of XTX.  

The number of extracted PCs defines the new 
orthonormal basis set for the data and later that can be 
used to perform the data visualisation. To have an 
interpretation of data in two or three-dimensional plots, 
the respective PCs can be selected and defined as the new 
orthonormal basis set for the data to perform the 
transformation. The transformation of data based on PCs 
can be performed as follow (Equation (2)): 

X̂ =XW                  (2) 

where, X̂ is the score in lower explained by the number of 
principal components specified, X (n × p) is the mean 
centred original data matrix, and W is a p × p matrix 
whose columns are the eigenvectors of XTX. 
2.3.3  Mahalanobis distance 

Mahalanobis distance is the high dimension Euclidean 
distance (Mahalanobis, 1936). The only difference is the 
covariance matrix used in the case of Mahalanobis which 
is usually unity in the case of Euclidean distance. 
Typically, it is a multi-dimensional generalisation for 
measuring the number of standard deviation that away 
from some distribution. The calculation of Mahalanobis 
distances can be understood as Equation (3):  

1( ) ( )TD x m S x m−= − −           (3) 

where, D is the Mahalanobis distance; m is the mean 
spectral profile of the pure oil samples, and S is the 
covariance matrix for the pure oil spectra.  
2.3.4  Multi-class support vector machine 

Adulteration detecting problems usually involve 
assigning a particular label to the oil samples such as 
adulterated or not adulterated, which can typically be 
understood as a binary class assignment. Further, when 
there are different levels of adulteration in the sample, the 
case extends from binary class to multi-class. SVM are 
powerful supervised non-probabilistic learning data 
modelling techniques popular for performing both binary 

and multi-class classification tasks (Cortes and Vapnik, 
1995). The SVM utilises the hyper-planes to define 
decision boundaries between classes for performing the 
classification. Further, to deal with the non-linear 
complex nature of the data, SVM utilises kernel functions 
to map the data to a higher-dimension, where it can be 
linearly separated with the help of hyper-planes. The 
choice of the hyper-planes is made in such a way that 
they allow the largest margin for separation of the classes. 
The SVM algorithms are usually developed to perform a 
binary classification, however, SVM can be used for 
multi-class classification problems by utilising several 
independent binary classifiers. This can be performed by 
combining it with ensemble methods such as error 
correcting output codes (ECOC). The ECOC deals with 
the multi-class classification problem by converting it 
into several independent binary classification problems 
(Übeyli, 2007). 

In the present work, two different classification 
experiments were performed. One was a multi-class 
classification for identifying different levels of 
adulteration in the olive oils ranging from 0%-40% and 
leading to a five-class classification problem. The second 
classification experiment was performed for classifying 
two different range of adulteration 0%-10% and 
20%-40%, leading to a two-class binary classification 
problem. For both cases, the SVM modelling utilises the 
Matlab’s Statistics and Machine Learning Toolbox 
(R2016b). For the multi-class modelling a cubic SVM 
was used and for the binary problem a linear SVM was 
used. The ECOC-SVM uses a one-versus-one coding 
design, in which for each binary learner, one class was 
assigned a positive value and the other was assigned a 
negative value. The coding design utilises all 
combinations of class pairs assignment. To map the data 
to the higher dimension, a Radial Basis Function (RBF) 
kernel was used. RBF kernel has the benefit of 
non-linearly mapping the sample to the higher 
dimensional space for dealing with a non-linear 
relationship between observations and classes. The 
cross-validation of the model was performed by 10-fold 
cross-validation method. In this method, the calibration 
data is divided into 10 equal parts. For making the model, 
9 out of 10 parts were used to cross-validate, the 10th part 
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was used to test. This was repeated for 10 times and the 
average prediction accuracy was recorded. The trained 
classifier characteristics were then presented with the 
cross-validation accuracy, receiver operator 
characteristics (ROC) curves, and confusion matrix. 

3  Results and discussion 

3.1  Spectral profiles 
Figure 1 presents the mean spectral profile of the six 

different olive oils used in the experiment. Further, Figure 
1(a) explains the mean raw absorbance profile and Figure 
1(b) presents the mean spectrum profile after the 
pre-processing with SAVGOL and SNV methods. It can 
be  seen  clearly  in  Figure  1(a)  that  before  the 
pre-processing, the oil spectra are differing in their global 
intensities and thus, the comparison is a difficult task. 
However, after the pre-processing, the spectra become  

much more similar and the difference due to global 
intensities is now eliminated. The correction is possible 
with the help of SNV transformation which reduced the 
spectra to a zero mean and unit standard deviation. Over 
the spectrum at various waveband regions, different peaks 
could be identified in the wavebands of 540-550 nm, 
550-570 nm, 600-630 nm, and 650-689 nm. Different 
peaks correspond to different biochemical components 
presented in the olive oils. In the previous works, 
different peaks in the similar regions had been identified 
due to the fluorescence molecules presented in the oils. 
The major fluorescent molecules exhibited characteristic 
signatures at different wavelengths such as chlorophylls 
and pheophytins (600-750 nm), compounds derived from 

vitamin E (∼525 nm), and primary and secondary 

oxidation products (485-540 nm) (Kyriakidis and 
Skarkalis, 2000).  

 
(a) Mean raw absorbance profiles                     (b) Mean Spectral profiles after preprocessing with SNV and SAVGOL smoothing 

Figure 1  Mean spectral profiles of six olive oil samples 
 

Figure 2 presents the spectra of an olive oil 
adulterated at different levels of adulteration, ranging 
from 0%-40%. The presented spectra were smoothened 
and normalised. Over the spectrum, it could be clearly 
seen that different regions over the spectrum exhibited 
difference in signal intensities. This differences in 
intensities could be understood as resulting from the 
differences in the levels of adulteration, as the 
differences due to global intensities were reduced with 
the help of pre-processing. The major differences could 

be identified in the regions from 520-640 nm, 700-  
900 nm, and the peak at 670 nm. The difference could 
have raised due to the differences in the chemical 
composition of the sunflower oil. Increasing amount of 
adulteration affected the spectral profile of olive oils and 
more characteristics dominated by sunflower when the 
amount of adulteration was increasing. It could also be 
seen that in the region of 800-900 nm, the adulteration 
from 0%-10% and 20%-40% identified as two separate 
cases. 
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Figure 2  Preprocessed spectral profiles of olive oil for different 
levels of adulteration 0% (dark blue), 5% (red), 10% (Yellow), 

20% (Purple), 30% (Green) and 40% (Sky blue) 
 

3.2  PCA 
A total of 8 PCs were selected from the data based on 

the 98.63% of explained variance. Figure 3 further 
depicts the criteria (cumulative variance explained) and 
evolution of the variance as the PCs were extracted. 
Figure 4, further presents the loading and the scores 
resulting from the first 3 PCs explaining a total of 89.66% 
of the data variance. The Figure 4 (a, b, c) presents the 
loading and the Figure 4 (d, e, f) presents the scores 

corresponding to the loadings. The loading of the first PC 
had two different major peaks at 620 nm and 670 nm, 
which could be understood as the result of the 
pheophytins and chlorophyll presented in the oils. The 
second and the third PCs had the peaks at various 
different locations but independent to each other. For the 
second PC, a high-intensity broad peak could be seen in 
the region of 700-800 nm, whereas, for the PC3, various 
different peaks could be identified. In the score plots, it 
could be seen clearly that the major differences identified  

 
Figure 3  Criterion for selecting the number of principal 

components, cumulative variance captured versus the number of 
principal components extracted 

 
(a) First loading (b) Second loading (c) Third loading 

 
(d) First vs second PC scores (e) Second vs third PC scores (f) First vs third PC scores 

 

Figure 4  The loading and scores of first three principal components capturing 89.66% of total variance in the data 
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in the score were obtained from the different amount of 
adulteration ranges. Two major clusters could be 
identified, one belonging to the adulteration level from 
0%-10%, and the other for the adulteration level of 
20%-40%. However, it was difficult to identify visually 
and comment on any particular oil, because the 
experiment was performed with repetition and consisting 
of a large number of oil samples. 
3.3  Mahalanobis distances 

Figure 5 presents the Mahalanobis distance plot for 
the adulterated oil samples. The x- and y axes explain the 
sample and Mahalanobis distance from the pure oil, 
respectively. A zero distance indicated the pure olive oil 
sample. The different levels of adulteration could be 
identified with different markers. It could be seen in 
Figure 5 that globally for all the oil samples, the 
Mahalanobis distance was greater than zero, and no 
sample was identified as the pure olive oil sample, which 
was in accordance, since all the samples presented were 
adulterated oil samples. Further, it could be seen that as 
the amount of adulteration was increasing, the 
Mahanalobis distance was also increasing, highlighting 
the dissimilarity in the adulterated oil and pure oil 
samples. However, this increase was not the same for all 
the olive oils. In some oils (Oil samples of 1, 3, 4, and 6), 
the distance increased rapidly, whereas in the case of 

other oil samples (Oil samples of 2 and 5), the distance 
was evolving slowly. 

 
Figure 5  Mahanalobis distance of adulterated oil samples 

(5%-40%) from the pure oil samples based on the first 8 PC scores 
 

3.4  Classification results 
Figure 6 and 7 present the results of two different 

SVM classification models developed for classifying 
different levels of adulteration range from 0%-40% and 
also, for classifying the two different levels range of 
adulteration 0%-10% and 20%-40%. For both cases, the 
performance of the models was presented with the help of 
ROC curves and the confusion matrices. It could be seen 
clearly in Figure 6 that it was difficult for the model to 
classify accurately the different levels of adulteration in  

 
Figure 6  ROC characteristic and the confusion matrix for the SVM model developed for the classification of different levels of adulteration 

in olive oil samples (0%-40%) 



December, 2018     Utilizing visible and near infrared spectroscopy to characterize olive oil adulteration      Vol. 20, No. 3   213 

 
Figure 7  ROC characteristic and the confusion matrix for the SVM model developed for the classification of olive oil samples adulterated 

with 0%-10% from 20%-40% adulterated samples 
 

oil samples. As a result of which, a high misclassification 
for different classes was obtained. However, the overall 
validation accuracy of the model for a 10-fold cross 
validated calibration model was 62.1%. For the binary 
classification case, the performance of the SVM was very 
high as compared to the multi-class classification of 
adulteration levels of the olive oils. It could also be seen 
in Figure 7, that only 12 samples were misclassified. The 
overall accuracy of the model was 96.3%. A reason or the 
poor performance of the multi-class model could be 
understood as very similar spectral profiles of the samples 
for the low level of adulteration, especially for <10%. 
Furthermore, the variability of different olive oils used 
altogether for modelling complicated the model and led to 
a misclassification case. 

4  Conclusion 

Non-destructive and rapid detection of adulteration in 
olive oils is a major concern for the industry as well as for 
consumers. The present study was implemented to 
investigate the potential of VNIR spectroscopy and SVM 
classification for detecting different levels of adulteration 
of sunflower oil in olive oil. The effect of adulteration 
was identified at different locations over the VNIR 
spectrum. Further, the PCA and Mahalanobis distance 
supported the visualisation of multivariate data generated 

by the VNIR. The accuracy of SVM model was 62.1% 
for classifying the different levels of adulteration in oils 
and 96.3% for detecting the adulteration in the range of 
0%-10% and 20%-40%. VNIR spectroscopy could 
support the detection of sunflower oil adulteration in 
olive oil, however, study showed that detecting lower 
levels (<10%) of adulteration was a challenging task for 
VNIR spectroscopy. 
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