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Assessment of dynamic linear and non-linear models on rainfall 

variations predicting of Iran 
 

Majid Javari 
(College of Social Science, PayameNoor University, Post Office Box 19395-3697, Tehran, Iran) 

 

Abstract: The main research aims to detect the linear and nonlinear variability modeling in analyzing the variability patterns of 
rainfall series.  For rainfall linear and nonlinear variability modeling, the Autoregressive Integrated Moving Average (ARIMA) 
models and Autoregressive Conditional Heteroskedasticity (ARCH) family models have been used for predicting the monthly 
and annual rainfall series extracted from Islamic Republic of Iran Meteorological Office (IRIMO) between 1975 and 2014 
within 140 stations in Iran.  Several ARIMA and ARCH family (six models) models have been used and their validity has 
been confirmed by evaluating different accuracy indicators, using the hybrid model for the variability modeling.  The analysis 
of ARIMA and Generalized Autoregressive Conditional Heteroskedasticity (GARCH) selective models indicated existence of 
random and non-random in the rainfall time series.  The combination model of (1,0,0) and GARCH (1,1) is applied to the 
estimate and prediction of monthly rainfall.  With careful valuation of the hybrid model, the ARIMA (1,0,0) and GARCH(1,1) 
is recognized as the significant acceptable model by determines of different accuracy indicators similar to mean squared error 
(77025.34); root mean squared error (277.53); mean absolute error (167.68); mean absolute percentage error (79.68); and 
Theil’s U coefficient (0.365).  However, the results showed that the hybrid model, as a variability model is more efficient in 
forecasting the rainfall variability and underlying this model can be used as variability forecast model and chaos phenomena in 
Iran.  In addition, a nonlinear model of ARCH family, especially GARCH (1,1) provided a quantitative-analytical method to 
distinguish between a particular random and non-random model for rainfall variability in Iran. 
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1  Introduction  

The rainfall variability has important effects on the 
climate, and the variable patterns effects can be diverse at 
various temporal and spatial scales (Javari, 2017a). The 
concept of variability is widely being used in different 
subjects of climatology. There are various points of view 
about the concept of variability in climate and climatic 
elements (Javari, 2017d). In climatology, rainfall 
variability affects the regionalization of climate and 
hydrology, due to affecting drought and environmental 
conditions and the water supplies to economic 
development (Li et al., 2015; Narayanan et al., 2013)The 
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rainfall variability may lead to standard deviations and 
variance in climatic elements. There is growing evidence 
revealing rainfall variability in the world, especially in 
some parts of arid and semiarid zones (Santos et al., 
2015). The increase in rainfall variability is growing 
interest in revealing the linear and nonlinear forecast of 
climatic analysis. One common model used in the 
estimations of rainfall variability is the ARCH. Engel et 
al. (1984) suggested the ARCH model and Bollerslev 
(1986) presented the GARCH model to analyze the 
variability. In the ARCH model, variability of rainfall 
stations exceeding a normal condition, are computed in a 
specified long-period. The ARCH model can be 
denominated based on the effects variance of the error 
term of an actual series. The ARCH family include 
ARCH, GARCH, Autoregressive Conditional 
Heteroskedasticity in Mean (ARCH-M), Exponential 
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Generalized Autoregressive Conditional 
Heteroskedasticity (EGARCH), Glosten, Jagannathan and 
Runkle (GJR) and Threshold Autoregressive Conditional 
Heteroskedasticity (TARCH), the preference of ARCH 
family models are the spatial distributions in the 
properties and patterns of rainfall, but these also can be 
nonlinear as they can response in very different rainfall 
variability (Javari, 2016) among stations (Gouriéroux, 
2012; Hafner et al , 2015; Shimizu, 2014). Therefore, all 
climatic models need the variability forecasting. In the 
climate, some of the variability patterns are predictable 
(seasonality, trend and cyclic patterns), and some other is 
unpredictable (random patterns) (Javari, 2017b). 
Therefore, changes in monthly and seasonal variability 
patterns in rainfall amounts were being forecasted using 
ARCH family models as several nonlinear models to 
provide regionalization of rainfall in Iran. ARCH models 
have been applied in monthly, seasonal and annual 
rainfall to analyze and detect variability, the risk of 
thresholds climatic variations, evaluating the variation 
patterns, forecasting temporal variability confidence 
intervals and obtaining more efficient climatic patterns 
under the heteroskedasticity existence during the last 39 
years (1975-2014) in the ARCH model, assume that the 
true climatic data is generating the process of continuous 
compounded returns, climatic variable has a quite 
unpredictable conditional mean and a temporal 
conditional variable variance. Temporal climatic 
variability theory expresses that a climatic element with a 
higher expected risk would affect a higher return on 
average. The relationship between expected effectiveness 
return and risk was suggested in an ARCH model (Engle 
et al., 1987). They presented the ARCH in mean, or 
ARCH-M, model where the conditional mean is an 
accurate pattern of the process conditional variance in 
variability as a function in ARCH. The ARCH-M model 
provided a new approach by which a temporal variable 
risk, and reliability analysis could be forecasted in the 
climate (Chambers et al., 1983; Souri, 2012). In this 
regard, the serial correlation in the analysis of climatic 
series is important. LeBaron (1992) noted a strong 
inverse relationship between variability and serial 
correlation for the model returns in the temporal analysis. 

He presented the exponential autoregressive GARCH or 
EGARCH model in which the conditional mean is a 
non-linear pattern of the conditional variance for using 
the variability of climatic series. In this regard, the 
relationship between autocorrelation and variability, and 
predicting an inverse relationship between variability and 
autocorrelation in the analysis of climatic series is 
essential (Kim, 1989; Sentana et al., 1991). According to 
the multivariate ARCH models, the asymmetric 
modelling of the conditional variance as a forecast 
method is important. Therefore, the modelling of the 
conditional variance as a univariate GJR model is also 
used. The moment structure of the EGARCH model was 
investigated (He et al., 2002; Karanasos et al., 2003). 
Degiannakis (2008) showed that the TARCH model is 
able to statistically provide the temporal rainfall 
variability forecasts. One of the main aspects of ARIMA 
models is their ability to analyze the climatic changes in 
the climatic series and forecasting the climatic variability 
patterns (Javari, 2017c). In ARIMA models, the 
forecasted rainfall is calculated using a linear 
combination of the rainfall series in various stations. This 
study has investigated rainfall variability by 
implementation of ARCH and ARIMA models on the 
various types of rainfall series. The paper is organized as 
follows: we briefly introduced the ARCH and ARIMA 
methods to provide a description of our proposed method 
on precipitation in section 2. Section 3 presents the new 
model of rainfall variability in detail. The experimental 
results and conclusions are respectively presented in 
sections 4 and 5. 

2  Materials and methods 

2.1  Study areas and materials 
Iran lies between 25°3′-39°47′N in latitude and 

44°5′-63°18′E in longitude in the southwestern of Asia 
(Figure 1). We obtained monthly, seasonal and annual 
rainfall data for all of Iran’s 140 stations from the IRIMO 
and 38746 rainfall points from has been extracted and 
processed the rainfall layers of Iran by using ArcGIS. 
Precipitation series of 140 stations and 38746 rainfall 
points in Iran were studied for the period of 1975-2014.  

The homogeneity analysis was applied to the 
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precipitation series of each station (Costa and Soares, 2009) by using SYSTAT, Eviews and Minitab softwares . 

 
Figure 1  Selective stations in Iran 

 

2.2  Methods 
2.2.1  Definition the properties of models 
   In the use of time series models, there are important 
aspects of models that can be noted in this regard in order 
to forecast the models. This study summarizes the 
characteristics of the time series as follows: 

ARCH Models: The ARCH models that are not 
constant at the Autoregressive Conditional variance. In 
the ARCH model, the autocorrelation in variability is 
expressed by the conditional variance of the error, which 
in the simplest case is dependent on the square error of 
the previous period. 

GARCH Models: GARCH model is the generalized 
model of ARCH in which errors and variance are entered 
in the model with a lag.   

GJR Model: GJR model is the simplest type of 
asymmetric GARCH model. In this model if the γ value is 
statistically not significant, it means that the shock effect 
on the variability is quite “symmetrical”.  

TARCH Models: TARCH model is to study the 

events that happened in the past and their effects are 
already available.  

EGARCH model: The Exponential Generalized 
Autoregressive Conditional Heteroskedasticity that is 
considered to be the dependent variable in forming of the 
logarithm and the effects of asymmetric shocks. Test of 
Asymmetric Distribution: This test is to study the 
asymmetric variability of time series. This test is based on 
measuring the bias of sign, and bias of size.  

ARIMA Models: ARIMA models are being used to 
analyze the stationary and non-stationary time series. The 
use of the ARIMA models, the diagnostic model, 
selecting appropriate models and prediction models are 
important. In identifying the models of ARIMA it would 
be essential to study the stationary in variance, stationary 
in mean and both. ARIMA models as Box-Jenkins 
method is an approach to process autoregressive 
integrated moving average and to analyze the seasonal 
(multiplicative and additive) and non-seasonal models. 
ARCH family models are used to study the nonlinear 
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variability of the rainfalls series, and ARIMA models are 
used to predict the linear patterns of the rainfalls series. 
Purposes of this study: (1) represent a hybrid model, an 
ARIMA and an ARCH family model, to predict the 
monthly and annual rainfalls series; (2) evaluate the 
efficiency of each model reflected in this study using 
actual rainfalls series versus longitude series, latitude 
series and temporal series; (3) assess the efficiency of 
hybrid model in comparison to ARIMA model and 
ARCH family model using precision indicators.  
2.2.2  The application of ARCH Family models 

In this study, the focus is on the efficiency of monthly 
and annual variability of precipitation in Iran. In order to 
provide the variability of Iran rainfall, temporal patterns, 
diversity of precipitation variability and the spatial 
patterns, the diversity of rainfall variability that is studying 
the rainfall variability is to using a diverse linear and 
nonlinear dynamic model. Starting point for modeling the 
variability is usually the measurement of test unit. In this 
study, statistical tests such as Quintile Plot and Kernel 
density are used to provide a probability distribution of the 
series and to select distribution in the process of modeling 
the variability of precipitation, and at the next stage, the 
testing of series stationary was performed. Accordingly, 
the stationary in the mean and variance of the series was 
studied. To measure the stationary of the series, the 
autocorrelation function, partial autocorrelation function 
and Augmented Dickey-Fuller test were used. As for the 
stationary of monthly and annual precipitation in Iran, the 
next step was to do the measurement and estimation of 
monthly and annual rainfall variability factors, including 
models of ARCH, GARCH, GJR, TARCH, EGARCH, 
ARCH-M and ARIMA. The statistical method of 
stationary of the series, model with autoregressive values 
and moving averaging amounts is defined as follows: 
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where, µ is the rainfall monthly mean; σ2 is variance term; 
γk is the covariance and ρk is the correlation. In this study, 
is used the augmented Dickey-Fuller test for checking of 
stationary. The following regression equation based to 

augmented Dickey-Fuller test was used in this study to 
estimate the ARCH models: 

1 1

p
t t i t i ti

y t y yα β δ θ ε− −=
Δ = + + + Δ +∑      (2) 

where, t is the rainfall trend; Δ is difference value; P is 
the lag number and yt is the rainfall series. 
   In this paper, LM-test is also used to apply the ARCH 
model and predict the mean and variability of rainfall 
series. The model test of autoregressive conditional 
heteroscedasticity (ARCH) relates to the stability or 
instability of variance of the errors. In fact, first of all, 
rainfall series error variance needs to be explored. The 
conditional average with ordinary least squares method is 
estimated as follows (Craves et al., 1980; Noureldin et al., 
2014; Souri, 2012): 
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Because of the limitation in the q that should have 
been given to the residuals of the ARCH model. At this 
stage of the study, the likelihood ratio test is 
recommended. In the application of this model, according 
to the characteristics of the model, the initial value and 
related changes are important. So, in the application of 

this model, the normal distribution assumption ( ) based 

on the likelihood function should be noted. We used a 
function to normalize the residuals, as follows (Cleveland 
et al., 1984; Hafner et al., 2015; Souri, 2012): 
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W, under the null hypothesis tends to X2 distribution 
with degrees of freedom 2. If the residuals are normal, BJ 
statistic is not significant (Efron, 1982; Mihailović et al., 
2015). It means BJ statistic amount is small and the 
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probability value is greater than 0.05.  
2.2.3  The use of the ARCH models of rainfall 

Engle (1982) presented ARCH models and 
generalized as GARCH (Bollerslev, 1986; Taylor, 1986). 
These models are usually used in various climatic 
researches, especially in climatic time series investigation. 
Before predicating ARCH models for the 40 years of 
rainfall data series extracted from IRIMO, ARCH models 
were expanded as the first pattern to identify the 
variability models of the monthly and annual rainfall 
series. Firstly, the rainfalls series were confirmed for the 
conditional mean equation to validate the condition of an 
appropriate ARCH family model. Secondly, the 
conditional variance was analyzed to identify the ARCH 
model that best explains the resulted rainfalls series 
variability. Thirdly, the conditional error distribution was 
evaluated to identify the reliability model that best 
explains the predicted rainfalls series. The use of ARCH 
models is to assess or predict the nonlinearity of the 
precipitation series for comparing the linear and nonlinear 
models of the predict precipitation series. In this study, 
the six non-linear models of ARCH family are used to 
predict the rainfall series. The autoregressive conditional 
heteroskedasticity model is studying the effect of the 
conditional variance series with no reflection on the mean 
which may change, and is affected by some variables of 
the model. In this paper, an ARCH model which 
improves a heteroskedasticity amount into the conditional 
mean equation was used to indicate the influence of 
variability on mean forecast and calculate the mean and 
variability of rainfall series. The conditional variance can 
be illustrated as follows   

2
1 2( | , ,...)t t tVar et e eσ − −=           (10) 

In the models of ARCH family, using various 

parameters such as, 2 ,  ,  ,  ,  ,  t ttσ α β Φ ε respectively, 

indicates the amounts of residuals or errors, models 
constant coefficients and explained variance. The 
variability of autocorrelation model it is expressed by the 
conditional variance of the error, which depends on the 
square error of the previous period in simplest case and 
shown as Equation (11) (Souri, 2012).  
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The mentioned model is known as ARCH in Equation 
3, because the conditional variance depends on the error 
of the previous period. Since σ2

t is the one-period forward 
forecast variance based on previous information, it is 
called the conditional variance. In ARCH model, 
conditional mean equation with the original equation, 
which represents the dependent variable (Yt) during the 
period (t), is explained as follows (Cleveland et al., 1984; 
Xekalaki et al., 2010): 
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σ2
t  is conditional variance that essentially must have 

positive value. In testing of the model the stability or 
instability of the variance error is considered. To evaluate 
the ARCH family models was used in this study the 
validation and accuracy indexes, including MAE, RMSE, 
MSE and R2. The validation and accuracy criteria are 
shown as follows: 
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The usually used validation and accuracy, which data 
in actual series the level of overall conformity between 
the observed and predicated series, are estimated by 
Equation (14) to Equation (17).  
2.2.4  The use of the GARCH of rainfall 

For GARCH model, it is important to predict of the 
rainfalls series with a nonlinear variability pattern to 
prevent rainfall pattern variations. Models of variability 
play an essential role in predicting the patterns of climatic 
series. Bollerslev (1986) presented the GARCH model, 
perfects the new description by adding lagged conditional 
variance, which represents as a smoothing amount. The 
GARCH model that has been illustrated is usually called 
the GARCH (1, 1) model. The GARCH is the generalized 
of ARCH model in which errors are entered in the model 
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and variance is with a lag and shown as GARCH (1, 1) 
which can be calculated as follows (Badescu et al., 2015; 
Narayan et al., 2015): 

2 2 2 2 2
0 1 1 1... ...t t q t q t p t pe eσ α α α βσ β σ− − − −= + + + + + +  (18) 

The mentioned model with the temporary and 
permanent implementations shows that any change or 
fluctuation causes an effect that after a while disappears 
and the σ2

t returns to the surface of ω . Therefore, the 

mentioned model, if be considered as a changeable mean, 
the overall model can be used as follows (Souri, 2012; 
Tian et al., 2015):   
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The equation σ2
t – mt shows the temporary part that is 

with a coefficient of α+β has found to zero convergence 
and equation mt defines the long-term part of series that 
by the coefficient of ρ finds the convergence to ω. The ρ 
is usually close to one and therefore, mt convergence rate 
is very low. If is γ>0, it suggests that the negative effects 
of fluctuations are different from the positive dynamics. 
To predict by the mentioned model, it is obvious that 
according to the previous climatic observations, the 
observations series for the next years can be calculated. 
Therefore, predicting is done with this model in the two 
forms of static and dynamic. Namely (Abounoori et al., 
2016; Calzolari et al., 2014):  

2 2 2
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2 2 2
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2 2 2
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   GARCH is applied for the symmetric and asymmetric 
forms. In symmetric models, the variance variability is 
the same for the positive and negative shocks. 
Accordingly, it is necessary to consider the effects of 
positive and negative shocks as asymmetrically. 
Therefore, at this stage, the GJR and EGARCH models 
are considered. In general, when checking generalized 
autoregressive conditional heteroskedasticity model in 
climatic models, the skillful test is the White test.  
2.2.5  The Application of GIR Model 

The GIR model is the simplest model of asymmetric 
GARCH that conditional variance is as follows (Chan et 

al., 2016; Koul et al., 2015): 
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In this model if γ is not significant it means that the 
fluctuations on the variability is absolutely symmetric and 
if γ is significant, the model is asymmetric and the effects 
of positive and negative shocks cannot be the same. 
2.2.6  The application of the EGARCH models 

The EGARCH is a model for the conditional variance 
as follows (Cleveland et al., 1984; Shi et al., 2009; Souri, 
2012): 
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In this model, if γ=0, the model is symmetric and 
otherwise, it would be an asymmetrical model. It shows 
that negative fluctuation effects on climate are more than 
the positive fluctuation effects if γ be positive. 
2.2.7  The application of the TGARCH 

The TGARCH is a model that is able to show the 
effects of past climate events which its effects still exist. 
General form of this model is as follows (Cleveland et al., 
1984; Harvey et al., 2014; Souri, 2012): 
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In this model, et–k<0 is an indicative of adverse events 
during the t-k period that in this case, It–k=0. If γK>0, it 
causes an increase in the adverse events of variability so 
γK is not significant and model will be symmetric with the 
similar negative and positive effects.  
2.2.8  The application of the ARCH with conditional 
mean equation 

The application of the ARCH model with conditional 
mean equation (ARCH-M) according to the standard 
deviation or conditional variance in climate studies is 
necessary in analyzing conditional mean equation. In this 
case, entering the standard deviation in conditional mean, 
means that we want to study the relation of predicting the 
changes effects to examine the conditional standard 
deviation. Therefore, the model can be considered as 
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follows (Chen et al., 2015; Cleveland, 1984; Hafner et al., 
2015): 

1t t tY eμ δσ −= + +             (27) 
2 2 2

0 1 1 1t t teσ α α βσ− −= + +           (28) 

If δ be significant, it means that there is a relation 
between accurate prediction and fluctuations. The 
Application of Multivariate generalized autoregressive 
conditional heteroskedasticity model (MGARCH) is 
usually, to consider the simultaneous variability of two or 
more climatic variables (rainfall monthly, seasonal and 
annual series) for modeling. In this case, maybe the 
variability of the variables have impacts on each other, 
therefore, the MGARCH models can be applied. In the 
application of these models it is assumed that the 
variability of the variables is constant.  
2.2.9  The use of the GARCH of rainfall 

Box and Jenkins were the first ones who offered the 
autoregressive moving average (ARIMA) method in 1976. 
The models of ARIMA deals with series of stationary and 
non-stationary situations to analyze time series. In this 
regard, the application of ARIMA models is important in 
the diagnosis of model, fitting of model, testing, selecting 
and predicting of model. In investigating of ARIMA 
models, the study of stationary in the variance, stationary 
in the mean, and stationary of variance and mean are 
necessary. In the testing of stationary in variance using 
the Box-Cox approach for the convert of non-stationary 
to stationary is essential. In the study of stationary on 
average, according to the drawing of the autocorrelation 
function and partial autocorrelation function, conversion 
of the series by differencing the series is remarkable. The 
ARIMA models as Box-Jenkins approach which is 
considered as the process of autoregressive integrated 
moving average are searchable for seasonal 
(multiplicative and additive) and non-seasonal models. In 
the analysis and application of ARIMA model for a 
stationary series, these three following components are 
important (Babu et al., 2014; Cleveland et al., 1984; 
Farajzadeh et al., 2014): 

Autoregressive -Moving average with order p, q 
(ARIMAp,q):  

1 1 2 2

1 1 2 2
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t t t q t q
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   In the first order, autoregressive process can be a 
relationship which indicates the autocorrelation function 

as 1
k

kρ ϕ= . If the series is not stationary, will be φ1=1 

otherwise it will be |φ1|<1. In the second order, 
autoregressive process can be considered under the 
following conditions (Souri, 2012): 

1 1 2 2t t t ty y yϕ ϕ ε− −= + +             (30) 

Therefore, autocorrelation function coefficients can 
be considered as follows (Narayanan et al., 2013):  
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The moving average process with first order can be 
considered as follows: 

1 1t t ty ε θ ε −= −               (32) 

ARIMA is a linear modeling method which has 
controlled many subjects of time series predicting. It is 
created upon three components: autoregression (AR), 
integration (I), and moving average (MA) technique 
(Narayanan et al., 2013). The ARIMA with first order can 
be considered as follows (Babu et al., 2014; 
Chattopadhyay et al., 2011; Liu et al., 2013): 

1 1

p q

t i t i j t j
i j

y y uα β φ− −
= =

= + +∑ ∑         (33) 

In this study, a rainfall series can be taken as 
involving of a linear autocorrelation pattern and a 
nonlinear factor by using Equation (34) (Yan et al. 2016).  

t t ty linear nonlinear= +            (34) 

where, yt is the primary series; lineart is the linear factor 
and nonlineart is the nonlinear factor.  

The residuals predicted from the ARIMA model are 
described by Equation (35): 

ˆ
t t te y linear= −              (35) 

And the residuals predicted from the GARCH model 
are described by Equation (36): 

ˆ
t t te y nonlinear= −             (36) 

Therefore, the autocorrelation function coefficients in 
the process of moving average to one order in the lags 
can be shown as follows: 
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Autocorrelation function disrupted in the process of 
moving averages with first order in one lag. This process 
can reveal the moving average with second order as 
follows: 
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Autocorrelation function disrupted in the process of 
moving averages with second order in two lags. In a time 
series analysis the estimation of the autocorrelation 
function can be calculated according to the following 
models (Mendes et al., 2016; Souri, 2012): 
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The standard error of the autocorrelation function can 
be calculated on the basis of the equation: This equation 

can be considered in the t-test as:
k

k

k
r

r

r
t

s
= . If the simple 

autocorrelation function is | | 2
kr

t >  disrupted series in its 

lag. If the simple autocorrelation function placed in the 

11 / 96
n

±  distance, the null hypothesis would be 

rejected based on that the autocorrelation coefficient is 
zero at certain intervals. As a general rule, it is assumed 
that if the autocorrelation coefficient with a partial 
autocorrelation coefficient is zero, the absolute value of 
less than two is equal to the standard error. Using the Q 
function mentioned by Box-Pierce (1970), the testing has 
been proposed as Equation (40) (Box et al., 1970): 

2

1

m

k
k

Q T ρ
=

= ∑                 (40) 

T is Sample size and m is the number of 
autocorrelation coefficients. The test critical coefficient is 
based on chi-square test or X2 distribution. The mentioned 

test is not suitable for a small test sample and to fix this 
problem the statistics of Ljung-Box (1978) is used as 
follows (Ljung et al., 1978): 

2
2 2

1
( 2)

m
k

m
k

Q T T X
T k

ρ
=

= + −
−∑           (41) 

   Dickey-Fuller test was used to assess stability. There 
are several methods to estimate and in this paper, the 
values of Akaike information criterion (AIC), Schwarz 
Bayesian Information Criterion (SBIC) and 
Hannan-Quinn information criterion (HQIC) are 
examined for suitable model, namely (Noureldin et al., 
2014; Souri, 2012): 

2 2ˆ( ) kAIC Ln
T

σ= +             (42) 

2ˆ( ) kSBIC Ln LnT
T

σ= +           (43) 

2σ̂  is residuals variance that is equal to the sum of 

squared residuals divided by the degrees of freedom of 
the K = p – q + 1 . Each of these criteria becomes minimum 
in proportion to p p≤ , q q≤ . p  and q  are 

respectively the upper limits of MA and AR.  
Hybrid model:  
The hybrid model (Yan et al., 2016) for rainfall 

variability analyzing depend on two stages. In the first 
stage, ARIMA model is applied to study the linear pattern 
of the rainfall series and the method is the using to predict 
rainfall patterns. Equations (35) and Equations (36) are 
utilized to analysis the residuals from the ARIMA and 
GARCH models. In the second stage, the residuals series 
are modeled using ARIMA and GARCH models and the 
amount produced from GARCH (1, 1) model is combined 
to the amount produced from ARIMA model to obtain the 
last results. The hybrid model uses the abilities of 
ARIMA model as well as GARCH (1,1) model in 
controlling rainfall patterns separately. 

3  Results and discussion 

In the variability analysis of the Iran’s monthly and 
annual precipitation series, it is necessary to present the 
characteristics of series descriptive statistics at first. The 
first step in modeling of rainfall variability is testing the 
series stationary. In this paper, various methods have been 
used such as series autocorrelation and partial 
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autocorrelation plot and Dickey- Fuller test. The Dickey 
-Fuller test results has been identified in Table 1.  
 

Table 1  Results of Dickey-Fuller test 

Period Test critical 
values Values Dickey-Fuller p Result 

January 
1% level 
5% level 
10% level 

–3.4478 
–2.8822 
–2.5779 

–11.2638 0.0000 stationary

February 
1% level 
5% level 
10% level 

–3.4478 
–2.8822 
–2.5779 

–12.3227 0.0000 stationary

March 
1% level 
5% level 
10% level 

–3.4478 
–2.8822 
–2.5779 

–12.6396 0.0000 stationary

April 
1% level 
5% level 
10% level 

–3.4478 
–2.8822 
–2.5779 

–11.7080 0.0000 stationary

May 
1% level 
5% level 
10% level 

–3.4478 
–2.8822 
–2.5779 

–11.4551 0.0000 stationary

June 
1% level 
5% level 
10% level 

–3.4478 
–2.8822 
–2.5779 

–11.3322 0.0000 stationary

July 
1% level 
5% level 
10% level 

–3.4478 
–2.8822 
–2.5779 

–10.5395 0.0000 stationary

August 
1% level 
5% level 
10% level 

–3.4478 
–2.8822 
–2.5779 

–10.0760 0.0000 stationary

September 
1% level 
5% level 
10% level 

–3.4478 
–2.8822 
–2.5779 

–10.0511 0.0000 stationary

October 
1% level 
5% level 
10% level 

–3.4478 
–2.8822 
–2.5779 

–9.8387 0.0000 stationary

November 
1% level 
5% level 
10% level 

–3.4478 
–2.8822 
–2.5779 

–10.8467 0.0000 stationary

December 
1% level 
5% level 
10% level 

–3.4478 
–2.8822 
–2.5779 

–10.0709 0.0000 stationary

Annual 
1% level 
5% level 
10% level 

–3.4478 
–2.8822 
–2.5779 

–10.8415 0.0000 stationary

 

The results of testing the series stationary revealed that 
Iran’s monthly and annual precipitation series are 
stationary. According to the stationary condition of the 
series, and considering the rainfall intercept and slope 
changes, the simultaneous analysis of monthly and 
annually rainfall series variability was examined. In Table 
2, the characteristics of the variability in the intercept and 
slope models have been found, and they were at significant 
levels. According to the weak changes of gradient, the 
non-stationary trend in the level of the series can be 
determined.  

 

Table 2  Characteristics of the volatility in the intercept and 
slope models 

Period F Χ2 P 

January 0.258 0.799 0.855 0.849 

February 0.444 1.367 0.722 0.713 

March 0.466 1.436 0.706 0.697 

April 1.996 5.947 0.117 0.114 

May 0.405 1.248 0.749 0.741 

June 0.079 0.246 0.971 0.970 

July 0.359 1.109 0.782 0.775 

August 0.379 1.171 0.768 0.76 

September 0.238 0.736 0.87 0.864 

October 0.356 1.099 0.785 0.777 

November 0.607 1.86 0.611 0.601 

December 0.341 1.05 0.795 0.788 

Winter 0.365 1.126 0.779 0.77 

Spring 0.525 1.61 0.665 0.656 

Summer 0.486 1.496 0.692 0.683 

Autumn 0.765 2.341 0.515 0.504 

Annual 0.69 2.116 0.559 0.549 
 

However, using stationary testing, the stationary 
monthly and annual precipitation series was confirmed. 
Figure 2 showed the stationary condition of the monthly 
series and also the annual series.  

 
Figure 2  The distribution of PACF and ACF 

 

Revealing of rainfall series stationary, series 
distribution was studied using Kernel density function. 
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The results of distribution with accompanying t significant 
test are specified in Table 3.  

 

Table 3  Results of B.J test  

Period B.J p Result 

January 234.07 0.00 accepted 

February 998.32 0.00 accepted 

March 1759.7 0.00 accepted 

April 119.88 0.00 accepted 

May 16.47 0.0003 accepted 

June 403.29 0.00 accepted 

July 833.4 0.00 accepted 

August 3317.23 0.00 accepted 

September 4402.72 0.00 accepted 

October 2888.57 0.00 accepted 

November 1226.02 0.00 accepted 

December 354.95 0.00 accepted 

Winter 863.27 0.00 accepted 

Spring 8.56 0.014 accepted 

Summer 4.25 0.12 accepted 

Autumn 1412.75 0.00 accepted 

Annual 687.63 0.00 accepted 
 

In addition, Figure 2 shows the normal distribution of 
the series. At the next stage of research using 

Brock-Dechert-Scheinkman (BDS) and the logarithm of 
the initial series, the condition of rainfall non-linear series 
was studied and measured.  

Table 4 shows the results of the BDS test in rainfall 
series. The results of test, confirmed the non-linear 
condition for stations annual precipitation, and the rainfall 
variability in Iran’s stations confirmed the condition of 
nonlinear models.  

Finally, according to fluctuations or absence of 
oscillation (chaos) in the annual series, using overlapping 
variance ratio test, including the Pure Random Walk, 
Exponential Random Walk, and Innovation Random Walk, 
in order to review and testing of randomness of the series. 
Overlapping variance ratio test follows the Z distribution 
to interpret the results and hypothesis testing. Therefore, 
the test results showed that for 99% confidence level Iran’s 
annual rainfall series does not follow a random walk 
theory. The results of overlapping variance ratio test have 
been specified in Table 5. 

 

Table 4  Results of BDS test for Iran rainfall 

January February March 

Dimension BDS Statistic Std. Error z-Statistic Dimension BDS Statistic Std. Error z-Statistic Dimension BDS Statistic Std. Error z-Statistic

2 0.011884 0.008143 1.459419 2 0.003371 0.008325 0.404908 2 0.002063 0.007195 0.286763

3 0.014827 0.013027 1.138112 3 0.005744 0.013338 0.430655 3 0.005289 0.011482 0.460664

4 0.015344 0.015620 0.982354 4 0.005746 0.016016 0.358777 4 0.006796 0.013730 0.495011

5 0.011864 0.016394 0.723710 5 0.002866 0.016835 0.170233 5 0.006033 0.014370 0.419805

6 0.013311 0.015921 0.836043 6 0.001591 0.016375 0.097158 6 0.002174 0.013916 0.156226

April May June 

Dimension BDS Statistic Std. Error z-Statistic Dimension BDS Statistic Std. Error z-Statistic Dimension BDS Statistic Std. Error z-Statistic

2 0.010004 0.004967 2.014156 2 0.001875 0.005532 0.338885 2 –0.000755 0.012812 –0.058958

3 0.016837 0.007886 2.134944 3 0.004940 0.008821 0.559941 3 0.003771 0.020614 0.182919

4 0.016600 0.009379 1.769943 4 0.004724 0.010538 0.448293 4 0.003216 0.024879 0.129260

5 0.020188 0.009761 2.068211 5 0.010775 0.011017 0.977993 5 0.004998 0.026296 0.190073

6 0.020166 0.009399 2.145555 6 0.011907 0.010657 1.117360 6 0.000353 0.025728 0.013739

July August September 

Dimension BDS Statistic Std. Error z-Statistic Dimension BDS Statistic Std. Error z-Statistic Dimension BDS Statistic Std. Error z-Statistic

2 –0.008700 0.012382 –0.702626 2 –0.006904 0.012261 –0.563079 2 –0.004401 0.013585 –0.323930

3 –0.009001 0.019919 –0.451884 3 –0.017486 0.019729 –0.886330 3 –0.016843 0.021896 –0.769250

4 –0.012294 0.024037 –0.511451 4 –0.016615 0.023810 –0.697841 4 –0.020422 0.026476 –0.771359

5 –0.006610 0.025401 –0.260237 5 –0.015402 0.025164 –0.612092 5 –0.016238 0.028039 –0.579131

6 –0.004711 0.024846 –0.189628 6 –0.013873 0.024616 –0.563559 6 –0.012723 0.027488 –0.462849

October November December 

Dimension BDS Statistic Std. Error z-Statistic Dimension BDS Statistic Std. Error z-Statistic Dimension BDS Statistic Std. Error z-Statistic

2 0.018204 0.008994 2.024027 2 0.008672 0.008879 0.976668 2 0.012260 0.008725 1.405220

3 0.021204 0.014350 1.477699 3 –0.000633 0.014177 –0.044645 3 0.015656 0.013959 1.121562

4 0.014383 0.017162 0.838108 4 –0.012665 0.016967 –0.746467 4 0.013449 0.016741 0.803339

5 0.018008 0.017968 1.002242 5 –0.015158 0.017776 –0.852673 5 0.011909 0.017575 0.677628

6 0.016408 0.017409 0.942499 6 –0.016328 0.017235 –0.947376 6 0.011816 0.017074 0.692039
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Table 5  Results of pure random walk, exponential random 
walk and innovation random walk tests 

Pure Random Walk Exponential Random 
Walk 

Innovation Random 
Walk Period 

Var. Ratio z-Statistic Var. Ratio z-Statistic Var. Ratio z-Statistic

2 0.607125 –2.322501 0.628882 –3.737605 1.092069 0.834260

3 0.387300 –2.657345 0.381169 –4.286919 1.059104 0.382998

4 0.265468 –2.751746 0.272187 –4.086829 1.029047 0.159388

5 0.195827 –2.736105 0.208126 –3.832882 1.041345 0.201935

6 0.178749 –2.584959 0.180149 –3.535252 1.105693 0.461939

7 0.151633 –2.491034 0.151036 –3.331089 1.181016 0.712455

8 0.128360 –2.407808 0.115168 –3.210925 1.264847 0.951622

9 0.150798 –2.225090 0.145220 –2.903739 1.365611 1.215562

10 0.125652 –2.187439 0.121747 –2.815886 1.425962 1.326407

11 0.109086 –2.139816 0.104507 –2.726357 1.468916 1.380799

12 0.104602 –2.074466 0.100015 –2.615776 1.505431 1.418341

13 0.087142 –2.048571 0.076364 –2.575127 1.520417 1.400715

14 0.089888 –1.985391 0.085584 –2.455380 1.546666 1.418688

15 0.092369 –1.930529 0.090617 –2.359785 1.566990 1.424912

16 0.068997 –1.935721 0.074975 –2.326509 1.566065 1.382478
 

In the fourth stage of the research, for the predictability 
of the series based on a calculated variance comparison at 
various intervals, overlapping variance ratio test of Lo and 
McKinley was used. The results showed that predictability 
of monthly precipitation is verifiable. In addition, by using 
the autocorrelation function, partial autocorrelation 
function, and White heteroscedasticity test, randomness of 
models was found. The results of the mentioned tests were 
shown in Table 6.  
 

Table 6  Results of Ljung-Box test 

Model Q-Statistic 
(lag length = 16) 

Q2-Statistic 
(lag length = 16) 

ARCH 15.384 11.188 

GARCH 15.017 10.988 

GJR 15.126 10.998 

EGARCH 16.146 11.962 

TARCH 15.11 10.993 

ARCH-M 14.221 8.469 

MGARCH 14.910 11.311 
 

The results of the tests showed a random pattern, in 
both ARCH family models and ARIMA family models. 
Accordingly, the results of autocorrelation test were 
studied based on Ljung-Box test. Finally, by using the 
ARCH family models for the analysis of nonlinear time 
series and using the ARIMA family models to analyze the 
linear series, variability of Iran’s rainfall was predicted. 
Table 7 showed the efficiency of the used models.  

The models findings based on indexes of the 
measuring accuracy were specified in Table 8. 

Table 7  Results of heteroscedasticity test: white 

ARMA Model ARCH Models 
Period 

Heteroscedasticity Test: White 

F-statistic 17.544 F-statistic 12.780 
January 

Obs*R-squared 28.42865 Obs*R-squared 22.014 

F-statistic 22.762 F-statistic 7.813 
February 

Obs*R-squared 34.912 Obs*R-squared 14.33 

F-statistic 13.176 F-statistic 6.823 
March 

Obs*R-squared 22.584 Obs*R-squared 12.681 

F-statistic 3.8204 F-statistic 4.304 
April 

Obs*R-squared 7.39563 Obs*R-squared 8.276 

F-statistic 14.648 F-statistic 19.38 
May 

Obs*R-squared 24.664 Obs*R-squared 30.87 

F-statistic 5.305 F-statistic 4.35 
June 

Obs*R-squared 10.063 Obs*R-squared 8.367 

F-statistic 0.5846 F-statistic 5.443 
July 

Obs*R-squared 1.184 Obs*R-squared 10.307 

F-statistic 0.285 F-statistic 0.789 
August 

Obs*R-squared 0.579 Obs*R-squared 1.594 

F-statistic 0.081 F-statistic 0.83 
September

Obs*R-squared 0.165 Obs*R-squared 0.675 

F-statistic 1.916 F-statistic 0.765 
October 

Obs*R-squared 3.810 Obs*R-squared 2.104 

F-statistic 15.523 F-statistic 15.547 
November

Obs*R-squared 25.865 Obs*R-squared 25.897 

F-statistic 29.402 F-statistic 24.068 
December

Obs*R-squared 42.046 Obs*R-squared 36.40 

F-statistic 22.11 F-statistic 12.582 
Annual 

Obs*R-squared 34.162 Obs*R-squared 21.724 

Note: Significance level: 1%. 
 

Table 8  The criterions of ARMA model selection   

Period Model Coefficient Standard
Error Indexes Model Coefficient Standard

Error 

Annual AR(1) 0.9993 0.0016
AIC=14.137 
SBIC=14.18 

HQIC=14.154 
MA(1) –0.9973 0.0132

Annual AR(1) 0.5871 0.0743
AIC=14.529 
SBIC=14.571 
HQIC=12.546 

MA(2) 0.0361 0.0916

Annual AR(2) 0.9982 0.003
AIC=14.138 
SBIC=14.181 
HQIC=12.155 

MA(2) –0.9931 0.0116

Annual AR(3) 0.99920 0.0046
AIC=14.159 
SBIC=14.202 
HQIC=14.177 

MA(3) –0.9903 0.0158

Annual AR(4) 0.9928 0.0071
AIC=14.145 
SBIC=14.188 
HQIC=14.122 

MA(4) –0.9733 0.0147

Annual AR(5) 0.9957 0.0077
AIC=14.171 
SBIC=14.214 
HQIC=14.188 

MA(5) –0.9866 0.0163

Annual AR(6) 0.9859 0.0111
AIC=14.161 
SBIC=14.205 
HQIC=14.179 

MA(6) –0.9637 0.0193

 

   It is clear that efficiency of ARIMA-GARCH (1, 1) 
models is more suitable to predict the variability of Iran’s 
monthly precipitation in Table 9. According to this, by 
using the mentioned models, the variability of Iran’s 
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monthly precipitation was predicted.  
 

Table 9  The accuracy indexes of models    

Model RMSE MAE MAPE MSE Theil’s U

ARIAM 279.33 168.68 78.68 78025.245 0.375 

ARCH 426.85 322.82 100 182200.92 1 

ARCH-M 279.43 173.156 83.704 78081.12 0.367 

GARCH 279.83 170.73 80.81 78304.83 0.377 

GIR 426.85 322.82 100 182200.92 1 

TGARCH 426.85 322.82 100 182200.92 1 

EGARCH 426.85 322.82 100 182200.92 1 

Hybrid model 277.53 167.68 79.68 77025.34 0.365 
 

Figure 4 shows the condition of predicted values of 
rainfall series in Iran. According to the precision indicators 
of linear and non-linear models, it was observed that linear 
models are better for predicting the variability of Iran’s 
precipitation (Figure 3).  

According to the Table 9, it is clear that the efficiency 
of Hybrid models is more suitable than the other models to 
predict the variability of monthly precipitation in Iran. 
According to this, by using the mentioned models, the 

variability of monthly precipitation in Iran was predicted. 
According to Figure 4-1, by using the mentioned models 
the variability of January precipitation in the Iran was 
predicted. The results showed that the predictability of 
January precipitation is verifiable. The spread of spatial 
variability in the precipitation of the January is between 48 
and 49 mm, including more than the half of Iran's areas 
and the highest variability can be seen in the southwestern 
of Iran (Khuzestan) and the lowest variability can be seen 
scattered in Iran. The results showed diversity in 
predictability of the February precipitation (Figure 4-2). 
The spread of spatial variability in the precipitation in 
February is between 90 and 100 mm, so that more than the 
half of Iran’s areas are surrounded and the highest 
variability can be seen at the center, east, and western 
north of Iran, and the lowest variability can be seen 
scattered in Iran. The results showed diversity in 
predictability of March precipitation (Figure 4-3).  

 
Figure 3  Dynamic forecast and fitted of annual rainfall 

 

  
(1) January (2) February 



236   August, 2017            AgricEngInt: CIGR Journal Open access at http://www.cigrjournal.org            Vol. 19, No. 2 

  
(3) March (4) April 

  
(5) May (6) June 

  
(7) July (8) August 

  
(9) September (10) October 
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(11) November (12) December 

 

Figure 4  Forecast of volatility of monthly rainfall (GARCH Model) 
 

The spread of spatial variability in precipitation of 
March is between 44 and 59 mm, so that almost all of the 
Iran’s areas are surrounded and highest variability can be 
seen in the northern half of Iran, and the lowest variability 
can be seen in the western south of Iran. The results 
showed diversity in predictability of April precipitation 
(Figure 4-4). The spread of spatial variability in 
precipitation of April is between 1 and 17 mm, so that 
almost half of the Iran’s areas are surrounded and the 
highest variability can be seen in the western north of Iran 
and the lowest variability can be seen in center and eastern 
south of Iran. The results showed variability predictability 
of May precipitation (Figure 4-5). The spread of spatial 
variability in precipitation of May is between 18 and    
22 mm, so that almost the half of Iran’s areas are 
surrounded and the highest variability can be seen in the 
center and eastern north of Iran, and the lowest variability 
can be seen in eastern south of Iran. The results showed 
variability predictability of June precipitation (Figure 4-6). 
The spread of spatial variability in precipitation of June is 
between 6 and 6.5 mm, so that almost more than the half of 
Iran's areas are surrounded and the highest variability can 
be seen in the center and eastern south of Iran and the 
lowest variability can be seen in the center, east and 
eastern south of Iran. The results showed the variability 
predictability of July precipitation (Figure 4-7). The 
spread of spatial variability in precipitation of July is 
between 3 and 5 mm, so that almost the half of Iran's areas 
are surrounded and the highest variability can be seen in 
the center and western south of Iran and the lowest 

variability can be seen in east and eastern south of Iran. 
The results showed the variability predictability of August 
precipitation (Figure 4-8). The spread of spatial variability 
in precipitation of August is between 0.001 and 3.5 mm, so 
that almost the half of Iran’s areas are surrounded and the 
highest variability can be seen in western south of the 
Caspian sea and the lowest variability can be seen in center 
and southern half of Iran. The results showed variability 
predictability of September precipitation (Figure 4-9). 
The spread of spatial variability in precipitation of 
September is between 0.001 and 6.3 mm, so that almost 
more than the half of Iran’s areas are surrounded, and the 
highest variability can be seen in western south of the 
Caspian Sea and the lowest variability can be seen in 
center and southern half of Iran. The results showed 
variability predictability of October precipitation (Figure 
4-10). The spread of spatial variability in precipitation of 
October is between 0.02 and 13 mm, so that almost more 
than the half of the Iran's areas are surrounded and the 
highest variability can be seen in the south of the Caspian 
Sea and the lowest variability can be seen in center and 
eastern south of Iran. The results showed the variability 
predictability of November precipitation (Figure 4-11). 
The spread of spatial variability in precipitation of 
November is between 30 and 39 mm, so that almost all the 
Iran's areas are surrounded and the highest variability can 
be seen in western south of Iran and the lowest variability 
can be seen in center and eastern south of Iran. The results 
showed variability predictability of December 
precipitation (Figure 4-12). The spread of spatial 
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variability in precipitation of December is between 47.7 
and 48.1 mm, so that almost all the Iran's areas are 
surrounded, and the highest variability can be seen in 
center and eastern south of Iran and the lowest variability 
can be seen in western south of Iran. The results showed 
the diversity predictability of annual precipitation (Figure 
5). The spread of spatial variability in precipitation in 
period using ARIMA model is between 93 and 639 mm, so 
that almost all the Iran’s areas are surrounded and the 
highest variability can be seen in eastern and south of Iran 
and the lowest variability can be scattered in west and 
north of Iran.  

 
Figure 5  Forecast of variability of annual rainfall (ARIMA 

Model) 

 
Figure 6  Forecast of variability of annual rainfall (GARCH (1, 1) 

Model) 
 

Figure 7 show hybrid model during the predicted 
period for annual rainfall series, respectively.  

The spread of spatial variability in precipitation in 

period using hybrid model is between 130 and 1027 mm, 
so that almost all the Iran’s areas are surrounded and the 
highest variability can be seen in central and eastern 
south of Iran and the lowest variability can be scattered in 
west and north of Iran. Figure 8 shows the rainfall 
predictions of the three models applied in this study using 
longitude for predicting annual rainfall.  

 
Figure 7  Forecast of variability of annual rainfall (hybrid Model) 

 

 
Figure 8  Comparison of variability of annual rainfall with 

longitude (models) 
 

The spread of longitude variability in precipitation in 
period using three models are between 45 and 52 degrees, 
so that almost all the Iran’s areas are surrounded and the 
highest variability can be seen in east of Iran and the 
lowest variability can be scattered in west of Iran. Figure 
9 show the rainfall predictions of the three models 
applied in this study using latitude for predicting annual 
rainfall.  

The spread of latitude variability in precipitation in 
period using three models are between 35 and 39 degrees, 
so that almost all the Iran’s areas are surrounded and the 
highest variability can be seen in south of Iran and the 
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lowest variability can be scattered in north of Iran. Figure 
10 show the rainfall predictions of the three models 
applied in this study using period for predicting annual 
rainfall.  

 
Figure 9  Comparison of variability of annual rainfall with latitude 

(models) 

 
Figure 10  Comparison of variability of annual rainfall with period 

(models) 
 

The span of temporal variability in precipitation using 
three models are between 1990 and 2000 periods, so that 
almost all the Iran’s areas are surrounded and the highest 
variability can be seen in central parts of Iran and the 
lowest variability can be scattered in north of Iran. 

4  Conclusions 

In this study, the linear and nonlinear models in rainfall 
were determined for the 140 stations in a period of 40 
years (1975-2014). This was carried out by using the 
ARCH family models, ARIMA models, and spatial 
variability analysis patterns. The variability patterns of 
rainfall were also estimated over the study period 
(1975-2014). Further, the spatial variability in monthly 
and annual rainfall was determined using the IDW 
interpolation method. The presentation of the 

ARIMA-GARCH (1, 1) indexes can be added perfected, 
by using the validation and accuracy criteria. The 
variability in both upward and downward patterns was 
observed by the ARIMA-GARCH (1, 1) in monthly and 
annual rainfall in the 140 stations. All of the significant 
variability in monthly and annual rainfall was found at the 
5% level of significance. However, significant variability 
in monthly rainfall was observed. Quantitative analysis 
shows that ARIMA-GARCH (1, 1) model (hybrid model) 
indicated the statistically significant obtains in the 
analytical model evaluated to other models, and that 
obtaining the dynamics of the linear and nonlinear models 
returns does develop the forecast of the rainfall conditional 
variability. Results indicated that there are various 
spatial-trend variation patterns that affect precipitation in 
Iran. The findings also indicated that among the rainfall 
data which were influential on precipitation, annual and 
then monthly precipitation had the highest spatial 
variations on the rate of precipitation. After all, the tem-
poral-spatial patterns affects the precipitation rate in Iran 
and the spatial variability model, can show the magnitude 
of these variations on the precipitation changes rate and 
can examine the variation patterns well. 
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